Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cells ; 13(14)2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39056806

RESUMEN

In this study, we screened a chemical library to find potent anticancer compounds that are less cytotoxic to non-cancerous cells. This study revealed that pyrazole PTA-1 is a potent anticancer compound. Additionally, we sought to elucidate its mechanism of action (MOA) in triple-negative breast cancer cells. Cytotoxicity was analyzed with the differential nuclear staining assay (DNS). Additional secondary assays were performed to determine the MOA of the compound. The potential MOA of PTA-1 was assessed using whole RNA sequencing, Connectivity Map (CMap) analysis, in silico docking, confocal microscopy, and biochemical assays. PTA-1 is cytotoxic at a low micromolar range in 17 human cancer cell lines, demonstrating less cytotoxicity to non-cancerous human cells, indicating a favorable selective cytotoxicity index (SCI) for the killing of cancer cells. PTA-1 induced phosphatidylserine externalization, caspase-3/7 activation, and DNA fragmentation in triple-negative breast MDA-MB-231 cells, indicating that it induces apoptosis. Additionally, PTA-1 arrests cells in the S and G2/M phases. Furthermore, gene expression analysis revealed that PTA-1 altered the expression of 730 genes at 24 h (198 upregulated and 532 downregulated). A comparison of these gene signatures with those within CMap indicated a profile similar to that of tubulin inhibitors. Subsequent studies revealed that PTA-1 disrupts microtubule organization and inhibits tubulin polymerization. Our results suggest that PTA-1 is a potent drug with cytotoxicity to various cancer cells, induces apoptosis and cell cycle arrest, and inhibits tubulin polymerization, indicating that PTA-1 is an attractive drug for future clinical cancer treatment.


Asunto(s)
Antineoplásicos , Apoptosis , Puntos de Control del Ciclo Celular , Pirazoles , Neoplasias de la Mama Triple Negativas , Tubulina (Proteína) , Humanos , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Apoptosis/efectos de los fármacos , Pirazoles/farmacología , Pirazoles/química , Tubulina (Proteína)/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Polimerizacion/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Moduladores de Tubulina/farmacología
2.
J Control Release ; 370: 421-437, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38701884

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease with a high mortality rate due to limited treatment options. Current therapies cannot effectively reverse the damage caused by IPF. Research suggests that promoting programmed cell death (apoptosis) in myofibroblasts, the key cells driving fibrosis, could be a promising strategy. However, inducing apoptosis in healthy cells like epithelial and endothelial cells can cause unwanted side effects. This project addresses this challenge by developing a targeted approach to induce apoptosis specifically in myofibroblasts. We designed liposomes (LPS) decorated with peptides that recognize VCAM-1, a protein highly expressed on myofibroblasts in fibrotic lungs. These VCAM1-targeted LPS encapsulate Venetoclax (VNT), a small molecule drug that inhibits BCL-2, an anti-apoptotic protein. By delivering VNT directly to myofibroblasts, we hypothesize that VCAM1-VNT-LPS can selectively induce apoptosis in these cells, leading to reduced fibrosis and improved lung function. We successfully characterized VCAM1-VNT-LPS for size, surface charge, and drug loading efficiency. Additionally, we evaluated their stability over three months at different temperatures. In vitro and in vivo studies using a bleomycin-induced mouse model of lung fibrosis demonstrated the therapeutic potential of VCAM1-VNT-LPS. These studies showed a reduction in fibrosis-associated proteins (collagen, α-SMA, VCAM1) and BCL-2, while simultaneously increasing apoptosis in myofibroblasts. These findings suggest that VCAM1-targeted delivery of BCL-2 inhibitors using liposomes presents a promising and potentially selective therapeutic approach for IPF.


Asunto(s)
Apoptosis , Compuestos Bicíclicos Heterocíclicos con Puentes , Liposomas , Ratones Endogámicos C57BL , Nanopartículas , Proteínas Proto-Oncogénicas c-bcl-2 , Sulfonamidas , Molécula 1 de Adhesión Celular Vascular , Animales , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Nanopartículas/administración & dosificación , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , Molécula 1 de Adhesión Celular Vascular/metabolismo , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Apoptosis/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/metabolismo , Humanos , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Masculino , Ratones , Bleomicina/administración & dosificación
3.
PLoS One ; 18(12): e0295441, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38127921

