Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 15(711): eadi2623, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647387

RESUMEN

The Omicron variant continuously evolves under the humoral immune pressure exerted by vaccination and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and the resulting Omicron subvariants display further immune evasion and antibody escape. An engineered angiotensin-converting enzyme 2 (ACE2) decoy composed of high-affinity ACE2 and an IgG1 Fc domain could offer an alternative modality to neutralize SARS-CoV-2. We previously reported its broad spectrum and therapeutic potential in rodent models. Here, we demonstrate that the engineered ACE2 decoy retains neutralization activity against Omicron subvariants, including the currently emerging XBB and BQ.1 strains, which completely evade antibodies currently in clinical use. SARS-CoV-2, under the suboptimal concentration of neutralizing drugs, generated SARS-CoV-2 mutants escaping wild-type ACE2 decoy and monoclonal antibodies, whereas no escape mutant emerged against the engineered ACE2 decoy. Furthermore, inhalation of aerosolized decoys improved the outcomes of rodents infected with SARS-CoV-2 at a 20-fold lower dose than that of intravenous administration. Last, the engineered ACE2 decoy exhibited therapeutic efficacy for cynomolgus macaques infected with SARS-CoV-2. These results indicate that this engineered ACE2 decoy represents a promising therapeutic strategy to overcome immune-evading SARS-CoV-2 variants and that liquid aerosol inhalation could be considered as a noninvasive approach to enhance the efficacy of COVID-19 treatments.


Asunto(s)
COVID-19 , Animales , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Anticuerpos Monoclonales , Macaca fascicularis
2.
Int J Mol Sci ; 23(22)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36430481

RESUMEN

Zika virus (ZIKV) outbreaks in Central and South America caused severe public health problems in 2015 and 2016. These outbreaks were finally contained through several methods, including mosquito control using insecticides and repellents. Additionally, the development of herd immunity in these countries might have contributed to containing the epidemic. While ZIKV is mainly transmitted by mosquito bites and mucosal transmission via bodily fluids, including the semen of infected individuals, has also been reported. We evaluated the effect of mucosal ZIKV infection on continuous subcutaneous challenges in a cynomolgus monkey model. Repeated intravaginal inoculations of ZIKV did not induce detectable viremia or clinical symptoms, and all animals developed a potent neutralizing antibody, protecting animals from the subsequent subcutaneous superchallenge. These results suggest that viral replication at mucosal sites can induce protective immunity without causing systemic viremia or symptoms.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Animales , Infección por el Virus Zika/epidemiología , Macaca fascicularis , Viremia , Anticuerpos Neutralizantes
3.
J Virol ; 96(22): e0133922, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36314828

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). However, the precise mechanisms leading to HTLV-1 chronic infection and the onset of the diseases have remained unclear, and effective vaccines for inhibiting the infection and the progression of pathogenesis have therefore not been developed. The use of a nonhuman primate (NHP) model is thought to be important for revealing the mechanisms of the progressive status and for the development of prevention procedures. In this study, we developed a cynomolgus macaque (CM) model of HTLV-1 infection by direct intravenous inoculation of HTLV-1-producing cells derived from ATL patients. The cell line used for infection, ATL-040, was selected as the most infectious one in our cell line library. CMs inoculated intravenously with 1 × 108 ATL-040 cells per animal became persistently infected with HTLV-1, as shown by the HTLV-1 provirus load (PVL) in peripheral blood mononuclear cells and HTLV-1-specific antibodies (2/2 animals). One CM inoculated intravenously with 1 × 107 ATL-040 cells did not have detectable PVLs despite the fact that anti-HTLV-1 antibodies were maintained for more than 2 years. Furthermore, immunological approaches, including CD8+ T cell depletion prior to infection (3/3 animals) and intrathecal inoculation (3/3 animals), led to increased proviral loads in the cynomolgus monkeys. The present method and the cynomolgus monkey model of HTLV-1 infection will be beneficial for immunological and virological studies on HTLV-1 aiming at the development of anti-HTLV-1 prophylactic vaccines and therapy drugs. IMPORTANCE HTLV-1 was discovered in the 1980s as the causative agent of adult T-cell leukemia and HTLV-1-associated myelopathy/tropical spastic paraparesis. However, the precise mechanisms leading to HTLV-1 chronic infection and the onset of the diseases still remain unidentified. Thus, no effective vaccines to inhibit the infection and the progressive of pathogenesis have been developed. The use of appropriate animal models is essential for understanding HTLV-1 infection and pathogenesis. In order to establish a new nonhuman primate model for studies on HTLV-1 infection, cynomolgus monkeys were infected with HTLV-1 under a variety of experimental conditions. Our method, using a cell line generated from an ATL patient as a source of HTLV-1, was able to establish HTLV-1 infection in monkeys with a 100% success rate. This cynomolgus macaque model of HTLV-1 infection will contribute to the elucidation of HTLV-1 infection and its associated disease development.


