Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
2.
Sci Total Environ ; 871: 161860, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758699

RESUMEN

Biochar application to soil has the potential to affect soil and vegetation properties that are key for the processes of runoff and soil erosion. However, both field and pot experiments show a vast range of effects, from strong reductions to strong increases in runoff and/or soil erosion. Therefore, this study aimed to quantify and interpret the impacts of biochar on runoff and soil erosion through the first systematic meta-analysis on this topic. The developed dataset consists of 184 pairwise observations for runoff and soil erosion from 30 independent studies but 8 of which just focused on soil erosion. Overall, biochar application to soil significantly reduced runoff by 25 % and erosion by 16 %. Mitigation of soil erosion in the tropics was approximately three times stronger (30 %) than at temperate latitudes (9 %); erosion reduction in the subtropical zone was 14 %, but not significantly different from either the tropical or temperate zones. Fewer reported field observations for runoff resulted in larger confidence intervals and only the temperate latitudes showed a significant effect (i.e. a 28 % reduction). At topsoil gravimetric biochar concentrations between 0.6 % and 2.5 %, significant reductions occurred in soil erosion, with no effect at lower and higher concentrations. Biochar experiments that included a vegetation cover reduced soil erosion more than twice as much as bare soil experiments, i.e. 27 % vs 12 %, respectively. This suggests that soil infiltration, canopy interception, and soil cohesion mechanisms may have synergistic effects. Soil amended with biochar pyrolyzed at >500 °C was associated with roughly double the erosion reduction than soil amended with biochar produced at 300-500 °C, which potentially could be related to the enhancement of hydrophobicity in the latter case. Our results demonstrate substantial potential for biochar to improve ecosystem services that are affected by increased infiltration and reduced erosion, while mechanistic understanding needs to be improved.


Asunto(s)
Ecosistema , Erosión del Suelo , Agua , Suelo
3.
Sensors (Basel) ; 20(9)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344911

RESUMEN

The soil surface albedo decreases with an increasing biochar application rate as a power decay function, but the net impact of biochar application on soil temperature dynamics remains to be clarified. The objective of this study was to assess the potential of infrared thermography (IRT) sensing by monitoring soil surface temperature (SST) with a high spatiotemporal and thermal resolution in a scalable agricultural application. We monitored soil surface temperature (SST) variations over a 48 h period for three treatments in a vineyard: bare soil (plot S), 100% biochar cover (plot B), and biochar-amended topsoil (plot SB). The SST of all plots was monitored at 30 min intervals with a tripod-mounted IR thermal camera. The soil temperature at 10 cm depth in the S and SB plots was monitored continuously with a 5 min resolution probe. Plot B had greater daily SST variations, reached a higher daily temperature peak relative to the other plots, and showed a faster rate of T increase during the day. However, on both days, the SST of plot B dipped below that of the control treatment (plot S) and biochar-amended soil (plot SB) from about 18:00 onward and throughout the night. The diurnal patterns/variations in the IRT-measured SSTs were closely related to those in the soil temperature at a 10 cm depth, confirming that biochar-amended soils showed lower thermal inertia than the unamended soil. The experiment provided interesting insights into SST variations at a local scale. The case study may be further developed using fully automated SST monitoring protocols at a larger scale for a range of environmental and agricultural applications.

4.
J Agric Food Chem ; 64(2): 513-27, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26693953

RESUMEN

Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.


Asunto(s)
Carbón Orgánico/análisis , Técnicas de Química Analítica/normas , Laboratorios/normas , Técnicas de Química Analítica/instrumentación , Técnicas de Química Analítica/métodos , Estándares de Referencia , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA