Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959109

RESUMEN

This study was aimed at researching the impact of the drying procedure (using the most appropriate honey-maltodextrin concentration for each drying technique) and botanical origin of honey on the physicochemical and potentially bioactive properties of honey powders that were made using maltodextrin as a carrier. The research was carried out with thyme, lavender, vetch and multifloral honey dehydrated using vacuum drying and freeze drying. The analysed parameters were moisture, water activity, colour, glass transition temperature, powder recovery, hygroscopic index and rate, tapped density, solubility, and phenolics as well as antiradical (ABTS•+, ROO•, •OH and O2•-), anti-inflammatory and antimicrobial (against Staphylococcus aureus, Escherichia coli and Listeria monocytogenes) activities. Freeze drying provided the highest recoveries. Powders obtained using freeze drying showed higher moisture and solubility as well as lower glass transition temperature, density and hygroscopicity than those obtained using vacuum drying. Hygroscopicity, glass transition temperature and antimicrobial activity against St. aureus depended on the drying procedure-honey concentration. Colour, anti-O2•- activity and antimicrobial activity against L. monocytogenes depended on the botanical origin of the raw honey. Moisture, solubility, density, total phenolic content, anti-ABTS•+ and anti-ROO• activities as well as anti-inflammatory activity and antimicrobial activity against E. coli depended on the drying procedure-honey concentration and botanical origin.

2.
Polymers (Basel) ; 15(21)2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37959995

RESUMEN

Gradient porous materials, particularly carbon-based materials, hold immense potential in the fields of batteries, energy storage, electrocatalysis, and sensing, among others, by synergistically combining the attributes associated with each pore size within a unified structural framework. In this study, we developed a gradient porous aramid (GP-Aramid) by incorporating cellulose acetate as a porosity promoter in the polymer casting solution in different proportions. These GP-Aramids were subsequently transformed into their pyrolyzed counterparts (GP-Pyramids), retaining their original structures while displaying diverse cellular or dense microstructures inherited from the parent aramid, as confirmed via scanning electron microscopy. X-ray diffraction spectra provided evidence of the conversion of aramids into carbonaceous materials. The materials showed structural defects observed through the intensity ratio of the G and D bands (ID/IG = 1.05) in the Raman spectra, while X-ray photoelectron spectra (XPS) revealed that the carbonization process yielded pyrolyzed carbon materials unusually rich in nitrogen (6%), oxygen (20%), and carbon (72%), which is especially relevant for catalysis applications. The pyrolyzed materials showed bulk resistivities from 5.3 ± 0.3 to 34.2 ± 0.6 depending on the meta- or para-orientation of the aramid and the porous structure. This work contributes to understanding these gradient porous aromatic polyamides' broader significance and potential applications in various fields.

3.
Bio Protoc ; 13(12)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37397798

RESUMEN

Mandelonitrile is a nitrogen-containing compound, considered an essential secondary metabolite. Chemically, it is a cyanohydrin derivative of benzaldehyde, with relevant functions in different physiological processes including defense against phytophagous arthropods. So far, procedures for detecting mandelonitrile have been effectively applied in cyanogenic plant species such as Prunus spp. Nevertheless, its presence in Arabidopsis thaliana , considered a non-cyanogenic species, has never been determined. Here, we report the development of an accurate protocol for mandelonitrile quantification in A. thaliana within the context of A. thaliana -spider mite interaction. First, mandelonitrile was isolated from Arabidopsis rosettes using methanol; then, it was derivatized by silylation to enhance detection and, finally, it was quantified using gas chromatography-mass spectrometry. The selectivity and sensitivity of this method make it possible to detect low levels of mandelonitrile (LOD 3 ppm) in a plant species considered non-cyanogenic that, therefore, will have little to no cyanogenic compounds, using a small quantity of starting material (≥100 mg).