Asunto(s)
Virus Linfotrópico T Tipo 1 Humano , Leucemia-Linfoma de Células T del Adulto , Paraparesia Espástica Tropical , Animales , Humanos , Línea Celular , Leucocitos Mononucleares , Macaca fascicularis , Paraparesia Espástica Tropical/patología , Provirus , Modelos Animales de Enfermedad
4.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35013573

RESUMEN

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Asunto(s)
Dieta Alta en Grasa , Macrófagos , Tejido Adiposo , Animales , Dieta Alta en Grasa/efectos adversos , Lípidos , Macaca fascicularis/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , PPAR gamma/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34625475

RESUMEN

The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global threat to human health and life. A useful pathological animal model accurately reflecting human pathology is needed to overcome the COVID-19 crisis. In the present study, COVID-19 cynomolgus monkey models including monkeys with underlying diseases causing severe pathogenicity such as metabolic disease and elderly monkeys were examined. Cynomolgus macaques with various clinical conditions were intranasally and/or intratracheally inoculated with SARS-CoV-2. Infection with SARS-CoV-2 was found in mucosal swab samples, and a higher level and longer period of viral RNA was detected in elderly monkeys than in young monkeys. Pneumonia was confirmed in all of the monkeys by computed tomography images. When monkeys were readministrated SARS-CoV-2 at 56 d or later after initial infection all of the animals showed inflammatory responses without virus detection in swab samples. Surprisingly, in elderly monkeys reinfection showed transient severe pneumonia with increased levels of various serum cytokines and chemokines compared with those in primary infection. The results of this study indicated that the COVID-19 cynomolgus monkey model reflects the pathophysiology of humans and would be useful for elucidating the pathophysiology and developing therapeutic agents and vaccines.


Asunto(s)
COVID-19/inmunología , Modelos Animales de Enfermedad , Macaca fascicularis/inmunología , Enfermedades de los Primates/inmunología , SARS-CoV-2/inmunología , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/virología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Pulmón/diagnóstico por imagen , Pulmón/inmunología , Pulmón/virología , Macaca fascicularis/virología , Masculino , Enfermedades de los Primates/virología , SARS-CoV-2/fisiología , Tomografía Computarizada por Rayos X/métodos , Esparcimiento de Virus/inmunología , Esparcimiento de Virus/fisiología
6.
J Immunol ; 205(11): 3023-3036, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33097574

RESUMEN

Recently, the efficacy of Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination is being reassessed in accordance with the achievements of clinical tuberculosis (TB) vaccine research. However, the mechanisms ultimately determining the success or failure of BCG vaccination to prevent pulmonary TB remain poorly understood. In this study, we analyzed the protective effects of intradermal BCG vaccination by using specific pathogen-free cynomolgus macaques of Asian origin that were intradermally vaccinated with BCG (Tokyo strain) followed by Mycobacterium tuberculosis (Erdman strain) infection. Intradermal BCG administration generated TB Ag-specific multifunctional CD4 T cell responses in peripheral blood and bronchoalveolar lavage and almost completely protected against the development of TB pathogenesis with aggravation of clinical parameters and high levels of bacterial burdens in extrapulmonary organs. However, interestingly, there were no differences in bacterial quantitation and pathology of extensive granulomas in the lungs between BCG-vaccinated monkeys and control animals. These results indicated that the changes in clinical parameters, immunological responses, and quantitative gross pathology that are used routinely to determine the efficacy of TB vaccines in nonhuman primate models might not correlate with the bacterial burden and histopathological score in the lung as measured in this study.


Asunto(s)
Vacuna BCG/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/inmunología , Animales , Antígenos Bacterianos/inmunología , Lavado Broncoalveolar/métodos , Linfocitos T CD4-Positivos/inmunología , Pulmón/inmunología , Macaca fascicularis , Mycobacterium bovis/inmunología , Mycobacterium tuberculosis/inmunología , Neumonía/inmunología , Vacunación/métodos
7.
J Virol ; 93(6)2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30567982

RESUMEN

A betulinic acid-based compound, bevirimat (BVM), inhibits HIV-1 maturation by blocking a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. Previous studies showed that mutations conferring resistance to BVM cluster around the CA-SP1 cleavage site. Single amino acid polymorphisms in the SP1 region of Gag and the C terminus of CA reduced HIV-1 susceptibility to BVM, leading to the discontinuation of BVM's clinical development. We recently reported a series of "second-generation" BVM analogs that display markedly improved potency and breadth of activity relative to the parent molecule. Here, we demonstrate that viral clones bearing BVM resistance mutations near the C terminus of CA are potently inhibited by second-generation BVM analogs. We performed de novo selection experiments to identify mutations that confer resistance to these novel compounds. Selection experiments with subtype B HIV-1 identified an Ala-to-Val mutation at SP1 residue 1 and a Pro-to-Ala mutation at CA residue 157 within the major homology region (MHR). In selection experiments with subtype C HIV-1, we identified mutations at CA residue 230 (CA-V230M) and SP1 residue 1 (SP1-A1V), residue 5 (SP1-S5N), and residue 10 (SP1-G10R). The positions at which resistance mutations arose are highly conserved across multiple subtypes of HIV-1. We demonstrate that the mutations confer modest to high-level maturation inhibitor resistance. In most cases, resistance was not associated with a detectable increase in the kinetics of CA-SP1 processing. These results identify mutations that confer resistance to second-generation maturation inhibitors and provide novel insights into the mechanism of resistance.IMPORTANCE HIV-1 maturation inhibitors are a class of small-molecule compounds that block a late step in the viral protease-mediated processing of the Gag polyprotein precursor, the viral protein responsible for the formation of virus particles. The first-in-class HIV-1 maturation inhibitor bevirimat was highly effective in blocking HIV-1 replication, but its activity was compromised by naturally occurring sequence polymorphisms within Gag. Recently developed bevirimat analogs, referred to as "second-generation" maturation inhibitors, overcome this issue. To understand more about how these second-generation compounds block HIV-1 maturation, here we selected for HIV-1 mutants that are resistant to these compounds. Selections were performed in the context of two different subtypes of HIV-1. We identified a small set of mutations at highly conserved positions within the capsid and spacer peptide 1 domains of Gag that confer resistance. Identification and analysis of these maturation inhibitor-resistant mutants provide insights into the mechanisms of resistance to these compounds.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral/efectos de los fármacos , VIH-1/efectos de los fármacos , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Línea Celular , Seropositividad para VIH/tratamiento farmacológico , Humanos , Células Jurkat , Mutación/efectos de los fármacos , Triterpenos Pentacíclicos , Succinatos/farmacología , Triterpenos/farmacología , Virión/efectos de los fármacos , Ensamble de Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Ácido Betulínico
8.
Nat Commun ; 8(1): 1779, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29176596

RESUMEN

Maturation of HIV-1 particles encompasses a complex morphological transformation of Gag via an orchestrated series of proteolytic cleavage events. A longstanding question concerns the structure of the C-terminal region of CA and the peptide SP1 (CA-SP1), which represents an intermediate during maturation of the HIV-1 virus. By integrating NMR, cryo-EM, and molecular dynamics simulations, we show that in CA-SP1 tubes assembled in vitro, which represent the features of an intermediate assembly state during maturation, the SP1 peptide exists in a dynamic helix-coil equilibrium, and that the addition of the maturation inhibitors Bevirimat and DFH-055 causes stabilization of a helical form of SP1. Moreover, the maturation-arresting SP1 mutation T8I also induces helical structure in SP1 and further global dynamical and conformational changes in CA. Overall, our results show that dynamics of CA and SP1 are critical for orderly HIV-1 maturation and that small molecules can inhibit maturation by perturbing molecular motions.


Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Proteínas de la Cápside/genética , Línea Celular , VIH-1/genética , Humanos , Péptidos/metabolismo , Ensamble de Virus
9.
ChemMedChem ; 11(20): 2320-2326, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27634404

RESUMEN

A novel HIV-1 inhibitor, 6-(tert-butyl)-4-phenyl-4-(trifluoromethyl)-1H,3H-1,3,5-triazin-2-one (compound 1), was identified from a compound library screened for the ability to inhibit HIV-1 replication. EC50 values of compound 1 were found to range from 107.9 to 145.4 nm against primary HIV-1 clinical isolates. In in vitro assays, HIV-1 reverse transcriptase (RT) activity was inhibited by compound 1 with an EC50 of 4.3 µm. An assay for resistance to compound 1 selected a variant of HIV-1 with a RT mutation (RTL100I ); this frequently identified mutation confers mild resistance to non-nucleoside RT inhibitors (NNRTIs). A recombinant HIV-1 bearing RTL100I exhibited a 41-fold greater resistance to compound 1 than the wild-type virus. Compound 1 was also effective against HIV-1 with RTK103N , one of the major mutations that confers substantial resistance to NNRTIs. Computer-assisted docking simulations indicated that compound 1 binds to the RT NNRTI binding pocket in a manner similar to that of efavirenz; however, the putative compound 1 binding site is located further from RTK103 than that of efavirenz. Compound 1 is a novel NNRTI with a unique drug-resistance profile.


Asunto(s)
Fármacos Anti-VIH/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/farmacología , Triazinas/farmacología , Replicación Viral/efectos de los fármacos , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Línea Celular Transformada , Relación Dosis-Respuesta a Droga , Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , VIH-1/crecimiento & desarrollo , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Relación Estructura-Actividad , Triazinas/síntesis química , Triazinas/química
10.
Biochem Biophys Res Commun ; 475(1): 113-8, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27178216

RESUMEN

The conformational dynamics of the HIV-1 envelope glycoprotein gp120 and gp41 (Env) remains poorly understood. Here we examined how the V3 loop conformation is regulated in the liganded state using a panel of recombinant HIV-1NL4-3 clones bearing HIV-1AD8 Env by two experimental approaches, one adopting a monoclonal neutralizing antibody KD-247 (suvizumab) that recognizes the tip of the V3 loop, and the other assessing the function of the V3 loop. A significant positive correlation of the Env-KD-247 binding was detected between the liganded and unliganded conditions. Namely, the mutation D163G located in the V2 loop, which enhances viral susceptibility to KD-247 by 59.4-fold, had little effect on the sCD4-induced increment of the virus-KD-247 binding. By contrast, a virus with the S370N mutation in the C3 region increased the virus-KD-247 binding by 91.4-fold, although it did not influence the KD-247-mediated neutralization. Co-receptor usage and the susceptibility to CCR5 inhibitor Maraviroc were unaffected by D163G and S370N mutations. Collectively, these data suggest that the conformation of the liganded V3-loop of HIV-1AD8 Env is still under regulation of other Env domains aside from the V3 loop, including V2 and C3. Our results give an insight into the structural properties of HIV-1 Env and viral resistance to entry inhibitors by non-V3 loop mutations.


Asunto(s)
Infecciones por VIH/virología , VIH-1/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/metabolismo , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/química , VIH-1/genética , Humanos , Modelos Moleculares , Mutación Puntual , Conformación Proteica , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
11.
J Virol ; 90(2): 972-8, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26537676

