Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell ; 162(3): 648-61, 2015 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-26232230

RESUMEN

We describe automated technologies to probe the structure of neural tissue at nanometer resolution and use them to generate a saturated reconstruction of a sub-volume of mouse neocortex in which all cellular objects (axons, dendrites, and glia) and many sub-cellular components (synapses, synaptic vesicles, spines, spine apparati, postsynaptic densities, and mitochondria) are rendered and itemized in a database. We explore these data to study physical properties of brain tissue. For example, by tracing the trajectories of all excitatory axons and noting their juxtapositions, both synaptic and non-synaptic, with every dendritic spine we refute the idea that physical proximity is sufficient to predict synaptic connectivity (the so-called Peters' rule). This online minable database provides general access to the intrinsic complexity of the neocortex and enables further data-driven inquiries.


Asunto(s)
Microscopía Electrónica de Rastreo/métodos , Microtomía/métodos , Neocórtex/ultraestructura , Neuronas/ultraestructura , Animales , Automatización , Axones/ultraestructura , Dendritas/ultraestructura , Ratones , Neocórtex/citología , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura
2.
Med Image Anal ; 22(1): 77-88, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25791436

RESUMEN

Automated sample preparation and electron microscopy enables acquisition of very large image data sets. These technical advances are of special importance to the field of neuroanatomy, as 3D reconstructions of neuronal processes at the nm scale can provide new insight into the fine grained structure of the brain. Segmentation of large-scale electron microscopy data is the main bottleneck in the analysis of these data sets. In this paper we present a pipeline that provides state-of-the art reconstruction performance while scaling to data sets in the GB-TB range. First, we train a random forest classifier on interactive sparse user annotations. The classifier output is combined with an anisotropic smoothing prior in a Conditional Random Field framework to generate multiple segmentation hypotheses per image. These segmentations are then combined into geometrically consistent 3D objects by segmentation fusion. We provide qualitative and quantitative evaluation of the automatic segmentation and demonstrate large-scale 3D reconstructions of neuronal processes from a 27,000 µm(3) volume of brain tissue over a cube of 30 µm in each dimension corresponding to 1000 consecutive image sections. We also introduce Mojo, a proofreading tool including semi-automated correction of merge errors based on sparse user scribbles.


Asunto(s)
Encéfalo/ultraestructura , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Neuronas/ultraestructura , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , Aumento de la Imagen/métodos , Aprendizaje Automático , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Técnica de Sustracción
3.
Artículo en Inglés | MEDLINE | ID: mdl-22003670

RESUMEN

We present a novel semi-automatic method for segmenting neural processes in large, highly anisotropic EM (electron microscopy) image stacks. Our method takes advantage of sparse scribble annotations provided by the user to guide a 3D variational segmentation model, thereby allowing our method to globally optimally enforce 3D geometric constraints on the segmentation. Moreover, we leverage a novel algorithm for propagating segmentation constraints through the image stack via optimal volumetric pathways, thereby allowing our method to compute highly accurate 3D segmentations from very sparse user input. We evaluate our method by reconstructing 16 neural processes in a 1024 x 1024 x 50 nanometer-scale EM image stack of a mouse hippocampus. We demonstrate that, on average, our method is 68% more accurate than previous state-of-the-art semi-automatic methods.


Asunto(s)
Hipocampo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Microscopía Electrónica/métodos , Neuronas/patología , Algoritmos , Animales , Anisotropía , Automatización , Humanos , Cadenas de Markov , Ratones , Modelos Neurológicos , Programas Informáticos
4.
IEEE Comput Graph Appl ; 30(3): 58-70, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20650718

RESUMEN

Data sets imaged with modern electron microscopes can range from tens of terabytes to about one petabyte. Two new tools, Ssecrett and NeuroTrace, support interactive exploration and analysis of large-scale optical-and electron-microscopy images to help scientists reconstruct complex neural circuits of the mammalian nervous system.


Asunto(s)
Encéfalo/anatomía & histología , Gráficos por Computador , Microscopía Electrónica , Modelos Neurológicos , Neurociencias/métodos , Programas Informáticos , Encéfalo/fisiología , Biología Computacional , Bases de Datos Factuales , Diagnóstico por Imagen , Humanos , Procesamiento de Imagen Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...