4.
ACS Appl Mater Interfaces ; 15(12): 16055-16062, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36939579

RESUMEN

Quality control in the food industry is of the upmost importance from the food safety, organoleptic and commercial viewpoints. Accordingly, the development of in situ, rapid, and costless analytical tools is a valuable task in which we are working. Regarding this point, the copper content of grape must has to be determined by wineries along the wine production process. For this purpose, grape must samples are sent to laboratories where the copper content is measured usually by flame atomic absorption spectrometry or by inductively coupled plasma mass spectrometry. We herein propose a straightforward, rapid, and inexpensive methodology based both on a film-shaped colorimetric polymer sensor and a smartphone method that at the same time can be used by unskilled personnel. The sensory polymer films change their color upon dipping them on the grape must, and the color evolution is analyzed using the digital color parameters of a picture taken to the film with a smartphone. Furthermore, the analytical procedure is automatically carried out by a smartphone app. The limit of detection of copper of the polymer sensor is 0.08 ppm. Following this approach, 18 production samples coming from the French Groupe ICV company were studied. The copper content of the samples was analyzed by the usual procedure carried out by the company (flame atomic absorption spectrometry) and by the method proposed in this work, ranging this content from 0.41 to 6.08 ppm. The statistical study showed that the results of both methods are fully consistent, showing the validity of the proposed method for the determination of copper in grape must within the frame of wine production wineries and industries.

5.
ACS Sustain Chem Eng ; 11(1): 332-342, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36643003

RESUMEN

The importance of systematic and efficient recycling of all forms of plastic is no longer a matter for debate. Constituting the sixth most produced polymer family worldwide, polyurethanes, which are used in a broad variety of applications (buildings, electronics, adhesives, sealants, etc.), are particularly important to recycle. In this study, polyurethanes are selectively recycled to obtain high value-added molecules. It is demonstrated that depolymerization reactions performed with secondary amines selectively cleave the C-O bond of the urethane group, while primary amines unselectively break C-O and C-N bonds. The selective cleavage of C-O bonds, catalyzed by an acid:base mixture, led to the initial polyol and a functional diurea in several hours to a few minutes for both model polyurethanes and commercial polyurethane foams. Different secondary amines were employed as nucleophiles to synthesize a small library of diureas obtained in good to excellent yields. This study not only targets the recovery of the initial polyol but also aims to form new diureas which are useful building blocks for the polymerization of innovative materials.

6.
Food Chem ; 405(Pt A): 134789, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-36347201

RESUMEN

Glucose oxidase (GOX) and catalase (CAT) regulate the amount of H2O2 in honey, by generating or consuming it, so they are related to the antibacterial and antioxidant activity of honey. However, their activities are hardly analysed, since the process requires a previous dialysis that is non-selective, very time-consuming (>24 h), eco-unfriendly (>6L of buffer) and expensive. This research shows the design and performance of a material that selectively removes the actual interferents. The film-shaped-polymer is immersed for 90́ within a honey solution (12.5 mL of buffer), where it interacts exclusively with 1,2-dihydroxybenzenes, which we proved to be the real interferents (the material contains motifs derived from phenylboronic acid to interact with 1,2-diols). Polymeric chains favour condensation to occur exclusively with 1,2-dihydroxybenzenes, excluding monosaccharides. The interferents' removal using our designed polymer is selective, low cost (1.42€ per test), rapid and eco-friendly (saves 6L of buffer and 20.5 h of experimental workout per sample).


Asunto(s)
Miel , Miel/análisis , Glucosa Oxidasa , Catalasa/análisis , Polifenoles/análisis , Peróxido de Hidrógeno , Polímeros , Diálisis Renal , Glucosa
7.
Sens Actuators B Chem ; 379: 133165, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36536612

RESUMEN

The initial stages of the pandemic caused by SARS-CoV-2 showed that early detection of the virus in a simple way is the best tool until the development of vaccines. Many different tests are invasive or need the patient to cough up or even drag a sample of mucus from the throat area. Besides, the manufacturing time has proven insufficient in pandemic conditions since they were out of stock in many countries. Here we show a new method of manufacturing virus sensors and a proof of concept with SARS-CoV-2. We found that a fluorogenic peptide substrate of the main protease of the virus (Mpro) can be covalently immobilized in a polymer, with which a cellulose-based material can be coated. These sensory labels fluoresce with a single saliva sample of a positive COVID-19 patient. The results matched with that of the antigen tests in 22 of 26 studied cases (85% success rate).

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 284: 121820, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36116204

RESUMEN

We report on an innovative method to measure the Zn(II) concentration in commercial pet food samples, both wet and dry food. It is based on a colorimetric sensory polymer prepared from commercial monomers and 0.5 % of a synthetic monomer having a quinoline sensory core (N-(8-(2-azidoacetamido)quinolin-5-yl)methacrylamide). We obtained the sensory polymer as crosslinked films by thermally initiated bulk radical polymerization of the monomers of 100 µm thickness, which we punched into Ø6 mm sensory discs. The immersion of the discs in water solutions containing Zn(II) turned the fluorescence on, allowing for the titration of this cation using the G parameter of a digital picture taken to the discs. The limits of detection and quantification were 29 and 87 µg/L, respectively. Furthermore, we measured the concentration of Zn(II) even in the presence of other cations, detecting no significant interferences. Thus, in a further step, we obtained the concentration of Zn(II) from 15 commercial pet food samples, ranging from 19 to 198 mg/kg, following a simple extraction procedure and contacting the extractant with our sensory discs. These results were contrasted with that obtained by ICP-MS as a reference method.


Asunto(s)
Quinolinas , Polímeros de Estímulo Receptivo , Polímeros , Agua , Zinc
9.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36433081

RESUMEN

Polymers are extensively used in food and beverage packaging to shield against contaminants and external damage due to their barrier properties, protecting the goods inside and reducing waste. However, current trends in polymers for food, water, and beverage applications are moving forward into the design and preparation of advanced polymers, which can act as active packaging, bearing active ingredients in their formulation, or controlling the head-space composition to extend the shelf-life of the goods inside. In addition, polymers can serve as sensory polymers to detect and indicate the presence of target species, including contaminants of food quality indicators, or even to remove or separate target species for later quantification. Polymers are nowadays essential materials for both food safety and the extension of food shelf-life, which are key goals of the food industry, and the irruption of smart materials is opening new opportunities for going even further in these goals. This review describes the state of the art following the last 10 years of research within the field of food and beverage polymer's applications, covering present applications, perspectives, and concerns related to waste generation and the circular economy.

10.
ACS Appl Mater Interfaces ; 14(32): 37051-37058, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35920554

RESUMEN

We have developed an in situ methodology for determining nitrite concentration in processed meats that can also be used by unskilled personnel. It is based on a colorimetric film-shaped sensory polymer that changes its color upon contacting the meat and a mobile app that automatically calculates the manufacturing and residual nitrite concentration by only taking digital photographs of sensory films and analyzing digital color parameters. The film-shaped polymer sensor detects nitrite anions by an azo-coupling reaction, since they activate this reaction between two of the four monomers that the copolymer is based on. The sensory polymer is complemented with an app, which analyzes the color in two different digital color spaces (RGB and HSV) and performs a set of 32 data fittings representing the concentration of nitrite versus eight different variables, finally providing the nitrite concentration of the test samples using the best fitting curve. The calculated concentration of nitrite correlates with a validated method (ISO 2918: 1975) usually used to determine nitrite, and no statistically significant difference between these methods and our proposed one has been found in our study (26 meat samples, 8 prepared, and 18 commercial). Our method represents a great advance in terms of analysis time, simplicity, and orientation to use by average citizens.