RESUMEN

In an effort to identify novel anti-cancer agents, we employed a well-established High Throughput Screening (HTS) assay to assess the cytotoxic effect of compounds within the ChemBridge DIVERSet Library on a lymphoma cell line. This screen revealed a novel thiophene, F8 (methyl 5-[(dimethylamino)carbonyl]-4-methyl-2-[(3-phenyl-2-propynoyl) amino]-3-thiophenecarboxylate), that displays anti-cancer activity on lymphoma, leukemia, and other cancer cell lines. Thiophenes and thiophene derivatives have emerged as an important class of heterocyclic compounds that have displayed favorable drug characteristics. They have been previously reported to exhibit a broad spectrum of properties and varied uses in the field of medicine. In addition, they have proven to be effective drugs in various disease scenarios. They contain anti-inflammatory, anti-anxiety, anti-psychotic, anti-microbial, anti-fungal, estrogen receptor modulating, anti-mitotic, kinase inhibiting and anti-cancer activities, rendering compounds with a thiophene a subject of significant interest in the scientific community. Compound F8 consistently induced cell death at a low micromolar range on a small panel of cancer cell lines after a 48 h period. Further investigation revealed that F8 induced phosphatidylserine externalization, reactive oxygen species generation, mitochondrial depolarization, kinase inhibition, and induces apoptosis. These findings demonstrate that F8 has promising anti-cancer activity.


Asunto(s)
Antineoplásicos , Linfoma , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Línea Celular Tumoral , Tiofenos/farmacología , Proliferación Celular , Apoptosis , Antineoplásicos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Estructura Molecular
4.
J Control Release ; 361: 314-333, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562554

RESUMEN

Solid tumors are abnormal mass of tissue, which affects the organs based on its malignancy and leads to the dysfunction of the affected organs. The major problem associated with treatment of solid tumors is delivering anticancer therapeutics to the deepest layers/core of the solid tumor. Deposition of excessive extracellular matrix (ECM) hinders the therapeutics to travel towards the core of the tumor. Therefore, conventional anticancer therapeutics can only reduce the tumor size and that also for a limited duration, and tumor recurrence occurs once the therapy is discontinued. Additionally, by the time the cancer is diagnosed, the cancer cells already started affecting the major organs of the body such as lung, liver, spleen, kidney, and brain, due to their ability to metastasize and lung is the primary site for them to be infiltrated. To facilitate the anticancer therapeutics to penetrate the deeper layers of tumor, and to provide concurrent treatment of both the solid tumor and metastasis, we have designed and developed a Bimodal Light Assisted Skin Tumor and Metastasis Treatment (BLAST), which is a combination of photothermal and chemotherapeutic moieties. The BLAST is composed of 2D boron nitride (BN) nanosheet with adsorbed molecules of BCL-2 inhibitor, Navitoclax (NAVI) on its surface, that can breakdown excessive ECM network and thereby facilitate dissociation of the solid tumor. The developed BLAST was evaluated for its ability to penetrate solid tumors using 3D spheroids for the uptake, cytotoxicity, growth inhibition, reactive oxygen species (ROS) detection, penetration, and downregulation of proteins upon laser irradiation. The in vivo therapeutic studies on a skin cancer mice model revealed that the BLAST with and without laser were able to penetrate the solid tumor, reduce tumor volume in mice, dissociate the protein network, and prevent lung metastasis as confirmed by immunohistochemistry and western blot analysis. Post analysis of serum and blood components revealed the safety and efficacy of BLAST in mice. Hence, the developed BLAST holds strong promise in solid tumor treatment and metastasis prevention simultaneously.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Melanoma , Animales , Ratones , Fototerapia , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Luz , Melanoma/tratamiento farmacológico , Línea Celular Tumoral
5.
Eur J Appl Physiol ; 123(12): 2771-2778, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37368137

RESUMEN

PURPOSE: Smaller lipid droplet morphology and GLUT 4 protein expression have been associated with greater muscle oxidative capacity and glucose uptake, respectively. The main purpose of this study was to determine the effect of an acute long-duration exercise bout on skeletal muscle lipid droplet morphology, GLUT4, perilipin 3, and perilipin 5 expressions. METHODS: Twenty healthy men (age 24.0 ± 1.0 years, BMI 23.6 ± 0.4 kg/m2) were recruited for the study. The participants were subjected to an acute bout of exercise on a cycle ergometer at 50% VO2max until they reached a total energy expenditure of 650 kcal. The study was conducted after an overnight fast. Vastus lateralis muscle biopsies were obtained before and immediately after exercise for immunohistochemical analysis to determine lipid, perilipin 3, perilipin 5, and GLUT4 protein contents while GLUT 4 mRNA was quantified using RT-qPCR. RESULTS: Lipid droplet size decreased whereas total intramyocellular lipid content tended to reduce (p = 0.07) after an acute bout of endurance exercise. The density of smaller lipid droplets in the peripheral sarcoplasmic region significantly increased (0.584 ± 0.04 to 0.638 ± 0.08 AU; p = 0.01) while larger lipid droplets significantly decreased (p < 0.05). GLUT4 mRNA tended to increase (p = 0.05). There were no significant changes in GLUT 4, perilipin 3, and perilipin 5 protein levels. CONCLUSION: The study demonstrates that exercise may impact metabolism by enhancing the quantity of smaller lipid droplets over larger lipid droplets.