RESUMEN

UNLABELLED: Upon release of HIV-1 particles from the infected cell, the viral protease cleaves the Gag polyprotein at specific sites, triggering maturation. During this process, which is essential for infectivity, the capsid protein (CA) reassembles into a conical core. Maturation inhibitors (MIs) block HIV-1 maturation by interfering with protease-mediated CA-spacer peptide 1 (CA-SP1) processing, concomitantly stabilizing the immature CA-SP1 lattice; virions from MI-treated cells retain an immature-like CA-SP1 lattice, whereas mutational abolition of cleavage at the CA-SP1 site results in virions in which the CA-SP1 lattice converts to a mature-like form. We previously reported that propagation of HIV-1 in the presence of MI PF-46396 selected for assembly-defective, compound-dependent mutants with amino acid substitutions in the major homology region (MHR) of CA. Propagation of these mutants in the absence of PF-46396 resulted in the acquisition of second-site compensatory mutations. These included a Thr-to-Ile substitution at SP1 residue 8 (T8I), which results in impaired CA-SP1 processing. Thus, the T8I mutation phenocopies PF-46396 treatment in terms of its ability to rescue the replication defect imposed by the MHR mutations and to impede CA-SP1 processing. Here, we use cryo-electron tomography to show that, like MIs, the T8I mutation stabilizes the immature-like CA-SP1 lattice. These results have important implications for the mechanism of action of HIV-1 MIs; they also suggest that T8I may provide a valuable tool for structural definition of the CA-SP1 boundary region, which has thus far been refractory to high-resolution analysis, apparently because of conformational flexibility in this region of Gag. IMPORTANCE: HIV-1 maturation involves dissection of the Gag polyprotein by the viral protease and assembly of a conical capsid enclosing the viral ribonucleoprotein. Maturation inhibitors (MIs) prevent the final cleavage step at the site between the capsid protein (CA) and spacer peptide 1 (SP1), apparently by binding at this site and denying the protease access. Additionally, MIs stabilize the immature-like CA-SP1 lattice, preventing release of CA into the soluble pool. We previously found that T8I, a mutation in SP1, rescues a PF-46396-dependent CA mutant and blocks CA-SP1 cleavage. In this study, we imaged T8I virions by cryo-electron tomography and showed that T8I mutants, like MI-treated virions, contain an immature CA-SP1 lattice. These results lay the groundwork needed to understand the structure of the CA-SP1 interface region and further illuminate the mechanism of action of MIs.


Asunto(s)
Proteína p24 del Núcleo del VIH/metabolismo , VIH-1/fisiología , Mutación Missense , Procesamiento Proteico-Postraduccional , Ensamble de Virus , Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Proteína p24 del Núcleo del VIH/genética , VIH-1/genética , VIH-1/ultraestructura , Péptidos
12.
Antimicrob Agents Chemother ; 60(1): 190-7, 2016 01.
Artículo en Inglés | MEDLINE | ID: mdl-26482309

RESUMEN

Concomitant with the release of human immunodeficiency virus type 1 (HIV-1) particles from the infected cell, the viral protease cleaves the Gag polyprotein precursor at a number of sites to trigger virus maturation. We previously reported that a betulinic acid-derived compound, bevirimat (BVM), blocks HIV-1 maturation by disrupting a late step in protease-mediated Gag processing: the cleavage of the capsid-spacer peptide 1 (CA-SP1) intermediate to mature CA. BVM was shown in multiple clinical trials to be safe and effective in reducing viral loads in HIV-1-infected patients. However, naturally occurring polymorphisms in the SP1 region of Gag (e.g., SP1-V7A) led to a variable response in some BVM-treated patients. The reduced susceptibility of SP1-polymorphic HIV-1 to BVM resulted in the discontinuation of its clinical development. To overcome the loss of BVM activity induced by polymorphisms in SP1, we carried out an extensive medicinal chemistry campaign to develop novel maturation inhibitors. In this study, we focused on alkyl amine derivatives modified at the C-28 position of the BVM scaffold. We identified a set of derivatives that are markedly more potent than BVM against an HIV-1 clade B clone (NL4-3) and show robust antiviral activity against a variant of NL4-3 containing the V7A polymorphism in SP1. One of the most potent of these compounds also strongly inhibited a multiclade panel of primary HIV-1 isolates. These data demonstrate that C-28 alkyl amine derivatives of BVM can, to a large extent, overcome the loss of susceptibility imposed by polymorphisms in SP1.


Asunto(s)
Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Succinatos/farmacología , Triterpenos/farmacología , Virión/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Alquilación , Aminación , Secuencia de Aminoácidos , Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/química , Cápside/efectos de los fármacos , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Línea Celular , Farmacorresistencia Viral/efectos de los fármacos , Infecciones por VIH/virología , VIH-1/genética , VIH-1/aislamiento & purificación , VIH-1/metabolismo , Células HeLa , Humanos , Concentración 50 Inhibidora , Datos de Secuencia Molecular , Polimorfismo Genético , Relación Estructura-Actividad , Succinatos/síntesis química , Succinatos/química , Linfocitos T/efectos de los fármacos , Linfocitos T/virología , Triterpenos/síntesis química , Triterpenos/química , Virión/genética , Virión/metabolismo , Replicación Viral/efectos de los fármacos , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
13.
J Acquir Immune Defic Syndr ; 64(2): 154-62, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-24047968

RESUMEN

OBJECTIVES: DNAJ/HSP40 is an evolutionarily conserved family of proteins bearing various functions. Historically, it has been emphasized that HSP40/DNAJ family proteins play a positive role in infection of various viruses. We identified DNAJ/HSP40B6 as a potential negative regulator of HIV-1 replication in our genetic screens. In this study, we investigated the functional interactions between HIV-1 and HSP40 family members. DESIGN: We took genetic and comparative virology approaches to expand the primary observation. METHODS: Multiple HSP40/DNAJ proteins were tested for their ability to inhibit replication of adenovirus, herpes simplex virus type 1, HIV-1, and vaccinia virus. The mechanism of inhibition was investigated by using HSP40/DNAJ mutants and measuring the efficiencies of each viral replication steps. RESULTS: HSP40A1, B1, B6, and C5, but not C3, were found to be able to limit HIV-1 production. This effect was specific to HIV-1 for such effects were not detected in adenovirus, herpes simplex virus type 1, and vaccinia virus. Genetic analyses suggested that the conserved DNAJ domain was responsible for the inhibition of HIV-1 production through which HSP40 regulates HSP70 ATPase activity. Interestingly, HSP40s lowered the levels of steady-state viral messenger RNA. This was not attributed to the inhibition of Tat/long terminal repeat-driven transcription but the downregulation of Rev expression. CONCLUSIONS: This is the first report providing evidence that HSP70-HSP40 complex confers an innate resistance specific to HIV-1. For their interferon-inducible nature, HSP40 family members should account for the anti-HIV-1 function of interferon.


Asunto(s)
VIH-1/fisiología , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas del Choque Térmico HSP40/farmacología , Replicación Viral/efectos de los fármacos , Replicación del ADN , Regulación hacia Abajo , Regulación Viral de la Expresión Génica , Células HEK293 , VIH-1/genética , VIH-1/metabolismo , VIH-1/patogenicidad , Proteínas del Choque Térmico HSP40/química , Proteínas del Choque Térmico HSP40/genética , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , ARN Viral/genética , ARN Viral/metabolismo , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen rev del Virus de la Inmunodeficiencia Humana/metabolismo
14.
ACS Chem Biol ; 8(10): 2235-44, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-23898787

RESUMEN

HIV-1 integrase (IN) is an enzyme which is indispensable for the stable infection of host cells because it catalyzes the insertion of viral DNA into the genome and thus is an attractive target for the development of anti-HIV agents. Earlier, we found Vpr-derived peptides with inhibitory activity against HIV-1 IN. These Vpr-derived peptides are originally located in an α-helical region of the parent Vpr protein. Addition of an octa-arginyl group to the inhibitory peptides caused significant inhibition against HIV replication associated with an increase in cell permeability but also relatively high cytotoxicity. In the current study, stapled peptides, a new class of stabilized α-helical peptidomimetics were adopted to enhance the cell permeability of the above lead peptides. A series of stapled peptides, which have a hydrocarbon link formed by a ruthenium-catalyzed ring-closing metathesis reaction between successive turns of α-helix, were designed, synthesized, and evaluated for biological activity. In cell-based assays some of the stapled peptides showed potent anti-HIV activity comparable with that of the original octa-arginine-containing peptide (2) but with lower cytotoxicity. Fluorescent imaging experiments revealed that these stapled peptides are significantly cell permeable, and CD analysis showed they form α-helical structures, whereas the unstapled congeners form ß-sheet structures. The application of this stapling strategy to Vpr-derived IN inhibitory peptides led to a remarkable increase in their potency in cells and a significant reduction of their cytotoxicity.


Asunto(s)
Inhibidores de Integrasa VIH/química , Integrasa de VIH/metabolismo , VIH-1/genética , Péptidos/química , Secuencia de Aminoácidos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Dicroismo Circular , Sistemas de Liberación de Medicamentos , Ensayo de Inmunoadsorción Enzimática , VIH-1/química , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Péptidos/genética , Péptidos/farmacología , Peptidomiméticos , Unión Proteica
15.
Biochem Biophys Res Commun ; 424(3): 519-23, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22771581

RESUMEN

The toll-like receptor (TLR)-7 has been shown to sense the retroviral infection. However, a surrogate sensor has been implicated. We examined whether retrovirus serves as a TLR3 ligand in human cells by utilizing cell lines LNCaP and PC-3 lacking TLR7, and the xenotropic murine leukemia virus-relamoted virus (XMRV) insensitive to human tripartite motif-containing (TRIM) 5, a newly characterized pattern recognition receptor (PRR). A dominant-negative TLR3 or a chemical inhibitor of TLR3 attenuated the XMRV-induced IP-10/CXCL10 expression, a marker of TLR3 response. These data clearly indicated that retroviral infection exemplified by XMRV activates the TLR3 signal in human cells.


Asunto(s)
Genoma Viral/inmunología , Infecciones por Retroviridae/inmunología , Retroviridae/inmunología , Receptor Toll-Like 3/inmunología , Línea Celular , Humanos , Retroviridae/genética , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/genética , Virus Relacionado con el Virus Xenotrópico de la Leucemia Murina/inmunología
16.
Gene ; 505(1): 1-8, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22692005

RESUMEN

Cyclin T1 (CCNT1), a gene containing nine exons, forms the positive transcription elongation factor b (P-TEFb) complex and regulates a wide variety of biological processes including transcription. We discovered a novel splice variant of CCNT1 that lacks exon 7 (dE7). RT-PCR analysis revealed that the dE7 transcript was detected in almost all tissues examined. The dE7/FL transcript ratio was high in quiescent peripheral blood mononuclear cells (PBMC) and in tissues poor in cell division; however, it was low in activated PBMC and in tissues with high cell proliferative potential. These results suggest that exon 7 skipping is linked to cell cycle progression. Increasing the dE7/FL transcript ratio resulted in the reduction of CCNT1 protein levels, indicating that the expression of CCNT1 protein is controlled by exon skipping. Exon 7 skipping yields a +1 frameshift at exon 8, which generates a premature termination codon (PTC). The dE7 transcript levels increased when cells were treated with the protein synthesis inhibitor cycloheximide (CHX) or a kinase inhibitor wortmannin (WORT), whilst the FL transcript levels were unchanged, suggesting that the dE7 transcript is a target of nonsense-mediated decay (NMD). Importantly, reduction of dE7 transcript by WORT correlated well with the decrement of CCNT1 protein expression. The dE7 transcript would produce an approximately 23kDa protein that covers approximately 70% of the cyclin box. The ectopically expressed dE7 protein physically interacted with CDK9 and competed with FL CCNT1 for CDK9, thus should act dominant-negatively on FL CCNT1. The replication of human immunodeficiency virus type 1 (HIV-1), heavily dependent on the CCNT1 function, was inhibited by dE7 protein through the attenuation of Tat/long terminal repeat (LTR)-driven transcription. Taken together, these results suggest that dE7 is a novel splice variant that regulates the expression and function of CCNT1.


Asunto(s)
Empalme Alternativo/fisiología , Codón de Terminación/metabolismo , Ciclina T/biosíntesis , Exones/fisiología , Leucocitos Mononucleares/metabolismo , ARN Mensajero/biosíntesis , Empalme Alternativo/efectos de los fármacos , Androstadienos/farmacología , Línea Celular , Codón de Terminación/genética , Ciclina T/genética , Ciclina T/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , Cicloheximida/farmacología , Femenino , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , VIH-1/metabolismo , Humanos , Leucocitos Mononucleares/citología , Masculino , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , ARN Mensajero/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Wortmanina , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
17.
Chem Pharm Bull (Tokyo) ; 60(6): 764-71, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22689429

RESUMEN

Reverse transcriptase of human immunodeficiency virus type 1 (HIV-1) has two enzymatic functions. One of the functions is ribonuclease (RNase) H activity concerning the digestion of only RNA of RNA/DNA hybrid. The RNase H activity is an attractive target for a new class of anti-HIV drugs because no approved inhibitor is available now. In our previous studies, an agent bearing 5-nitro-furan-2-carboxylic acid ester core was found from chemical screening and dozens of the derivatives were synthesized to improve compound potency. In this work, some parts of the chemical structure were modulated to deepen our understanding of the structure-activity relationship of the analogous compounds. Several derivatives having nitro-furan-phenyl-ester skeleton were shown to be potent RNase H inhibitors. Attaching methoxy-carbonyl and methoxy groups to the phenyl ring increased the inhibitory potency. No significant cytotoxicity was observed for these active derivatives. In contrast, the derivatives having nitro-furan-benzyl-ester skeleton showed modest inhibitory activities regardless of attaching diverse kinds of functional groups to the benzyl ring. Both the modulation of the 5-nitro-furan-2-carboxylic moiety and the conversion of the ester linkage resulted in a drastic decrease in inhibitory potency. These findings are informative for designing potent inhibitors of RNase H enzymatic activity of HIV-1.


Asunto(s)
Fármacos Anti-VIH/química , Inhibidores Enzimáticos/química , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Teoría Cuántica , Ribonucleasa H/antagonistas & inhibidores , Fármacos Anti-VIH/farmacología , Línea Celular , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Concentración 50 Inhibidora , Estructura Molecular
18.
Sci Rep ; 2: 359, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22496955

RESUMEN

Development of a therapeutic application of CASP3/caspase 3/CPP32, an executor of apoptosis, has been challenging because regulation of its activation is complicated. This study aimed to inhibit cancer cell growth and human immunodeficiency virus type 1 (HIV-1) propagation through a CASP3 mutant, CASP3*, activable by HIV-1-encoded aspartate protease. Active CASP3* was delivered to leukemic cells using a protein transduction vehicle, the lentivirus-like nanoparticle (LENA), which should contain thousands of CASP3*-Gag protein molecules and release the activated CASP3* into the target cell cytoplasm. CASP3*-LENA induced apoptosis in various types of leukemic cells. In addition to being effective against leukemic cells, constitutive expression of CASP3* restricted HIV-1 propagation in SUP-T1 cells. The attenuation of HIV-1 replication in SUP-T1/CASP3* cells was attributed to the elimination of HIV-1-infected cells by apoptosis. These data suggest that CASP3* has therapeutic potential against both lymphoid malignancies and HIV-1 infection.


Asunto(s)
Caspasa 3/uso terapéutico , Proteasa del VIH/metabolismo , Secuencia de Bases , Caspasa 3/metabolismo , Línea Celular , Cartilla de ADN , Infecciones por VIH/tratamiento farmacológico , Humanos , Linfoma/tratamiento farmacológico , Reacción en Cadena de la Polimerasa
19.
Bioorg Med Chem ; 20(10): 3287-91, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22507207

RESUMEN

An artificial antigen forming the C34 trimeric structure targeting membrane-fusion mechanism of HIV-1 has been evaluated as an HIV vaccine. The C34 trimeric molecule was previously designed and synthesized using a novel template with C3-symmetric linkers by us. The antiserum produced by immunization of the C34 trimeric form antigen showed 23-fold higher binding affinity for the C34 trimer than for the C34 monomer and showed significant neutralizing activity. The present results suggest effective strategies of the design of HIV vaccines and anti-HIV agents based on the native structure mimic of proteins targeting dynamic supramolecular mechanisms in HIV fusion.


Asunto(s)
Vacunas contra el SIDA/química , Anticuerpos Anti-VIH/inmunología , Proteína gp41 de Envoltorio del VIH/inmunología , Fragmentos de Péptidos/inmunología , Vacunas contra el SIDA/genética , Secuencia de Aminoácidos , Animales , Fármacos Anti-VIH/química , Línea Celular , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Antígenos VIH/química , Antígenos VIH/inmunología , Proteína gp41 de Envoltorio del VIH/síntesis química , Humanos , Inmunización , Masculino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Pruebas de Neutralización , Fragmentos de Péptidos/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...