Asunto(s)
Colorimetría , Aplicaciones Móviles , Colorimetría/métodos , Carne/análisis , Nitritos , Polímeros , Teléfono Inteligente
11.
Molecules ; 27(9)2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35566254

RESUMEN

Although it is well-known that nitroaromatic compounds quench the fluorescence of different conjugated polymers and form colored Meisenheimer complexes with proper nucleophiles, the potential of paper as a substrate for those macromolecules can be further developed. This work undertakes this task, impregnating paper strips with a fluorene-phenylene copolymer with quaternary ammonium groups, a bisfluorene-based cationic polyelectrolyte, and poly(2-(dimethylamino)ethyl methacrylate) (polyDMAEMA). Cationic groups make the aforementioned polyfluorenes attachable to paper, whose surface possesses a slightly negative charge and avoid interference from cationic quenchers. While conjugated polymers had their fluorescence quenched with nitroaromatic vapors in a non-selective way, polyDMAEMA-coated papers had a visual response that was selective to 2,4,6-trinitrotoluene (TNT), and that could be easily identified, and even quantified, under natural light. Far from implying that polyfluorenes should be ruled out, it must be taken into account that TNT-filled mines emit vapors from 2,4-dinitrotoluene (DNT) and dinitrobenzene isomers, which are more volatile than TNT itself. Atmospheres with only 790 ppbv TNT or 277 ppbv DNT were enough to trigger a distinguishable response, although the requirement for certain exposure times is an important limitation.


Asunto(s)
Sustancias Explosivas , Trinitrotolueno , Aminas , Dinitrobencenos , Sustancias Explosivas/química , Gases , Polímeros/química
12.
Sci Rep ; 12(1): 8818, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35614307

RESUMEN

We have faced the preparation of fully water-soluble fluorescent peptide substrate with long-term environmental stability (in solution more than 35 weeks) and, accordingly, with stable results in the use of this probe in determining the activity of enzymes. We have achieved this goal by preparing a co-polymer of the commercial N-vinyl-2-pyrrolidone (99.5% mol) and a fluorescent substrate for trypsin activity determination having a vinylic group (0.5%). The activity of trypsin has been measured in water solutions of this polymer over time, contrasted against the activity of both the commercial substrate Z-L-Arg-7-amido-4-methylcoumarin hydrochloride and its monomeric derivative, prepared ad-hoc. Initially, the activity of the sensory polymer was 74.53 ± 1.72 nmol/min/mg of enzyme, while that of the commercial substrate was 20.44 ± 0.65 nmol/min/mg of enzyme, the former maintained stable along weeks and the latter with a deep decay to zero in three weeks. The 'protection' effect exerted by the polymer chain has been studied by solvation studies by UV-Vis spectroscopy, steady-state & time resolved fluorescence, thermogravimetry and isothermal titration calorimetry.


Asunto(s)
Colorantes Fluorescentes , Péptidos , Cinética , Polímeros , Especificidad por Sustrato , Tripsina/metabolismo , Agua
13.
Plant Physiol ; 189(4): 2244-2258, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35474139

RESUMEN

Plant-pest interactions involve multifaceted processes encompassing a complex crosstalk of pathways, molecules, and regulators aimed at overcoming defenses developed by each interacting organism. Among plant defensive compounds against phytophagous arthropods, cyanide-derived products are toxic molecules that directly target pest physiology. Here, we identified the Arabidopsis (Arabidopsis thaliana) gene encoding hydroxynitrile lyase (AtHNL, At5g10300) as one gene induced in response to spider mite (Tetranychus urticae) infestation. AtHNL catalyzes the reversible interconversion between cyanohydrins and derived carbonyl compounds with free cyanide. AtHNL loss- and gain-of-function Arabidopsis plants showed that specific activity of AtHNL using mandelonitrile as substrate was higher in the overexpressing lines than in wild-type (WT) and mutant lines. Concomitantly, mandelonitrile accumulated at higher levels in mutant lines than in WT plants and was significantly reduced in the AtHNL overexpressing lines. After mite infestation, mandelonitrile content increased in WT and overexpressing plants but not in mutant lines, while hydrogen cyanide (HCN) accumulated in the three infested Arabidopsis genotypes. Feeding bioassays demonstrated that the AtHNL gene participated in Arabidopsis defense against T. urticae. The reduced leaf damage detected in the AtHNL overexpressing lines reflected the mite's reduced ability to feed on leaves, which consequently restricted mite fecundity. In turn, mites upregulated TuCAS1 encoding ß-cyanoalanine synthase to avoid the respiratory damage produced by HCN. This detoxification effect was functionally demonstrated by reduced mite fecundity observed when dsRNA-TuCAS-treated mites fed on WT plants and hnl1 mutant lines. These findings add more players in the Arabidopsis-T. urticae interplay to overcome mutual defenses.


Asunto(s)
Arabidopsis , Tetranychidae , Aldehído-Liasas/genética , Animales , Arabidopsis/genética , Cianuros , Plantas , Tetranychidae/genética
14.
ACS Appl Mater Interfaces ; 13(50): 60454-60461, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34874716

RESUMEN

The synthesis and preparation of 12 chromogenic polymers used to build an intelligent label for security paper applications are described. The process involves coating paper sheets with the polymers. Depending on the number of different polymers used in a combinatory way, a maximum of 1212 combinations is possible, thus creating a matrix that is practically impossible to counterfeit. Currently, most anticounterfeiting proposals for paper-based packaging and documents involve some sort of verification under ultraviolet radiation, and the requirement of additional equipment often relegates the end-user to a passive role. In contrast, in our approach, the combination of sensory polymers in an array gives rise to an invisible label, i.e., an owner cryptographic key, which becomes visible upon scattering a nitrite solution (e.g., spraying or using an impregnated foam roller) over the printed label on the security paper. For this purpose, a monomer containing an aromatic primary amino group and another with an activated aromatic ring are covalently bonded to a polymer with high affinity toward paper, consisting essentially of units of methyl methacrylate and 1-vinyl-2-pyrrolidone. Subsequently, the paper samples are coated with the resulting sensory chromogenic polymer. By spraying, painting, or staining an aqueous acid solution of NaNO2 (at least 1.20 g/L) and the chromogenic polymers, a well-defined color appears, because of the formation of an azo compound. This process provides users with a quick and facile authentication method without additional equipment and without affecting paper strength.

15.
Food Chem ; 355: 129629, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773459

RESUMEN

A new original application for a polyacrylic film based on the monomers 2-(dimethylamino)ethyl methacrylate (NNDA), 2-hydroxyethyl acrylate (2HEA) and methylmethacrylate (MMA) as a starch azure container has been set up for a simple determination of honey diastase activity. The proposed method is based on the correlation of reducing sugars generated during the enzymatic process with the Schade reference assay. The polyacrylic film is charged with starch azure acting as a container for this substance; thus, the starch does not interfere in the measurement of reducing sugars, so that the diastase activity is easily calculated. The method has been contrasted with Schade method, showing good correlation and differences under 0.4% between methods in some honey samples. The polyacrylic film has great potential for the routine honey diastase activity assessment in small laboratories, dramatically reducing analysis time and cost.


Asunto(s)
Amilasas/metabolismo , Colorantes Azulados/química , Miel , Almidón/química , Amilasas/análisis , Miel/análisis , Polímeros/química
16.
Food Chem ; 342: 128300, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33060001

RESUMEN

We have developed a new method for the rapid (2 h) and inexpensive (materials cost < 0.02 €/sample) "2-in-1" determination of the total phenolic content (TPC) and the antioxidant activity (AOX) in honey samples. The method is based on hydrophilic colorimetric films with diazonium groups, which react with phenols rendering highly colored azo groups. The TPC of the sample is correlated to its trolox equivalent antioxidant capacity (TEAC). The intensity of the color allows us to determine both TPC and TEAC of the sample by the analysis of a picture taken with a smartphone that is analysed by the use of the color-definition-parameters (RGB). The controlled light conditions and the systematic use of the same camera avoid the periodical calibration of the system improving the efficiency of the method. Thus, it is a simple method carried out by non-specialized personnel and it involves much lower money and time investment compared to traditional methods.