Asunto(s)
Gotas Lipídicas , Perilipina-5 , Masculino , Humanos , Adulto Joven , Adulto , Perilipina-1/metabolismo , Gotas Lipídicas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Perilipina-5/metabolismo , Perilipina-3/metabolismo , Músculo Esquelético/fisiología , Lípidos , ARN Mensajero/metabolismo , Metabolismo de los Lípidos/fisiología
6.
ACS Pharmacol Transl Sci ; 6(5): 829-841, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37200808

RESUMEN

Pathological fibrosis is distinguished from physiological wound healing by persistent myofibroblast activation, suggesting that therapies that induce myofibroblast apoptosis selectively could prevent progression and potentially reverse the established fibrosis, such as for scleroderma (a heterogeneous autoimmune disease characterized by multiorgan fibrosis). Navitoclax (NAVI) is a BCL-2/BCL-xL inhibitor with antifibrotic properties and has been investigated as a potential therapeutic for fibrosis. NAVI makes myofibroblasts particularly vulnerable to apoptosis. However, despite NAVI's significant potency, clinical translation of BCL-2 inhibitors, NAVI in this case, is hindered due to the risk of thrombocytopenia. Therefore, in this work, we utilized a newly developed ionic liquid formulation of NAVI for direct topical application to the skin, thereby avoiding systemic circulation and off-target-mediated side effects. The ionic liquid composed of choline and octanoic acid (COA) at a 1:2 molar ionic ratio increases skin diffusion and transportation of NAVI and maintains their retention within the dermis for a prolonged duration. Topical administration of NAVI-mediated BCL-xL and BCL-2 inhibition results in the transition of myofibroblast to fibroblast and ameliorates pre-existing fibrosis, as demonstrated in a scleroderma mouse model. We have observed a significant reduction of α-SMA and collagen, which are known as fibrosis marker proteins, as a result of the inhibition of anti-apoptotic proteins BCL-2/BCL-xL. Overall, our findings show that COA-assisted topical delivery of NAVI upregulates apoptosis specific to myofibroblasts, with minimal presence of the drug in the systemic circulation, resulting in an accelerated therapeutic effect with no discernible drug-associated toxicity.

7.
Biomater Adv ; 137: 212837, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35929242

RESUMEN

The herbicide and viologen, N, N'-dimethyl-4,4'-bipyridinium dichloride (Paraquat) is known to be toxic to neuronal cells by a multifactorial process involving an elevation in the levels of reactive oxygen species (ROS), the triggering of amyloid-protein aggregation and their accumulation, collectively leading to neuronal dyshomeostasis. We demonstrate that green-chemistry-synthesized sustainable gelatin-derived carbon quantum dots (CQDs) mitigate paraquat-induced neurotoxic outcomes and resultant compromise in organismal mortality. Gelatin-derived CQDs were found to possess antioxidant properties and ameliorated ROS elevation in paraquat-insulted neuroblastoma-derived SHSY-5Y cells, protecting them from herbicide-induced cell death. These CQDs also increased lifespan in paraquat-compromised Caenorhabditis elegans and herbicide-mediated dopamine neuron ablation. Collectively, the data underscore the ability of this sustainably synthesized, environmentally friendly biocompatible nanomaterial to protect cell lines and organisms against neurotoxic outcomes. The study findings strategically position this relatively novel nanoscopic carbon quantum framework for further testing in vertebrate trials of neurotoxic insult.


Asunto(s)
Herbicidas , Síndromes de Neurotoxicidad , Puntos Cuánticos , Carbono/farmacología , Gelatina , Herbicidas/toxicidad , Humanos , Síndromes de Neurotoxicidad/etiología , Paraquat/toxicidad , Puntos Cuánticos/toxicidad , Especies Reactivas de Oxígeno
8.
J Control Release ; 349: 783-795, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35908622

RESUMEN

Skin melanoma is one of the most common cancer types in the United States and worldwide, and its incidence continues to grow. Primary skin melanoma can be removed surgically when feasible and if detected at an early stage. Anti-cancer drugs can be applied topically to treat skin cancer lesions and used as an adjunct to surgery to prevent the recurrence of tumor growth. We developed a topical formulation composed of Navitoclax (NAVI), a BCL-2 inhibitor that results in apoptosis, and an ionic liquid of choline octanoate (COA) to treat early-stage melanoma. NAVI is a small hydrophobic molecule that solubilizes at 20% (w/v) when dissolved in 50% COA. Although NAVI is a highly effective chemotherapeutic, it is equally thrombocytopenic. We found that COA-mediated topical delivery of NAVI enhanced its penetration into the skin and held the drug in the deeper skin layers for an extended period. Topical delivery of NAVI produced a higher cancer-cell killing efficacy than orally administrated NAVI. In vivo experiments in a mouse model of human melanoma-induced skin cancer confirmed the formulation's effectiveness via an apoptotic mechanism without any significant skin irritation or systemic absorption of NAVI. Overall, this topical approach may provide a safe and effective option for better managing skin cancer in the clinic.


Asunto(s)
Antineoplásicos , Líquidos Iónicos , Melanoma , Neoplasias Cutáneas , Animales , Humanos , Ratones , Administración Cutánea , Caprilatos/farmacología , Caprilatos/uso terapéutico , Colina , Melanoma/tratamiento farmacológico , Melanoma/patología , Proteínas Proto-Oncogénicas c-bcl-2 , Piel , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Melanoma Cutáneo Maligno
9.
Invest New Drugs ; 40(5): 905-921, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35793039

RESUMEN

Cancer remains the second most common cause of death in the US. Due to a recurrent problem with anticancer drug resistance, there is a current need for anticancer drugs with distinct modes of action for combination drug therapy We have tested two novel piperidone compounds, named 2608 (1-dichloroacetyl - 3,5-bis(3,4-difluorobenzylidene)-4-piperidone) and 2610 (1-dichloroacetyl-3,5-bis(3,4-dichlorobenzylidene)-4-piperidone), for their potential cytotoxicity on numerous human cancer cell lines. We found that both compounds were cytotoxic for breast, pancreatic, leukemia, lymphoma, colon, and fibroblast cell lines, with a cytotoxic concentration 50% (CC50) in the low micromolar to nanomolar concentration range. Further assays focused primarily on an acute lymphoblastic lymphoma and colon cancer cell lines since they were the most sensitive and resistant to the experimental piperidones. The cell death mechanism was evaluated through assays commonly used to detect the induction of apoptosis. These assays revealed that both 2608 and 2610 induced reactive oxygen species (ROS) accumulation, mitochondrial depolarization, and activated caspase-3/7. Our findings suggest that the piperidones induced cell death via the intrinsic apoptotic pathway. Additional assays revealed that both piperidones cause cell cycle alteration in lymphoma and colon cell lines. Both piperidones elicited DNA fragmentation, as evidenced by an increment in the sub-G0/G1 subpopulation in both cell lines. Similar to other related compounds, both piperidones were found to act as proteasome inhibitors by increasing the levels of poly-ubiquitinated proteins in both lymphoma and colon cell lines. Hence, the two piperidones exhibited attractive cytotoxic properties and suitable mechanisms of action, which makes them good candidates as anticancer drugs.


Asunto(s)
Antineoplásicos , Linfoma , Piperidonas , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Humanos , Masculino , Piperidonas/farmacología , Próstata
10.
Biology (Basel) ; 11(6)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35741451

RESUMEN

In recent years, the thienopyrazole moiety has emerged as a pharmacologically active scaffold with antitumoral and kinase inhibitory activity. In this study, high-throughput screening of 2000 small molecules obtained from the ChemBridge DIVERset library revealed a unique thieno[2,3-c]pyrazole derivative (Tpz-1) with potent and selective cytotoxic effects on cancer cells. Compound Tpz-1 consistently induced cell death at low micromolar concentrations (0.19 µM to 2.99 µM) against a panel of 17 human cancer cell lines after 24 h, 48 h, or 72 h of exposure. Furthermore, an in vitro investigation of Tpz-1's mechanism of action revealed that Tpz-1 interfered with cell cycle progression, reduced phosphorylation of p38, CREB, Akt, and STAT3 kinases, induced hyperphosphorylation of Fgr, Hck, and ERK 1/2 kinases, and disrupted microtubules and mitotic spindle formation. These findings support the continued exploration of Tpz-1 and other thieno[2,3-c]pyrazole-based compounds as potential small-molecule anticancer agents.

11.
Cells ; 11(2)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-35053370

RESUMEN

In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.


Asunto(s)
Pirazoles/toxicidad , Transducción de Señal , Neoplasias de la Mama Triple Negativas/patología , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Activación Enzimática/efectos de los fármacos , Exocitosis/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Invasividad Neoplásica , Proteínas de Neoplasias/metabolismo , Fosfatidilserinas/metabolismo , Fosforilación/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasas/metabolismo , Pirazoles/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Tubulina (Proteína)/metabolismo
12.
Bioessays ; 44(1): e2100189, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34812505

RESUMEN

The COVID-19 pandemic is responsible for millions of deaths worldwide yet its origin remains unclear. Two potential scenarios of how infection of humans initially occurred include zoonotic transfer from wild animals and a leak of the pathogen from a research laboratory. The Wuhan wet markets where wild animals are sold represent a strong scenario for zoonotic transfer. However, isolation of SARS-CoV-2 or its immediate predecessor from wild animals in their natural environment has yet to be documented. Due to incomplete evidence for a zoonotic origin, a laboratory origin is plausible. The Wuhan Institute of Virology is at the epicenter of the pandemic and their work has included manipulation of wild-type coronavirus to enable infection of human cells. Although stronger evidence supports the zoonotic transfer, inconclusive reports maintain the laboratory leak hypothesis alive. It is imperative to reach a factual conclusion to prevent future pandemics.


Asunto(s)
COVID-19 , Pandemias , Animales , Humanos , Laboratorios , SARS-CoV-2
13.
Materials (Basel) ; 14(24)2021 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-34947458

RESUMEN

BACKGROUND: Breast cancer (BC) continues to have the second highest mortality amongst women in the United States after lung cancer. For 2021, the American Cancer Association predicted 281,550 new invasive breast cancer cases besides 49,290 new cases of non-invasive breast cancer and 43,600 deaths from the metastatic disease. A treatment modality is radiation therapy, which is given for local control as well as palliation of patient symptoms. The initial step of new drug development is in-vitro cell studies, which help describe new drug properties and toxicities. However, these models are not optimal, and better ones have yet to be determined. This study uses bioprinting technology to elucidate the sensitivity of tumor cells to the combination of palbociclib (PD) and letrozole (Let) treatment. We hypothesize that this technology could serve as a model to predict treatment outcomes more efficiently. METHODS: The breast cancer cell lines MCF7 and MDA-MB-231 as well as the normal breast epithelial cell line, MCF-10A, were treated with PD-Let with and without radiotherapy (RT), and cell viability was compared in pairwise fashion for thermally inkjet bioprinted (TIB) and manually seeded (MS) cells. RESULTS: In absence of radiation, the TIB MCF7 cells have 2.5 times higher viability than manually seeded (MS) cells when treated with 100 µM palbociclib and 10 µM letrozole, a 36% higher viability when treated with 50 µM palbociclib and 10 µM letrozole, and an 8% higher viability when treated with 10 µM palbociclib and 10 µM letrozole. With 10 Gy of radiation, TIB cells had a 45% higher survival rate than MS cells at the lowest palbociclib concentration and a 29% higher survival rate at the intermediate palbociclib concentration. Without radiation treatment, at a concentration of 10 µM PD-Let, TIB MDA-MB-231 cells show a 8% higher viability than MS cells when treated with 10 µM PD and 10 µM Let; at higher drug concentrations, the differences disappeared, but some 1.7% of the TIB MDA-MB-231 cells survived exposure to 150 µM of PD + 10 µM letrozole vs. none of the MS cells. These cells are more radiation sensitive than the other cell lines tested and less sensitive to the combo drug treatments. We observed an 18% higher survival of TIB MCF-10A cells without radiation treatment when exposed to 10 µM PD + 10 µM Let but no difference in cell survival between the two groups when radiation was applied. Independent of growth conditions, TIB cells did not show more resistance to radiation treatment than MS cells, but a higher resistance to the combo treatment was observed, which was most pronounced in the MCF-7 cell line. CONCLUSION: Based on these results, we suggest that TIB used in in-vitro models could be a feasible strategy to develop and/or test new anticancer drugs.

