Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Trends Neurosci ; 47(5): 326-337, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582659

RESUMEN

The two tests most widely used in nonhuman primates to assess the neurobiology of recognition memory produce conflicting results. Preferential viewing tests (e.g., visual paired comparison) produce robust impairments following hippocampal lesions, whereas matching tests (e.g., delayed nonmatching-to-sample) often show complete sparing. Here, we review the data, the proposed explanations for this discrepancy, and then critically evaluate those explanations. The most likely explanation is that preferential viewing tests are not a process-pure assessment of recognition memory, but also test elements of novelty-seeking, habituation, and motivation. These confounds likely explain the conflicting results. Thus, we propose that memory researchers should prefer explicit matching tests and readers interested in the neural substrates of recognition memory should give explicit matching tests greater interpretive weight.


Asunto(s)
Reconocimiento en Psicología , Animales , Humanos , Hipocampo/fisiología , Pruebas Neuropsicológicas , Reconocimiento en Psicología/fisiología
2.
Hippocampus ; 33(6): 787-807, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36649170

RESUMEN

The hippocampus and perirhinal cortex are both broadly implicated in memory; nevertheless, their relative contributions to visual item recognition and location memory remain disputed. Neuropsychological studies in nonhuman primates that examine memory function after selective damage to medial temporal lobe structures report various levels of memory impairment-ranging from minor deficits to profound amnesia. The discrepancies in published findings have complicated efforts to determine the exact magnitude of visual item recognition and location memory impairments following damage to the hippocampus and/or perirhinal cortex. To provide the most accurate estimate to date of the overall effect size, we use meta-analytic techniques on data aggregated from 26 publications that assessed visual item recognition and/or location memory in nonhuman primates with and without selective neurotoxic lesions of the hippocampus or perirhinal cortex. We estimated the overall effect size, evaluated the relation between lesion extent and effect size, and investigated factors that may account for between-study variation. Grouping studies by lesion target and testing method, separate meta-analyses were conducted. One meta-analysis indicated that impairments on tests of visual item recognition were larger after lesions of perirhinal cortex than after lesions of the hippocampus. A separate meta-analysis showed that performance on tests of location memory was severely impaired by lesions of the hippocampus. For the most part, meta-regressions indicated that greater impairment corresponds with greater lesion extent; paradoxically, however, more extensive hippocampal lesions predicted smaller impairments on tests of visual item recognition. We conclude the perirhinal cortex makes a larger contribution than the hippocampus to visual item recognition, and the hippocampus predominately contributes to spatial navigation.


Asunto(s)
Hipocampo , Lóbulo Temporal , Animales , Hipocampo/patología , Reconocimiento en Psicología , Amnesia , Trastornos de la Memoria/patología , Primates
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA