Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 651: 436-447, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37556902

RESUMEN

The challenge of developing low-cost, highly flexible, and high-performance thermoelectric (TE) materials persists due to the low thermoelectric efficiency of conducting polymers and the inflexibility of inorganic materials. In this study, we successfully integrated Ag2Se and Ag2S with highly conductive carbon fabric (CF) to produce a flexible thermoelectric material. A facile one-step solvothermal method was employed to synthesize the Ag2Se-CF and Ag2S-CF, which were then subjected to X-ray analysis to confine the phase formation of Ag2Se and Ag2S on the carbon fabric. The analysis revealed that Ag2Se and Ag2S nanoparticles were tightly packed on the surface of carbon fabric, and compositional analysis confirmed the interaction between the material and carbon fabric. The thermoelectric properties of Ag2Se-CF and Ag2S-CF were significantly altered due to carrier concentration and mobility variations, resulting in a low power factor of 6.7 µW/mK2 for Ag2Se-CF and a high-power factor of 24 µW/mK2 at 373 K for Ag2S-CF. The growth of Ag2Se-CF and Ag2S-CF on carbon fabric led to an enhancement in their thermoelectric properties. Further, TE legs were fabricated using the Ag2Se-CF (p-type) and Ag2S-CF (n-type), and the fabricated legs exhibited an output voltage of âˆ¼20 mV to âˆ¼86.65 mV at a temperature gradient (ΔT) of 3-8 K. This work represents a cutting-edge approach to the fabrication of high-performance, wearable thermoelectric devices.

2.
3 Biotech ; 13(5): 143, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37124993

RESUMEN

Cucumber mosaic virus (CMV) is the one of notorious virus known for its ubiquitous nature and causes substantial yield loss worldwide. The resistance against the Cucumber mosaic virus (CMV) was envisaged in Nicotiana tabacum transgenic lines by introducing viral gene fragments. The chimeric hairpin RNA constructs incorporating 401 bp of coat protein, 411 bp of replicase protein and 361 bp of 2b gene were developed respectively and transformed into N. tabacum. The regenerated transgenic lines introduced with inverted repeats of CMV gene fragments exhibited enhanced resistance against CMV. The preliminary molecular screening and qPCR confirmed the integration of transgene in the transgenic lines. The spectrum of resistance in transgenic lines was evaluated by challenge inoculation with CMV and the resistance was determined through DAC-ELISA. The complete resistance was achieved in the hpRNA-CP transformant with a very low titre (0.029) of CMV followed by hpRNA-REP (0.099) with no symptoms. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03576-1.

3.
Sci Rep ; 11(1): 8796, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888846

RESUMEN

Cucumo- and tospoviruses are the most destructive viruses infecting hot pepper (chilli). A diagnostic survey was conducted to assess the prevalence of cucumo and tospoviruses in chilli growing tracts of Tamil Nadu. Infected plants showing mosaic with chlorotic and necrotic rings, veinal necrosis, mosaic mottling, leaf filiformity and malformation were collected. Molecular indexing carried out through reverse transcription polymerase chain reaction (RT-PCR) with coat protein gene specific primer of Cucumber mosaic virus (CMV) and tospovirus degenerate primer corresponding to the L segment (RdRp). Ostensibly, amplifications were observed for both CMV and tospoviruses as sole as well for mixed infections. The sequence analysis indicated that the Capsicum chlorosis virus (CaCV) and Groundnut bud necrosis virus (GBNV) to be involved with CMV in causing combined infections. The co-infection of CMV with CaCV was detected in 10.41% of the symptomatic plant samples and combined infection of CMV with GBNV was recorded in around 6.25% of the symptomatic plants surveyed. The amino acid substitution of Ser129 over conserved Pro129 in coat protein of CMV implies that CMV strain involved in mixed infection as chlorosis inducing strain. Further, the electron microscopy of symptomatic plant samples explicated the presence of isometric particles of CMV and quasi spherical particles of tospoviruses. This is the first molecular evidence for the natural co-existence of chlorosis inducing CMV strain with CaCV and GBNV on hot pepper in India.


Asunto(s)
Anemia Hipocrómica/virología , Capsicum/virología , Cucumovirus/aislamiento & purificación , Tospovirus/patogenicidad , Cucumovirus/patogenicidad , India , Hojas de la Planta/virología
4.
3 Biotech ; 10(11): 500, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33163319

RESUMEN

CMV (cucumber mosaic virus) is the most primitive virus infecting chilli (Capsicum annuum. L). The mosaic incidence with leaf filiformity, mosaic mottling and stunted growth was observed in major chilli growing regions of Tamil Nadu. CMV sap was inoculated on chilli, cowpea, bitter gourd, bottle gourd, ridge gourd, banana, cucumber, Nicotiana and Chenopodium plants. Host range studies revealed that CMV produced localized infection on Nicotiana and systemic symptoms on most of the test plants. The occurrence of CMV was confirmed through DAC-ELISA and RT-PCR analysis. Host plant samples tested with DAC-ELISA showed strong reaction with 1.7 optical density. For molecular characterization, total RNA isolated from infected plants used in RT-PCR with CMV specific primers. The specific amplicons were cloned and sequenced. The complete genome sequencing depicts CMV-RNA1 consist of 3339 nucleotides (nt), RNA2 and RNA3 with 3052nt and 2027nt respectively. Phylogenetic and nucleotide sequence analysis showed TN CMV isolates closely associated with subgroup IB rather than subgroup IA and II. Comparative sequence analysis indicates replicase protein to be more variable among five genes. CP sequence analysis showed 97-98 per cent identity with subgroup IB strains, 92-93 per cent identity with subgroup IA strains and 81-82 per cent identity with subgroup II strains. CMV-RNA3 was predicted to have recombination with Indian black pepper isolate (KU947031) between 165-505nt and Egyptian tomato isolate (KX014666) between 165-506nt positions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...