14.
Front Oncol ; 11: 708900, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557409

RESUMEN

BACKGROUND: Kinesin superfamily of proteins (KIFs) has been broadly reported to play an indispensable role in the biological process. Recently, emerging evidence reveals its oncogenic role in various cancers. However, the prognostic, oncological, and immunological values of KIFs have not been comprehensively explored in pancreatic ductal adenocarcinoma (PDAC) patients. We aimed to illustrate the relationship between KIFs and pancreatic ductal adenocarcinoma by using bioinformatical analysis. METHODS: We use GEPIA, Oncomine datasets, cBioPortal, LOGpc, TIMER, and STRING bioinformatics tools and web servers to investigate the aberrant expression, prognostic values, and oncogenic role of KIFs. The two-gene prognostic model and the correlation between KIFs and KRAS and TP53 mutation were performed using an R-based computational framework. RESULTS: Our results demonstrated that KIFC1/2C/4A/11/14/15/18A/18B/20B/23 (we name it prognosis-related KIFs) were upregulated and associated with unfavorable clinical outcome in pancreatic cancer patients. KIF21B overexpression is associated with better clinical outcome. The KIFC1/2C/4A/11/14/15/18A/18B/20B/23 profiles were significantly increased compared to grade 1 and grade 2/3. Besides, KIFC1/2C/4A/11/14/15/18A/18B/20B/23 was significantly associated with the mutation status of KRAS and TP53.Notably, most prognosis-related KIFs have strong correlations with tumor growth and myeloid-derived suppressor cells infiltration (MDSCs). A prognostic signature based on KIF20B and KIF21B showed a reliable predictive performance. Receiver operating characteristic (ROC) curve was employed to assess the predictive power of two-gene signature. Consequently, the gene set enrichment analysis (GSEA) showed that KIF20B and KIF21B's overexpression was associated with the immunological and oncogenic pathway activation in pancreatic cancer. Finally, real-time quantitative PCR (RT-qPCR) was utilized to investigate the expression pattern of KIF20B and KIF21B in pancreatic cancer cell lines and normal pancreatic cell. CONCLUSIONS: Knowledge of the expression level of the KIFs may provide novel therapeutic molecular targets and potential prognostic biomarkers to pancreatic cancer patients.

15.
J Cancer Res Clin Oncol ; 147(8): 2407-2420, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33725154

RESUMEN

PURPOSE: The present meta-analysis study was performed to identify the potential cardiotoxicity risks when using Vascular Endothelial Growth Factor Receptor Tyrosine kinase inhibitors (VEGFR-TKIs) as anticancer drugs in patients with solid tumors. METHODS: Pubmed, Embase, the Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases were searched for the randomized controlled trials. We have included 45 randomized controlled trials (RCTs) associated with nine VEGFR-TKIs Food and Drug Administration (FDA)-approved drugs used to treat patients with solid tumors. To evaluate the trials' risk of bias, Cochrane Risk of Bias Tool was assessed. A direct comparison was assessed by RevMan5.3 software, calculating the odds ratio (OR) and 95% confidence interval (CI). Heterogeneity was tested by the I2 statistic and Chi-square test for P value. Bayesian network meta-analysis was performed using Stata 15.0 and GeMTC 0.14.3 software, calculated OR along with corresponding 95% credible interval (CrI). The model's convergence was evaluated by the potential scale reduced factor (PSRF). Consistency between direct and indirect comparisons was assessed by the "node-splitting" method. RESULTS: In this network meta-analysis, a total of 20,027 patients from 45 randomized controlled trials and associated with nine FDA-approved VEGFR-TKIs (axitinib, cabozantinib, lenvatinib, nintedanib, pazopanib, regorafenib, sorafenib, sunitinib, vandetanib), were enrolled. Findings indicated that lenvatinib had the most significant probability of provoking all grades cardiovascular incident and hypertension, followed by vandetanib, cabozantinib, axitinib, pazopanib, sorafenib, sunitinib, regorafenib and nintedanib. The nine agent's severe cardiovascular and severe hypertension risk was probably similar. The ranking probability of cardiac toxicity shows that vandetanib ranked most likely to have the highest risk for cardiotoxicity among all the VEGFR-TKIs reviewed, followed by pazopanib, axitinib, sorafenib, sunitinib. In contrast, regorafenib and nintedanib did not exhibit an increased risk of cardiac damage. CONCLUSIONS: The association between the nine VEGFR-TKIs with potential cardiotoxicity occurrence was reviewed. Both the regorafenib and nintedanib did not display detectable signs of cardiotoxic damage. In contrast, lenvatinib and vandetanib are ranked to have the most severe cardiotoxicity side impacts. These results may provide information for clinical practice guidelines, implementing strategies in selecting the adequate VEGFR-TKIs, and understanding the cardiovascular toxicity inflicted by the VEGFR-TKIs. PROSPERO IDENTIFIER: CRD 42,020,167,307.


Asunto(s)
Enfermedades Cardiovasculares/inducido químicamente , Factores de Riesgo de Enfermedad Cardiaca , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/efectos adversos , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Teorema de Bayes , Cardiotoxicidad/diagnóstico , Cardiotoxicidad/epidemiología , Enfermedades Cardiovasculares/epidemiología , Aprobación de Drogas , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Humanos , Neoplasias/epidemiología , Metaanálisis en Red , Inhibidores de Proteínas Quinasas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto/estadística & datos numéricos , Factores de Riesgo , Estados Unidos , United States Food and Drug Administration
16.
Clin Cancer Drugs ; 8(1): 50-56, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35178342

RESUMEN

BACKGROUND: Breast cancer is the most frequently diagnosed cancer in women worldwide. Pyronaridine (PND), an antimalarial drug, was shown to exert anticancer activity on seventeen different human cancer cells, seven from female breast tissue. Additionally, PND induced apoptosis via mitochondrial depolarization, alteration of cell cycle progression, and DNA intercalation. However, the molecular target of PND in cells was not elucidated. OBJECTIVE: Here, we have further investigated PND's mode of action by using transcriptome analysis. Preclinical studies were also performed to determine whether PND could affect tumor progression in a human breast cancer xenograft in mice. Moreover, we assessed the combined efficacy of PND with well-known anticancer drugs. METHODS: Transcriptome analyses of PND-treated cancer cells were performed. Topoisomerase II activity was evaluated by an in vitro assay. In addition, daily oral administration of PND was given to mice with human breast cancer xenografts. The differential nuclear staining assay measured in-vitro cell toxicity. RESULTS: The transcriptome signatures suggested that PND might act as a topoisomerase II inhibitor. Thus, topoisomerase inhibition assays were performed, providing evidence that PND is a bona fide topoisomerase II inhibitor. Also, in-vivo studies suggest that PND hinders tumor progression. Besides, combination studies of PND with anticancer drugs cisplatin and gemcitabine revealed higher cytotoxicity against cancer cells than individual drug administration. CONCLUSION: The findings provide evidence that PND is a topoisomerase II inhibitor and can hinder cancer progression in an animal model, further demonstrating PND's favorable characteristics as a repurposed anticancer drug.

17.
Invest New Drugs ; 39(2): 400-415, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33063290

RESUMEN

Lactoferrin has gained extensive attention due to its ample biological properties. In this study, recombinant human lactoferrin carrying humanized glycosylation (rhLf-h-glycan) expressed in the yeast Pichia pastoris SuperMan5, which is genetically glycoengineered to efficiently produce functional humanized glycoproteins inclosing (Man)5(GlcNAc)2 Asn-linked glycans, was analyzed, inspecting its potential toxicity against cancer cells. The live-cell differential nuclear staining assay was used to quantify the rhLf-h-glycan cytotoxicity, which was examined in four human cell lines: acute lymphoblastic leukemia (ALL) CCRF-CEM, T-cell lymphoblastic lymphoma SUP-T1, cervical adenocarcinoma HeLa, and as control, non-cancerous Hs27 cells. The defined CC50 values of rhLf-h-glycan in CCRF-CEM, SUP-T1, HeLa, and Hs27 cells were 144.45 ± 4.44, 548.47 ± 64.41, 350 ± 14.82, and 3359.07 ± 164 µg/mL, respectively. The rhLf-h-glycan exhibited a favorable selective cytotoxicity index (SCI), preferentially killing cancer cells: 23.25 for CCRF-CEM, 9.59 for HeLa, and 6.12 for SUP-T1, as compared with Hs27 cells. Also, rhLf-h-glycan showed significant antiproliferative activity (P < 0.0001) at 24, 48, and 72 h of incubation on CCRF-CEM cells. Additionally, it was observed via fluorescent staining and confocal microscopy that rhLf-h-glycan elicited apoptosis-associated morphological changes, such as blebbing, nuclear fragmentation, chromatin condensation, and apoptotic bodies in ALL cells. Furthermore, rhLf-h-glycan-treated HeLa cells revealed shrinkage of the microfilament structures, generating a speckled/punctuated pattern and also caused PARP-1 cleavage, a hallmark of apoptosis. Moreover, in ALL cells, rhLf-h-glycan altered cell cycle progression inducing the G2/M phase arrest, and caused apoptotic DNA fragmentation. Overall, our findings revealed that rhLf-h-glycan has potential as an anticancer agent and therefore deserves further in vivo evaluation.


Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Lactoferrina/farmacología , Línea Celular Tumoral , Células HeLa , Humanos , Proteínas Recombinantes , Saccharomycetales
18.
Nanomaterials (Basel) ; 10(10)2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33050215

RESUMEN

Ni-Cu nanoparticles have been synthesized by reducing Ni and Cu from metal precursors using a sol-gel route followed by annealing at 300 °C for 1, 2, 3, 6, 8, and 10 h for controlled self-regulating magnetic hyperthermia applications. Particle morphology and crystal structure revealed spherical nanoparticles with a cubic structure and an average size of 50, 60, 53, 87, and 87 nm for as-made and annealed samples at 300 °C for 1, 3, 6, and 10 h, respectively. Moreover, hysteresis loops indicated ferromagnetic behavior with saturation magnetization (Ms) ranging from 13-20 emu/g at 300 K. Additionally, Zero-filed cooled and field cooled (ZFC-FC) curves revealed that each sample contains superparamagnetic nanoparticles with a blocking temperature (TB) of 196-260 K. Their potential use for magnetic hyperthermia was tested under the therapeutic limits of an alternating magnetic field. The samples exhibited a heating rate ranging from 0.1 to 1.7 °C/min and a significant dissipated heating power measured as a specific absorption rate (SAR) of 6-80 W/g. The heating curves saturated after reaching the Curie temperature (Tc), ranging from 30-61 °C within the therapeutic temperature limit. An in vitro cytotoxicity test of these Ni-Cu samples in biological tissues was performed via exposing human breast cancer MDA-MB231 cells to a gradient of concentrations of the sample with 53 nm particles (annealed at 300 °C for 3 h) and reviewing their cytotoxic effects. For low concentrations, this sample showed no toxic effects to the cells, revealing its biocompatibility to be used in the future for in vitro/in vivo magnetic hyperthermia treatment of cancer.

19.
Brain Res ; 1749: 147117, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-32971085

RESUMEN

Early life stress alters the function and feedback regulation of the hypothalamic-pituitaryadrenal (HPA) axis, and can contribute to neuroinflammation and neurodegeneration by modifying peripheral blood mononuclear cell (PBMC) activity. The retina, as part of the nervous system, is sensitive to immune changes induced by stress. However, the consequences of stress experienced at an early age on retinal development have not yet been elucidated. Here we aimed to evaluate the impact of maternal separation (MatSep) across three stages of the lifespan (adolescent, adult, and aged) on the retina, as well as on progression through the cell cycle and mitochondrial activity in PBMCs from female Wistar rats. Newborn pups were separated from their mother from postnatal day (PND) 2 until PND 14 for 3 h/day. Retinal analysis from the MatSep groups showed architectural alterations such as a diminished thickness of retinal layers, as well as increased expression of proinflammatory markers DJ-1, Iba-1, and CD45 and the gliotic marker GFAP. Additionally, MatSep disrupted the cell cycle and caused long-term increases in mitochondrial activity in PBMCs from adolescent and adult rats. Changes in the cell cycle profile of the PBMCs from aged MatSep rats were undetected. However, these PBMCs exhibited increased sensitivity to H2O2-induced oxidative stress in vitro. Therefore, these results suggest that early life stress can have long-term effects on retinal structure and function, possibly elicited by neonatal immune preconditioning.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Privación Materna , Retina/metabolismo , Estrés Psicológico/metabolismo , Animales , Ciclo Celular/fisiología , Femenino , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Ratas , Ratas Wistar
20.
ACS Omega ; 5(23): 13785-13792, 2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32566844

RESUMEN

Until the recent past, the sole exemplar of proteins as infectious agents leading to neurodegenerative disorders remained the prion protein. Since then, the self-seeding mechanism characteristic of the prion protein has also been attributed to other neurodegenerative-disease-associated proteins, including amyloid-ß (Aß), tau, and α-synuclein (α-Syn). In model cell line studies, truncated Aß, viz. amyloid beta (25-35), has been found to influence cellular homeostasis through its interactions with, and via, the disruption of key housekeeping machinery. Here, we demonstrate that the incubation of human neuroblastoma (SH-SY5Y) cell line with Brazilin ((6aS,11bR)-7,11b-dihydro-6H-indeno[2,1-c]chromene-3,6a,9,10-tetrol) prior to Aß (25-35)-insult protected the cells from oxidative stress and apoptotic cell death. Furthermore, Brazilin mitigated Aß-induced alterations in protein disulfide isomerase (PDI) and α-synuclein status, both of which are important biomarkers that report on Parkinson's pathogenesis. The results obtained in this study suggest that the tetrol is neuroprotective and helps resist Aß-induced cross-pathology and amyloidogenic onset.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA