Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Infect Dis ; 143: 107038, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38580070

RESUMEN

A 76-year-old woman infected with Yezo virus (YEZV) developed liver dysfunction and thrombocytopenia following a tick bite. Despite the severity of her elevated liver enzymes and reduced platelet counts, the patient's condition improved spontaneously without any specific treatment. To our knowledge, this represents the first documented case where the YEZV genome was detected simultaneously in a patient's serum and the tick (Ixodes persulcatus) that bit the patient. This dual detection not only supports the hypothesis that YEZV is a tick-borne pathogen but also underscores the importance of awareness and diagnostic readiness for emerging tick-borne diseases, particularly in regions where these ticks are prevalent.


Asunto(s)
Ixodes , Mordeduras de Garrapatas , Humanos , Femenino , Anciano , Animales , Mordeduras de Garrapatas/complicaciones , Ixodes/virología , Enfermedades por Picaduras de Garrapatas/diagnóstico , Enfermedades por Picaduras de Garrapatas/virología , Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Trombocitopenia/virología , Trombocitopenia/diagnóstico
2.
Vet Res ; 54(1): 82, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759311

RESUMEN

Immune checkpoint molecules PD-1/PD-L1 cause T-cell exhaustion and contribute to disease progression in chronic infections of cattle. We established monoclonal antibodies (mAbs) that specifically inhibit the binding of bovine PD-1/PD-L1; however, conventional anti-PD-1 mAbs are not suitable as therapeutic agents because of their low binding affinity to antigen. In addition, their sensitivity for the detection of bovine PD-1 is low and their use for immunostaining PD-1 is limited. To address these issues, we established two anti-bovine PD-1 rabbit mAbs (1F10F1 and 4F5F2) and its chimeric form using bovine IgG1 (Boch1D10F1), which exhibit high binding affinity. One of the rabbit mAb 1D10F1 binds more strongly to bovine PD-1 compared with a conventional anti-PD-1 mAb (5D2) and exhibits marked inhibitory activity on the PD-1/PD-L1 interaction. In addition, PD-1 expression in bovine T cells could be detected with higher sensitivity by flow cytometry using 1D10F1. Furthermore, we established higher-producing cells of Boch1D10F1 and succeeded in the mass production of Boch1D10F1. Boch1D10F1 exhibited a similar binding affinity to bovine PD-1 and the inhibitory activity on PD-1/PD-L1 binding compared with 1D10F1. The immune activation by Boch1D10F1 was also confirmed by the enhancement of IFN-γ production. Finally, Boch1D10F1 was administered to bovine leukemia virus-infected cows to determine its antiviral effect. In conclusion, the high-affinity anti-PD-1 antibody developed in this study represents a powerful tool for detecting and inhibiting bovine PD-1 and is a candidate for PD-1-targeted immunotherapy in cattle.


Asunto(s)
Antígeno B7-H1 , Interferón gamma , Femenino , Bovinos , Conejos , Animales , Receptor de Muerte Celular Programada 1/metabolismo , Antivirales , Anticuerpos Monoclonales
3.
Vaccines (Basel) ; 11(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36992143

RESUMEN

Interactions between programmed death 1 (PD-1) and PD-ligand 1 (PD-L1) cause functional exhaustion of T cells by inducing inhibitory signals, thereby attenuating effector functions of T cells. We have developed an anti-bovine PD-L1 blocking antibody (Ab) and have demonstrated that blockade of the interaction between PD-1 and PD-L1 reactivates T-cell responses in cattle. In the present study, we examined the potential utility of PD-1/PD-L1-targeted immunotherapy in enhancing T-cell responses to vaccination. Calves were inoculated with a hexavalent live-attenuated viral vaccine against bovine respiratory infections in combination with treatment with an anti-PD-L1 Ab. The expression kinetics of PD-1 in T cells and T-cell responses to viral antigens were measured before and after vaccination to evaluate the adjuvant effect of anti-PD-L1 Ab. PD-1 expression was upregulated in vaccinated calves after the administration of a booster vaccination. The activation status of CD4+, CD8+, and γδTCR+ T cells was enhanced by the combination of vaccination and PD-L1 blockade. In addition, IFN-γ responses to viral antigens were increased following combinatorial vaccination with PD-L1 blockade. In conclusion, the blockade of the PD-1/PD-L1 interaction enhances T-cell responses induced by vaccination in cattle, indicating the potential utility of anti-PD-L1 Ab in improving the efficacy of current vaccination programs.

4.
J Virol ; 97(1): e0143022, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36598199

RESUMEN

Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leukosis (EBL) in cattle and is widespread in many countries, including Japan. Recent studies have revealed that the expression of immunoinhibitory molecules, such as programmed death-1 (PD-1) and PD-ligand 1, plays a critical role in immunosuppression and disease progression during BLV infection. In addition, a preliminary study has suggested that another immunoinhibitory molecule, T-cell immunoglobulin domain and mucin domain-3 (TIM-3), is involved in immunosuppression during BLV infection. Therefore, this study was designed to further elucidate the immunoinhibitory role of immune checkpoint molecules in BLV infection. TIM-3 expression was upregulated on peripheral CD4+ and CD8+ T cells in BLV-infected cattle. Interestingly, in EBL cattle, CD4+ and CD8+ T cells infiltrating lymphomas expressed TIM-3. TIM-3 and PD-1 were upregulated and coexpressed in peripheral CD4+ and CD8+ T cells from BLV-infected cattle. Blockade by anti-bovine TIM-3 monoclonal antibody increased CD69 expression on T cells and gamma interferon (IFN-γ) production from peripheral blood mononuclear cells from BLV-infected cattle. A syncytium formation assay also demonstrated the antiviral effects of TIM-3 blockade against BLV infection. The combined inhibition of TIM-3 and PD-1 pathways significantly enhanced IFN-γ production and antiviral efficacy compared to inhibition alone. In conclusion, the combined blockade of TIM-3 and PD-1 pathways shows strong immune activation and antiviral effects and has potential as a novel therapeutic method for BLV infection. IMPORTANCE Enzootic bovine leukosis caused by bovine leukemia virus (BLV) is an important viral disease in cattle, causing severe economic losses to the cattle industry worldwide. The molecular mechanisms of BLV-host interactions are complex. Previously, it was found that immune checkpoint molecules, such as PD-1, suppress BLV-specific Th1 responses as the disease progresses. To date, most studies have focused only on how PD-1 facilitates escape from host immunity in BLV-infected cattle and the antiviral effects of the PD-1 blockade. In contrast, how T-cell immunoglobulin domain and mucin domain-3 (TIM-3), another immune checkpoint molecule, regulates anti-BLV immune responses is rarely reported. It is also unclear why PD-1 inhibition alone was insufficient to exert anti-BLV effects in previous clinical studies. In this study, the expression profile of TIM-3 in T cells derived from BLV-infected cattle suggested that TIM-3 upregulation is a cause of immunosuppression in infected cattle. Based on these results, anti-TIM-3 antibody was used to experimentally evaluate its function in influencing immunity against BLV. Results indicated that TIM-3 upregulation induced by BLV infection suppressed T-cell activation and antiviral cytokine production. Some T cells coexpressed PD-1 and TIM-3, indicating that simultaneous inhibition of PD-1 and TIM-3 with their respective antibodies synergistically restored antiviral immunity. This study could open new avenues for treating bovine chronic infections.


Asunto(s)
Leucosis Bovina Enzoótica , Proteínas de Punto de Control Inmunitario , Virus de la Leucemia Bovina , Animales , Bovinos , Linfocitos T CD8-positivos/inmunología , Leucosis Bovina Enzoótica/inmunología , Proteínas de Punto de Control Inmunitario/inmunología , Interferón gamma/inmunología , Virus de la Leucemia Bovina/inmunología , Mucinas/inmunología , Receptor de Muerte Celular Programada 1/inmunología , Regulación de la Expresión Génica/inmunología
5.
Infect Immun ; 90(10): e0021022, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36102658