Asunto(s)
Antioxidantes/análisis , Técnicas de Química Analítica/instrumentación , Miel/análisis , Fenoles/análisis , Polímeros/química , Color
17.
Polymers (Basel) ; 12(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486091

RESUMEN

We anchored a colourimetric probe, comprising a complex containing copper (Cu(II)) and a dye, to a polymer matrix obtaining film-shaped chemosensors with induced selectivity toward glycine. This sensory material is exploited in the selectivity detection of glycine in complex mixtures of amino acids mimicking elastin, collagen and epidermis, and also in following the protease activity in a beefsteak and chronic human wounds. We use the term inducing because the probe in solution is not selective toward any amino acid and we get selectivity toward glycine using the solid-state. Overall, we found that the chemical behaviour of a chemical probe can be entirely changed by changing its chemical environment. Regarding its behaviour in solution, this change has been achieved by isolating the probe by anchoring the motifs in a polymer matrix, in an amorphous state, avoiding the interaction of one sensory motif with another. Moreover, this selectivity change can be further tuned because of the effectiveness of the transport of targets both by the physical nature of the interface of the polymer matrix/solution, where the target chemicals are dissolved, for instance, and inside the matrix where the recognition takes place. The interest in chronic human wounds is related to the fact that our methods are rapid and inexpensive, and also considering that the protease activity can correlate with the evolution of chronic wounds.

18.
J Hazard Mater ; 364: 238-243, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30368061

RESUMEN

Conventional nonconductive vinylic films with dispersed aniline change their color and become conductive in the presence of specific oxidant gases, namely, chlorine and hydrogen peroxide. The color change arises from the polymerization of the aniline to yield the conjugated polymer polyaniline, which at the same time renders the flexible vinylic films conductive. We present a simple and straightforward method using both colorimetric and electrical responses to detect and quantify the presence of oxidants (Cl2 and H2O2) in the air. Using RGB analysis (red, green and blue parameters defining the colors in digital pictures on a computer display) based on different pictures taken with a smartphone of discs extracted from the films and by measuring the UV-vis spectral variation in the presence of different concentrations of Cl2 and H2O2, we obtained limits of detection and quantification between 15 and 200 ppbv for H2O2 and between 37 and 583 ppbv for Cl2. Additionally, the electrical response was measured using a fabricated device to visually detect the electrical conductivity activation of the sensor in the presence of oxidant atmospheres, detecting a rapid decrease in resistivity (three orders of magnitude) when the polymerization of aniline began, changing the film from non-conductive to conductive.

19.
J Hazard Mater ; 365: 725-732, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30472458

RESUMEN

We have prepared polymeric films as easy-to-handle sensory materials for the colorimetric detection and quantification of phenol derivatives (phenols) in water. Phenols in water resources result from their presence in pesticides and fungicides, among other goods, and are harmful ecotoxins. Colorless polymeric films with pendant diazonium groups attached to the acrylic polymer structure were designed and prepared for use as sensory matrices to detect phenol-derived species in water. Upon dipping the sensory films into aqueous media, the material swells, and if phenols are present, they react with the diazonium groups of the polymer to render a highly colored azo group, giving rise to the recognition phenomenon. The color development can be visually followed for a qualitative determination of phenols. Additionally, quantitative analysis can be performed by two different techniques: a) by using a UV-vis spectrophotometer (limit of detection of 0.12 ppm for 2-phenylphenol) and/or b) by using a smartphone with subsequent RGB analysis (limit of detection of 30 ppb for 2-phenylphenol).

20.
Sensors (Basel) ; 18(12)2018 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-30544951

RESUMEN

Microcellular sensory polymers prepared from solid sensory polymeric films were tested in an aqueous Hg(II) detection process to analyze their sensory behavior. First, solid acrylic-based polymeric films of 100 µm thickness were obtained via radical copolymerization process. Secondly, dithizone sensoring motifs were anchored in a simple five-step route, obtaining handleable colorimetric sensory films. To create the microporous structure, films were foamed in a ScCO2 batch process, carried out at 350 bar and 60 °C, resulting in homogeneous morphologies with cell sizes around 5 µm. The comparative behavior of the solid and foamed sensory films was tested in the detection of mercury in pure water media at 2.2 pH, resulting in a reduction of the response time (RT) around 25% and limits of detection and quantification (LOD and LOQ) four times lower when using foamed films, due to the increase of the specific surface associated to the microcellular structure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...