Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxics ; 10(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35051043

RESUMEN

Traditional toxicity risk assessment approaches have until recently focussed mainly on histochemical readouts for cell death. Modern toxicology methods attempt to deduce a mechanistic understanding of pathways involved in the development of toxicity, by using transcriptomics and other big data-driven methods such as high-content screening. Here, we used a recently described optimised method to differentiate human induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs), to assess their potential to classify hepatotoxic and non-hepatotoxic chemicals and their use in mechanistic toxicity studies. The iPSC-HLCs could accurately classify chemicals causing acute hepatocellular injury, and the transcriptomics data on treated HLCs obtained by TempO-Seq technology linked the cytotoxicity to cellular stress pathways, including oxidative stress and unfolded protein response (UPR). Induction of these stress pathways in response to amiodarone, diclofenac, and ibuprofen, was demonstrated to be concentration and time dependent. The transcriptomics data on diclofenac-treated HLCs were found to be more sensitive in detecting differentially expressed genes in response to treatment, as compared to existing datasets of other diclofenac-treated in vitro hepatocyte models. Hence iPSC-HLCs generated by transcription factor overexpression and in metabolically optimised medium appear suitable for chemical toxicity detection as well as mechanistic toxicity studies.

2.
Nat Commun ; 11(1): 1393, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170132

RESUMEN

Predicting drug-induced liver injury in a preclinical setting remains challenging, as cultured primary human hepatocytes (PHHs), pluripotent stem cell-derived hepatocyte-like cells (HLCs), and hepatoma cells exhibit poor drug biotransformation capacity. We here demonstrate that hepatic functionality depends more on cellular metabolism and extracellular nutrients than on developmental regulators. Specifically, we demonstrate that increasing extracellular amino acids beyond the nutritional need of HLCs and HepG2 cells induces glucose independence, mitochondrial function, and the acquisition of a transcriptional profile that is closer to PHHs. Moreover, we show that these high levels of amino acids are sufficient to drive HLC and HepG2 drug biotransformation and liver-toxin sensitivity to levels similar to those in PHHs. In conclusion, we provide data indicating that extracellular nutrient levels represent a major determinant of cellular maturity and can be utilized to guide stem cell differentiation to the hepatic lineage.


Asunto(s)
Aminoácidos/metabolismo , Carcinoma Hepatocelular/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Hepatocitos/metabolismo , Neoplasias Hepáticas/metabolismo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Citocromo P-450 CYP3A , Femenino , Técnicas de Inactivación de Genes , Células Hep G2 , Factor Nuclear 1-alfa del Hepatocito , Factor Nuclear 3-gamma del Hepatocito , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio , Humanos , Hígado , Masculino , Ingeniería Metabólica , Redes y Vías Metabólicas , Persona de Mediana Edad , Células Madre Pluripotentes , Células Madre , Transcriptoma , Proteínas Supresoras de Tumor
3.
Cell Rep ; 26(13): 3522-3536.e5, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917309

RESUMEN

In humans, many cases of congenital insensitivity to pain (CIP) are caused by mutations of components of the NGF/TrkA signaling pathway, which is required for survival and specification of nociceptors and plays a major role in pain processing. Mutations in PRDM12 have been identified in CIP patients that indicate a putative role for this transcriptional regulator in pain sensing. Here, we show that Prdm12 expression is restricted to developing and adult nociceptors and that its genetic ablation compromises their viability and maturation. Mechanistically, we find that Prdm12 is required for the initiation and maintenance of the expression of TrkA by acting as a modulator of Neurogenin1/2 transcription factor activity, in frogs, mice, and humans. Altogether, our results identify Prdm12 as an evolutionarily conserved key regulator of nociceptor specification and as an actionable target for new pain therapeutics.


Asunto(s)
Proteínas Portadoras/fisiología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , Nociceptores/citología , Animales , Apoptosis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Portadoras/genética , Línea Celular , Evolución Molecular , Femenino , Ganglios Sensoriales/citología , Técnicas de Inactivación de Genes , Células Madre Embrionarias Humanas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/citología , Nociceptores/metabolismo , Receptor trkA/metabolismo , Tretinoina/fisiología , Xenopus laevis
4.
Nat Commun ; 8(1): 861, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-29021520

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder due to selective loss of motor neurons (MNs). Mutations in the fused in sarcoma (FUS) gene can cause both juvenile and late onset ALS. We generated and characterized induced pluripotent stem cells (iPSCs) from ALS patients with different FUS mutations, as well as from healthy controls. Patient-derived MNs show typical cytoplasmic FUS pathology, hypoexcitability, as well as progressive axonal transport defects. Axonal transport defects are rescued by CRISPR/Cas9-mediated genetic correction of the FUS mutation in patient-derived iPSCs. Moreover, these defects are reproduced by expressing mutant FUS in human embryonic stem cells (hESCs), whereas knockdown of endogenous FUS has no effect, confirming that these pathological changes are mutant FUS dependent. Pharmacological inhibition as well as genetic silencing of histone deacetylase 6 (HDAC6) increase α-tubulin acetylation, endoplasmic reticulum (ER)-mitochondrial overlay, and restore the axonal transport defects in patient-derived MNs.Amyotrophic lateral sclerosis (ALS) leads to selective loss of motor neurons. Using motor neurons derived from induced pluripotent stem cells from patients with ALS and FUS mutations, the authors demonstrate that axonal transport deficits that are observed in these cells can be rescued by HDAC6 inhibition.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Transporte Axonal , Histona Desacetilasa 6/metabolismo , Neuronas Motoras/metabolismo , Proteína FUS de Unión a ARN/genética , Adolescente , Adulto , Anciano , Sistemas CRISPR-Cas , Femenino , Histona Desacetilasa 6/antagonistas & inhibidores , Humanos , Ácidos Hidroxámicos , Indoles , Células Madre Pluripotentes Inducidas , Masculino , Mutación Puntual , Cultivo Primario de Células , Pirimidinas
5.
Cytotherapy ; 19(6): 744-755, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28499585

RESUMEN

BACKGROUND AIMS: Myelodysplastic syndromes (MDS) are a group of clonal stem cell disorders affecting the normal hematopoietic differentiation process and leading to abnormal maturation and differentiation of all blood cell lineages. Treatment options are limited, and there is an unmet medical need for effective therapies for patients with severe cytopenias. METHODS: We demonstrate that multipotent adult progenitor cells (MAPC) improve the function of hematopoietic progenitors derived from human MDS bone marrow (BM) by significantly increasing the frequency of primitive progenitors as well as the number of myeloid colonies. RESULTS: This effect was more pronounced in a non-contact culture, indicating the importance of soluble factors produced by the MAPC cells. Moreover, the cells did not stimulate the growth of the abnormal MDS clone, as shown by fluorescent in situ hybridization analysis on BM cells from patients with a known genetic abnormality. We also demonstrate that MAPC cells can provide stromal support for patient-derived hematopoietic cells. When MAPC cells were intravenously injected into a mouse model of MDS, they migrated to the site of injury and increased the hematopoietic function in diseased mice. DISCUSSION: The preclinical studies undertaken here indicate an initial proof of concept for the use of MAPC cell therapy in patients with MDS-related severe and symptomatic cytopenias and should pave the way for further investigation in clinical trials.


Asunto(s)
Células Madre Multipotentes/trasplante , Síndromes Mielodisplásicos/terapia , Adulto , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Femenino , Hematopoyesis , Humanos , Hibridación Fluorescente in Situ , Ratones Endogámicos C57BL
6.
Stem Cells Dev ; 26(8): 573-584, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27958775

RESUMEN

During ontogeny, fetal liver (FL) acts as a major site for hematopoietic stem cell (HSC) maturation and expansion, whereas HSCs in the adult bone marrow (ABM) are largely quiescent. HSCs in the FL possess faster repopulation capacity as compared with ABM HSCs. However, the molecular mechanism regulating the greater self-renewal potential of FL HSCs has not yet extensively been assessed. Recently, we published RNA sequencing-based gene expression analysis on FL HSCs from 14.5-day mouse embryo (E14.5) in comparison to the ABM HSCs. We reanalyzed these data to identify key transcriptional regulators that play important roles in the expansion of HSCs during development. The comparison of FL E14.5 with ABM HSCs identified more than 1,400 differentially expressed genes. More than 200 genes were shortlisted based on the gene ontology (GO) annotation term "transcription." By morpholino-based knockdown studies in zebrafish, we assessed the function of 18 of these regulators, previously not associated with HSC proliferation. Our studies identified a previously unknown role for tdg, uhrf1, uchl5, and ncoa1 in the emergence of definitive hematopoiesis in zebrafish. In conclusion, we demonstrate that identification of genes involved in transcriptional regulation differentially expressed between expanding FL HSCs and quiescent ABM HSCs, uncovers novel regulators of HSC function.


Asunto(s)
Células Madre Adultas/metabolismo , Células Madre Embrionarias/metabolismo , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Hígado/citología , Transcriptoma , Células Madre Adultas/citología , Animales , Células Cultivadas , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/citología , Hígado/embriología , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Stem Cell Res ; 15(3): 715-721, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26599326

RESUMEN

Hematopoietic stem cells (HSCs) in the fetal liver (FL) unlike adult bone marrow (BM) proliferate extensively, posing different metabolic demands. However, metabolic pathways responsible for the production of energy and cellular building blocks in FL HSCs have not been described. Here, we report that FL HSCs use oxygen dependent energy generating pathways significantly more than their BM counterparts. RNA-Seq analysis of E14.5 FL versus BM derived HSCs identified increased expression levels of genes involved in oxidative phosphorylation (OxPhos) and the citric acid cycle (TCA). We demonstrated that FL HSCs contain more mitochondria than BM HSCs, which resulted in increased levels of oxygen consumption and reactive oxygen species (ROS) production. Higher levels of DNA repair and antioxidant pathway gene expression may prevent ROS-mediated (geno)toxicity in FL HSCs. Thus, we here for the first time highlight the underestimated importance of oxygen dependent pathways for generating energy and building blocks in FL HSCs.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Hígado/inmunología , Células Cultivadas , Feto , Células Madre Hematopoyéticas/citología , Humanos , Hígado/citología , Redes y Vías Metabólicas , Fosforilación Oxidativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...