RESUMEN

Paratuberculosis is a chronic enteritis of ruminants caused by the facultative intracellular pathogen Mycobacterium avium subsp. paratuberculosis. The Th1 response inhibits the proliferation of M. avium subsp. paratuberculosis during the early subclinical stage. However, we have previously shown that immune inhibitory molecules, such as prostaglandin E2 (PGE2), suppress M. avium subsp. paratuberculosis-specific Th1 responses as the disease progresses. To date, the mechanism underlying immunosuppression during M. avium subsp. paratuberculosis infection has not been elucidated. Therefore, in the present study, we investigated the function of cytotoxic T-lymphocyte antigen 4 (CTLA-4) expressed by peripheral blood mononuclear cells (PBMCs) from cattle with paratuberculosis because CTLA-4 expression is known to be elevated in T cells under an M. avium subsp. paratuberculosis experimental infection. M. avium subsp. paratuberculosis antigen induced CTLA-4 expression in T cells from cattle experimentally infected with M. avium subsp. paratuberculosis. Interestingly, both PGE2 and an E prostanoid 4 agonist also induced CTLA-4 expression in T cells. In addition, a functional assay with a bovine CTLA-4-immunogobulin fusion protein (CTLA-4-Ig) indicated that CTLA-4 inhibited gamma interferon (IFN-γ) production in M. avium subsp. paratuberculosis-stimulated PBMCs, while blockade by anti-bovine CTLA-4 monoclonal antibody increased the secretion of IFN-γ and tumor necrosis factor alpha production in these PBMCs. These preliminary findings show that PGE2 has immunosuppressive effects via CTLA-4 to M. avium subsp. paratuberculosis. Therefore, it is necessary to clarify in the future whether CTLA-4-mediated immunosuppression facilitates disease progression of paratuberculosis in cattle.


Asunto(s)
Enfermedades de los Bovinos , Mycobacterium avium subsp. paratuberculosis , Paratuberculosis , Animales , Bovinos , Antígeno CTLA-4/metabolismo , Interferón gamma , Leucocitos Mononucleares , Factor de Necrosis Tumoral alfa/metabolismo , Abatacept/metabolismo , Terapia de Inmunosupresión , Prostaglandinas E/metabolismo , Prostaglandinas/metabolismo , Anticuerpos Monoclonales/metabolismo
6.
Sci Rep ; 12(1): 9265, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35665759

RESUMEN

Immune checkpoint inhibitors (ICIs) such as anti-PD-L1 antibodies are widely used to treat human cancers, and growing evidence suggests that ICIs are promising treatments for canine malignancies. However, only some canine oral malignant melanoma (OMM) cases respond to ICIs. To explore biomarkers predictive of survival in dogs with pulmonary metastatic OMM receiving the anti-PD-L1 antibody c4G12 (n = 27), serum concentrations of prostaglandin E2 (PGE2), cytokines, chemokines, and growth factors were measured prior to treatment initiation. Among 12 factors tested, PGE2, interleukin (IL)-12p40, IL-8, monocyte chemotactic protein-1 (MCP-1), and stem cell factor (SCF) were higher in OMM dogs compared to healthy dogs (n = 8). Further, lower baseline serum PGE2, MCP-1, and vascular endothelial growth factor (VEGF)-A concentrations as well as higher IL-2, IL-12, and SCF concentrations predicted prolonged overall survival. These observations suggest that PGE2 confers resistance against anti-PD-L1 therapy through immunosuppression and thus is a candidate target for combination therapy. Indeed, PGE2 suppressed IL-2 and interferon (IFN)-γ production by stimulated canine peripheral blood mononuclear cells (PBMCs), while inhibition of PGE2 biosynthesis using the COX-2 inhibitor meloxicam in combination with c4G12 enhanced Th1 cytokine production by PBMCs. Thus, serum PGE2 may be predictive of c4G12 treatment response, and concomitant use of COX-2 inhibitors may enhance ICI antitumor efficacy.


Asunto(s)
Melanoma , Factor A de Crecimiento Endotelial Vascular , Animales , Antígeno B7-H1/metabolismo , Biomarcadores , Ciclooxigenasa 2 , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Dinoprostona/uso terapéutico , Perros , Interleucina-2/uso terapéutico , Leucocitos Mononucleares/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/veterinaria , Neoplasias Cutáneas , Melanoma Cutáneo Maligno
7.
J Vet Med Sci ; 84(1): 6-15, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34789592

RESUMEN

Our previous studies demonstrate the therapeutic efficacy against bovine diseases of an anti-bovine programmed death-ligand 1 (PD-L1) chimeric antibody. In humans, PD-1 and PD-L1 antibodies are more effective when combined with an antibody targeting cytotoxic T lymphocyte antigen 4 (CTLA-4) and these combination therapies are therefore clinically used. Here we generated an anti-bovine CTLA-4 chimeric antibody (chAb) to enhance the therapeutic efficacy of the PD-L1 antibody. We further analyzed the effects of dual blockade of CTLA-4 and PD-1 pathways on T-cell responses. The established anti-bovine CTLA-4 chAb showed comparable blocking activity on the binding of bovine CTLA-4 to CD80 and CD86 as the anti-bovine CTLA-4 mouse monoclonal antibody. Anti-bovine CTLA-4 chAb also significantly increased IL-2 production from bovine peripheral blood mononuclear cells (PBMCs). Further, the combination of anti-CTLA-4 chAb with anti-PD-L1 chAb significantly upregulated IL-2 production by PBMCs. These results suggest that the combination of antibodies have higher potential to enhance immune responses against pathogens compared with single administration.


Asunto(s)
Antígeno B7-H1 , Interleucina-2 , Animales , Anticuerpos Monoclonales , Antígeno CTLA-4 , Bovinos , Leucocitos Mononucleares , Ratones , Receptor de Muerte Celular Programada 1
8.
Sci Rep ; 11(1): 1063, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441793

RESUMEN

The tick Rhipicephalus microplus is a harmful parasite of cattle that causes considerable economic losses to the cattle breeding industry. Although R. microplus saliva (Rm-saliva) contains several immunosuppressants, any association between Rm-saliva and the expression of immunoinhibitory molecules, such as programmed death (PD)-1 and PD-ligand 1 (PD-L1), has not been described. In this study, flow cytometric analyses revealed that Rm-saliva upregulated PD-1 expression in T cells and PD-L1 expression in CD14+ and CD11c+ cells in cattle. Additionally, Rm-saliva decreased CD69 expression in T cells and Th1 cytokine production from peripheral blood mononuclear cells. Furthermore, PD-L1 blockade increased IFN-γ production in the presence of Rm-saliva, suggesting that Rm-saliva suppresses Th1 responses via the PD-1/PD-L1 pathway. To reveal the upregulation mechanism of PD-1/PD-L1 by Rm-saliva, we analyzed the function of prostaglandin E2 (PGE2), which is known as an inducer of PD-L1 expression, in Rm-saliva. We found that Rm-saliva contained a high concentration of PGE2, and PGE2 treatment induced PD-L1 expression in CD14+ cells in vitro. Immunohistochemical analyses revealed that PGE2 and PD-L1 expression was upregulated in tick-attached skin in cattle. These data suggest that PGE2 in Rm-saliva has the potential to induce the expression of immunoinhibitory molecules in host immune cells.


Asunto(s)
Antígeno B7-H1/metabolismo , Interacciones Huésped-Parásitos , Tolerancia Inmunológica , Receptor de Muerte Celular Programada 1/metabolismo , Rhipicephalus/fisiología , Saliva/fisiología , Mordeduras de Garrapatas/veterinaria , Animales , Bovinos/metabolismo , Bovinos/parasitología , Dinoprostona/metabolismo , Citometría de Flujo , Redes y Vías Metabólicas , Células TH1/fisiología , Mordeduras de Garrapatas/inmunología , Mordeduras de Garrapatas/metabolismo
9.
Vet Microbiol ; 254: 108976, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33453627

RESUMEN

Diarrhea is a major cause of death in calves and this is linked directly to economic loss in the cattle industry. Fermented milk replacer (FMR) has been used widely in clinical settings for calf feeding to improve its health and growth. However, the protective efficacy of FMR on calf diarrhea remains unclear. In this study, we verified the preventive effects of FMR feeding on calf diarrhea using an experimental infection model of bovine rotavirus (BRV) in newborn calves and a field study in dairy farms with calf diarrhea. In addition, we evaluated the protective efficacy of lactic acid bacteria-supplemented milk replacer (LAB-MR) in an experimental infection model. In the experimental infection, calves fed FMR or high-concentrated LAB-MR had diarrhea, but the water content of feces was lower and more stable than that of calves fed normal milk replacer. The amount of milk intake also decreased temporarily, but recovered immediately in the FMR- and LAB-MR-fed calves. As compared with the control calves, FMR- or LAB-MR-fed calves showed less severe or reduced histopathological lesions of enteritis in the intestinal mucosa. In a field study using dairy calves, FMR feeding significantly reduced the incidence of enteritis, mortality from enteritis, duration of a series of treatment for enteritis, number of consultations, and cost of medical care for the disease. These results suggest that feeding milk replacer-based probiotics to calves reduces the severity of diarrhea and tissue damage to the intestinal tract caused by BRV infection and provides significant clinical benefits to the prevention and treatment of calf diarrhea.


Asunto(s)
Alimentación Animal/análisis , Diarrea/prevención & control , Diarrea/veterinaria , Enteritis/veterinaria , Leche , Probióticos/administración & dosificación , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/veterinaria , Animales , Bovinos , Enfermedades de los Bovinos/prevención & control , Enfermedades de los Bovinos/virología , Productos Lácteos Cultivados , Diarrea/terapia , Suplementos Dietéticos , Enteritis/prevención & control , Femenino , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Masculino , Embarazo , Probióticos/uso terapéutico , Infecciones por Rotavirus/terapia , Destete
10.
Front Vet Sci ; 7: 12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32154274

RESUMEN

Bovine mycoplasmosis caused by Mycoplasma bovis results in pneumonia and mastitis in cattle. We previously demonstrated that the programmed death 1 (PD-1)/PD-ligand 1 (PD-L1) pathway is involved in immune dysfunction during M. bovis infection and that prostaglandin E2 (PGE2) suppressed immune responses and upregulated PD-L1 expression in Johne's disease, a bacterial infection in cattle. In this study, we investigated the role of PGE2 in immune dysfunction and the relationship between PGE2 and the PD-1/PD-L1 pathway in M. bovis infection. In vitro stimulation with M. bovis upregulated the expressions of PGE2 and PD-L1 presumably via Toll-like receptor 2 in bovine peripheral blood mononuclear cells (PBMCs). PGE2 levels of peripheral blood in infected cattle were significantly increased compared with those in uninfected cattle. Remarkably, plasma PGE2 levels were positively correlated with the proportions of PD-L1+ monocytes in M. bovis-infected cattle. Additionally, plasma PGE2 production in infected cattle was negatively correlated with M. bovis-specific interferon (IFN)-γ production from PBMCs. These results suggest that PGE2 could be one of the inducers of PD-L1 expression and could be involved in immunosuppression during M. bovis infection. In vitro blockade assays using anti-bovine PD-L1 antibody and a cyclooxygenase 2 inhibitor significantly upregulated the M. bovis-specific IFN-γ response. Our study findings might contribute to the development of novel therapeutic strategies for bovine mycoplasmosis that target PGE2 and the PD-1/PD-L1 pathway.

11.
BMC Vet Res ; 15(1): 380, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31665022

RESUMEN

BACKGROUND: Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is known as an immune inhibitory receptor that is expressed on activated effector T cells and regulatory T cells. When CTLA-4 binds to CD80 or CD86, immunoinhibitory signals are transmitted to retain a homeostasis of the immune response. Recent studies have reported that CTLA-4 is upregulated in chronic infections and malignant neoplasms, contributing to host immune dysfunction. On the other hand, the blockade of CTLA-4 and CD80 or CD86 binding by antibody restores the immune response against these diseases. In a previous report, we indicated that the expression of CTLA-4 was closely associated with disease progression in cattle infected with the bovine leukemia virus (BLV). In this study, we established an anti-bovine CTLA-4 antibody to confirm its immune enhancing effect. RESULTS: Bovine CTLA-4-Ig binds to bovine CD80 and CD86 expressing cells. Additionally, CD80 and CD86 bind to CTLA-4 expressing cells in an expression-dependent manner. Bovine CTLA-4-Ig significantly inhibited interferon-gamma (IFN-γ) production from bovine peripheral blood mononuclear cells (PBMCs) activated by Staphylococcus enterotoxin B (SEB). An established specific monoclonal antibody (mAb) for bovine CTLA-4 specifically recognized only with bovine CTLA-4, not CD28, and the antibody blocked the binding of CTLA-4-Ig to both CD80 and CD86 in a dose-dependent manner. The bovine CTLA-4 mAb significantly restored the inhibited IFN-γ production from the CTLA-4-Ig treated PBMCs. In addition, the CTLA-4 mAb significantly enhanced IFN-γ production from CTLA-4 expressing PBMCs activated by SEB. Finally, we examined whether a CTLA-4 blockade by CTLA-4 mAb could restore the immune reaction during chronic infection; the blockade assay was performed using PBMCs from BLV-infected cattle. The CTLA-4 blockade enhanced IFN-γ production from the PBMCs in response to BLV-antigens. CONCLUSIONS: Collectively, these results suggest that anti-bovine CTLA-4 antibody can reactivate lymphocyte functions and could be applied for a new therapy against refractory chronic diseases. Further investigation is required for future clinical applications.


Asunto(s)
Antígeno CTLA-4/metabolismo , Interferón gamma/metabolismo , Animales , Anticuerpos , Antígeno B7-1 , Antígeno B7-2 , Células COS , Antígeno CTLA-4/genética , Bovinos , Chlorocebus aethiops , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Interferón gamma/genética , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Proteínas Recombinantes
12.
J Immunol ; 203(5): 1313-1324, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31366713

RESUMEN

Bovine leukemia virus (BLV) infection is a chronic viral infection of cattle and endemic in many countries, including Japan. Our previous study demonstrated that PGE2, a product of cyclooxygenase (COX) 2, suppresses Th1 responses in cattle and contributes to the progression of Johne disease, a chronic bacterial infection in cattle. However, little information is available on the association of PGE2 with chronic viral infection. Thus, we analyzed the changes in plasma PGE2 concentration during BLV infection and its effects on proviral load, viral gene transcription, Th1 responses, and disease progression. Both COX2 expression by PBMCs and plasma PGE2 concentration were higher in the infected cattle compared with uninfected cattle, and plasma PGE2 concentration was positively correlated with the proviral load. BLV Ag exposure also directly enhanced PGE2 production by PBMCs. Transcription of BLV genes was activated via PGE2 receptors EP2 and EP4, further suggesting that PGE2 contributes to disease progression. In contrast, inhibition of PGE2 production using a COX-2 inhibitor activated BLV-specific Th1 responses in vitro, as evidenced by enhanced T cell proliferation and Th1 cytokine production, and reduced BLV proviral load in vivo. Combined treatment with the COX-2 inhibitor meloxicam and anti-programmed death-ligand 1 Ab significantly reduced the BLV proviral load, suggesting a potential as a novel control method against BLV infection. Further studies using a larger number of animals are required to support the efficacy of this treatment for clinical application.


Asunto(s)
Anticuerpos/farmacología , Antígeno B7-H1/inmunología , Inhibidores de la Ciclooxigenasa 2/farmacología , Dinoprostona/farmacología , Leucosis Bovina Enzoótica/tratamiento farmacológico , Inmunidad/efectos de los fármacos , Virus de la Leucemia Bovina/efectos de los fármacos , Animales , Antivirales/farmacología , Bovinos , Ciclooxigenasa 2/metabolismo , Leucosis Bovina Enzoótica/inmunología , Leucosis Bovina Enzoótica/virología , Virus de la Leucemia Bovina/inmunología , Provirus/efectos de los fármacos , Provirus/inmunología , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...