Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 17: 1291446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928731

RESUMEN

Increasing evidence reinforces the essential function of RNA modifications in development and diseases, especially in the nervous system. RNA modifications impact various processes in the brain, including neurodevelopment, neurogenesis, neuroplasticity, learning and memory, neural regeneration, neurodegeneration, and brain tumorigenesis, leading to the emergence of a new field termed neuroepitranscriptomics. Deficiency in machineries modulating RNA modifications has been implicated in a range of brain disorders from microcephaly, intellectual disability, seizures, and psychiatric disorders to brain cancers such as glioblastoma. The inaugural NSAS Challenge Workshop on Brain Epitranscriptomics hosted in Crans-Montana, Switzerland in 2023 assembled a group of experts from the field, to discuss the current state of the field and provide novel translational perspectives. A summary of the discussions at the workshop is presented here to simulate broader engagement from the general neuroscience field.

2.
Mol Psychiatry ; 28(4): 1440-1450, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36922674

RESUMEN

Effective axonal regeneration in the adult mammalian nervous system requires coordination of elevated intrinsic growth capacity and decreased responses to the inhibitory environment. Intrinsic regenerative capacity largely depends on the gene regulatory network and protein translation machinery. A failure to activate these pathways upon injury is underlying a lack of robust axon regeneration in the mature mammalian central nervous system. Epigenetics and epitranscriptomics are key regulatory mechanisms that shape gene expression and protein translation. Here, we provide an overview of different types of modifications on DNA, histones, and RNA, underpinning the regenerative competence of axons in the mature mammalian peripheral and central nervous systems. We highlight other non-neuronal cells and their epigenetic changes in determining the microenvironment for tissue repair and axon regeneration. We also address advancements of single-cell technology in charting transcriptomic and epigenetic landscapes that may further facilitate the mechanistic understanding of differential regenerative capacity in neuronal subtypes. Finally, as epigenetic and epitranscriptomic processes are commonly affected by brain injuries and psychiatric disorders, understanding their alterations upon brain injury would provide unprecedented mechanistic insights into etiology of injury-associated-psychiatric disorders and facilitate the development of therapeutic interventions to restore brain function.


Asunto(s)
Axones , Lesiones Encefálicas , Animales , Humanos , Axones/metabolismo , Regeneración Nerviosa/genética , Sistema Nervioso Central , Neuronas , Lesiones Encefálicas/metabolismo , Epigénesis Genética/genética , Mamíferos
3.
iScience ; 26(3): 106250, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36922995

RESUMEN

RNA-binding proteins (RBPs) have critical roles in N6-methyladenosine (m6A) modification process. We designed a Random Forest (RF) model to systematically analyze the interaction among RBPs and m6A modifications by integrating the binding signals from hundreds of RBPs. Accurate prediction of m6A sites demonstrated significant connections between RBP bindings and m6A modifications. The relative importance of different RBPs from the model provided a quantitative metric to evaluate their interactions with m6A modifications. Redundancy analysis showed that several RBPs may have similar binding patterns with m6A sites. The RF model exhibited fairly high prediction accuracy across cell lines, suggesting a conservative RBP interaction network regulates m6A occupancy. Specific RBPs can engage to the corresponding regional m6A sites and deploy distinct regulatory processes, such as cleavage site selection of the alternative polyadenylation (APA). We also integrated histone modifications into our RF model, which demonstrated H3K36me3 and H3K27me3 as determining features for m6A distribution.

4.
Immunol Cell Biol ; 100(9): 718-730, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36005900

RESUMEN

Alloreactive CD4+ T cells play a central role in allograft rejection. However, the post-transcriptional regulation of the effector program in alloreactive CD4+ T cells remains unclear. N6 -methyladenosine (m6 A) RNA modification is involved in various physiological and pathological processes. Herein, we investigated whether m6 A methylation plays a role in the allogeneic T-cell effector program. m6 A levels of CD4+ T cells from spleens, draining lymph nodes and skin allografts were determined in a skin transplantation model. The effects of a METTL3 inhibitor (STM2457) on CD4+ T-cell characteristics including proliferation, cell cycle, cell apoptosis and effector differentiation were determined after stimulation of polyclonal and alloantigen-specific (TEa; CD4+ T cells specific for I-Eα52-68 ) CD4+ T cells with α-CD3/α-CD28 monoclonal antibodies and cognate CB6F1 alloantigen, respectively. We found that graft-infiltrating CD4+ T cells expressed high m6 A levels. Administration of STM2457 reduced m6 A levels, inhibited T-cell proliferation and suppressed effector differentiation of polyclonal CD4+ T cells. Alloreactive TEa cells challenged with 40 µm STM2457 exhibited deficits in T-cell proliferation and T helper type 1 cell differentiation, a cell cycle arrest in the G0 phase and elevated cell apoptosis. Moreover, these impaired T-cell responses were associated with the diminished expression levels of transcription factors Ki-67, c-Myc and T-bet. Therefore, METTL3 inhibition reduces the expression of several key transcriptional factors for the T-cell effector program and suppresses alloreactive CD4+ T-cell effector function and differentiation. Targeting m6 A-related enzymes and molecular machinery in CD4+ T cells represents an attractive therapeutic approach to prevent allograft rejection.


Asunto(s)
Adenosina/análogos & derivados , Linfocitos T CD4-Positivos , Trasplante de Células Madre Hematopoyéticas , Metiltransferasas , Adenosina/análisis , Animales , Anticuerpos Monoclonales/metabolismo , Antígenos CD28/metabolismo , Linfocitos T CD8-positivos , Rechazo de Injerto , Isoantígenos , Antígeno Ki-67 , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN/metabolismo , Factores de Transcripción/metabolismo
5.
Front Immunol ; 13: 882721, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35514970

RESUMEN

Allogeneic CD8+ T cells are prominently involved in allograft rejection, but how their effector differentiation and function are regulated at a transcriptional level is not fully understood. Herein, we identified the basic leucine zipper ATF-like transcription factor (BATF) as a key transcription factor that drives the effector program of allogeneic CD8+ T cells. We found that BATF is highly expressed in graft-infiltrating CD8+ T cells, and its ablation in CD8+ T cells significantly prolonged skin allograft survival in a fully MHC-mismatched transplantation model. To investigate how BATF dictates allogeneic CD8+ T cell response, BATF-/- and wild-type (WT) CD8+ T cells were mixed in a 1:1 ratio and adoptively transferred into B6.Rag1-/- mice 1 day prior to skin transplantation. Compared with WT CD8+ T cells at the peak of rejection response, BATF-/- CD8+ T cells displayed a dysfunctional phenotype, evident by their failure to differentiate into CD127-KLRG1+ terminal effectors, impaired proliferative capacity and production of pro-inflammatory cytokines/cytotoxic molecules, and diminished capacity to infiltrate allografts. In association with the failure of effector differentiation, BATF-/- CD8+ T cells largely retained TCF1 expression and expressed significantly low levels of T-bet, TOX, and Ki67. At the memory phase, BATF-deficient CD8+ T cells displayed impaired effector differentiation upon allogeneic antigen re-stimulation. Therefore, BATF is a critical transcriptional determinant that governs the terminal differentiation and memory responses of allogeneic CD8+ T cells in the transplantation setting. Targeting BATF in CD8+ T cells may be an attractive therapeutic approach to promote transplant acceptance.


Asunto(s)
Linfocitos T CD8-positivos , Rechazo de Injerto , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ratones , Ratones Noqueados , Factores de Transcripción
6.
Ann Clin Transl Neurol ; 8(11): 2211-2221, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34647437

RESUMEN

Intracerebral hemorrhage (ICH) remains a common and debilitating form of stroke. This neurological emergency must be diagnosed and treated rapidly yet effectively. In this article, we review the medical, surgical, repair, and regenerative treatment options for managing ICH. Topics of focus include the management of blood pressure, intracranial pressure, coagulopathy, and intraventricular hemorrhage, as well as the role of surgery, regeneration, rehabilitation, and secondary prevention. Results of various phase II and III trials are incorporated. In summary, ICH patients should undergo rapid evaluation with neuroimaging, and early interventions should include systolic blood pressure control in the range of 140 mmHg, correction of coagulopathy if indicated, and assessment for surgical intervention. ICH patients should be managed in dedicated neurosurgical intensive care or stroke units where continuous monitoring of neurological status and evaluation for neurological deterioration is rapidly possible. Extravasation of hematoma may be helpful in patients with intraventricular extension of ICH. The goal of care is to reduce mortality and enable multimodal rehabilitative therapy.


Asunto(s)
Hemorragia Cerebral/terapia , Fármacos Hematológicos , Rehabilitación Neurológica , Procedimientos Neuroquirúrgicos , Prevención Secundaria , Trasplante de Células Madre , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/cirugía , Humanos
7.
Int J Cancer ; 147(9): 2621-2633, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32406930

RESUMEN

EGFR is an oncogene with a high frequency of activating mutations in nonsmall cell lung cancer (NSCLC). EGFR inhibitors have been FDA-approved for NSCLC and have shown efficacy in patients with certain EGFR mutations. However, only 9% to 26% of these patients achieve objective responses. In our study, we developed an EGFR gene signature based on The Cancer Genome Atlas (TCGA) RNA-seq data of lung adenocarcinoma (LUAD) to direct the preselection of patients for more effective EGFR-targeted therapy. This signature infers baseline EGFR signaling pathway activity (denoted as EGFR score) in tumor samples, which is associated with tumor sensitivity to EGFR inhibitors and other tyrosine kinase inhibitors (TKIs). EGFR score predicted sensitivity of lung cancer cell lines to Erlotinib, Gefitinib and Sorafenib. Importantly, EGFR score calculated from pretreated samples was associated with patient response to Gefitinib and Sorafenib in lung cancer. Additionally, integration of the EGFR signature with TCGA LUAD data showed that it accurately predicted functional effects of different somatic EGFR mutations, and identified other mutations affecting EGFR pathway activity. Finally, using cancer cell line and clinical trial data, the EGFR score was associated with patient response to TKIs in liver cancer and other cancer types. The EGFR signature provides a useful biomarker that can expand the application of EGFR inhibitors or other TKIs and improve their treatment efficacy through patient stratification.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Resistencia a Antineoplásicos/genética , Neoplasias Hepáticas/terapia , Neoplasias Pulmonares/terapia , Inhibidores de Proteínas Quinasas/farmacología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Quimioterapia Adyuvante/métodos , Conjuntos de Datos como Asunto , Receptores ErbB/genética , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Humanos , Concentración 50 Inhibidora , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Modelos Logísticos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Modelos Genéticos , Terapia Molecular Dirigida/métodos , Mutación , Valor Predictivo de las Pruebas , Pronóstico , Supervivencia sin Progresión , Inhibidores de Proteínas Quinasas/uso terapéutico , RNA-Seq , Transducción de Señal/genética , Sorafenib/farmacología , Sorafenib/uso terapéutico , Transcriptoma/genética
8.
Cell Rep ; 31(3): 107537, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32320663

RESUMEN

In addition to altered gene expression, pathological cytoskeletal dynamics in the axon are another key intrinsic barrier for axon regeneration in the central nervous system (CNS). Here, we show that knocking out myosin IIA and IIB (myosin IIA/B) in retinal ganglion cells alone, either before or after optic nerve crush, induces significant optic nerve regeneration. Combined Lin28a overexpression and myosin IIA/B knockout lead to an additive promoting effect and long-distance axon regeneration. Immunostaining, RNA sequencing, and western blot analyses reveal that myosin II deletion does not affect known axon regeneration signaling pathways or the expression of regeneration-associated genes. Instead, it abolishes the retraction bulb formation and significantly enhances the axon extension efficiency. The study provides clear evidence that directly targeting neuronal cytoskeleton is sufficient to induce significant CNS axon regeneration and that combining altered gene expression in the soma and modified cytoskeletal dynamics in the axon is a promising approach for long-distance CNS axon regeneration.


Asunto(s)
Nervio Óptico/crecimiento & desarrollo , Animales , Modelos Animales de Enfermedad , Miosinas , Regeneración Nerviosa , Células Ganglionares de la Retina/metabolismo
9.
Neuron ; 105(2): 293-309.e5, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31901304

RESUMEN

The molecular mechanisms that govern the maturation of oligodendrocyte lineage cells remain unclear. Emerging studies have shown that N6-methyladenosine (m6A), the most common internal RNA modification of mammalian mRNA, plays a critical role in various developmental processes. Here, we demonstrate that oligodendrocyte lineage progression is accompanied by dynamic changes in m6A modification on numerous transcripts. In vivo conditional inactivation of an essential m6A writer component, METTL14, results in decreased oligodendrocyte numbers and CNS hypomyelination, although oligodendrocyte precursor cell (OPC) numbers are normal. In vitro Mettl14 ablation disrupts postmitotic oligodendrocyte maturation and has distinct effects on OPC and oligodendrocyte transcriptomes. Moreover, the loss of Mettl14 in oligodendrocyte lineage cells causes aberrant splicing of myriad RNA transcripts, including those that encode the essential paranodal component neurofascin 155 (NF155). Together, our findings indicate that dynamic RNA methylation plays an important regulatory role in oligodendrocyte development and CNS myelination.


Asunto(s)
Adenosina/análogos & derivados , Diferenciación Celular/fisiología , Metiltransferasas/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , ARN Mensajero/metabolismo , Adenosina/metabolismo , Animales , Moléculas de Adhesión Celular/metabolismo , Recuento de Células , Linaje de la Célula , Células Cultivadas , Femenino , Masculino , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Transgénicos , Factores de Crecimiento Nervioso/metabolismo , Células Precursoras de Oligodendrocitos/fisiología
10.
Nature ; 563(7730): 249-253, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30401835

RESUMEN

N6-methyladenosine (m6A), the most prevalent internal RNA modification on mammalian messenger RNAs, regulates the fates and functions of modified transcripts through m6A-specific binding proteins1-5. In the nervous system, m6A is abundant and modulates various neural functions6-11. Whereas m6A marks groups of mRNAs for coordinated degradation in various physiological processes12-15, the relevance of m6A for mRNA translation in vivo remains largely unknown. Here we show that, through its binding protein YTHDF1, m6A promotes protein translation of target transcripts in response to neuronal stimuli in the adult mouse hippocampus, thereby facilitating learning and memory. Mice with genetic deletion of Ythdf1 show learning and memory defects as well as impaired hippocampal synaptic transmission and long-term potentiation. Re-expression of YTHDF1 in the hippocampus of adult Ythdf1-knockout mice rescues the behavioural and synaptic defects, whereas hippocampus-specific acute knockdown of Ythdf1 or Mettl3, which encodes the catalytic component of the m6A methyltransferase complex, recapitulates the hippocampal deficiency. Transcriptome-wide mapping of YTHDF1-binding sites and m6A sites on hippocampal mRNAs identified key neuronal genes. Nascent protein labelling and tether reporter assays in hippocampal neurons showed that YTHDF1 enhances protein synthesis in a neuronal-stimulus-dependent manner. In summary, YTHDF1 facilitates translation of m6A-methylated neuronal mRNAs in response to neuronal stimulation, and this process contributes to learning and memory.


Asunto(s)
Adenina/análogos & derivados , Hipocampo/citología , Hipocampo/fisiología , Memoria/fisiología , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenina/metabolismo , Animales , Sitios de Unión , Femenino , Masculino , Metiltransferasas/deficiencia , Metiltransferasas/genética , Metiltransferasas/metabolismo , Ratones , Ratones Noqueados , Plasticidad Neuronal , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Aprendizaje Espacial/fisiología , Transmisión Sináptica
11.
Neuron ; 97(2): 313-325.e6, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29346752

RESUMEN

N6-methyladenosine (m6A) affects multiple aspects of mRNA metabolism and regulates developmental transitions by promoting mRNA decay. Little is known about the role of m6A in the adult mammalian nervous system. Here we report that sciatic nerve lesion elevates levels of m6A-tagged transcripts encoding many regeneration-associated genes and protein translation machinery components in the adult mouse dorsal root ganglion (DRG). Single-base resolution m6A-CLIP mapping further reveals a dynamic m6A landscape in the adult DRG upon injury. Loss of either m6A methyltransferase complex component Mettl14 or m6A-binding protein Ythdf1 globally attenuates injury-induced protein translation in adult DRGs and reduces functional axon regeneration in the peripheral nervous system in vivo. Furthermore, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult central nervous system is attenuated upon Mettl14 knockdown. Our study reveals a critical epitranscriptomic mechanism in promoting injury-induced protein synthesis and axon regeneration in the adult mammalian nervous system.


Asunto(s)
Adenosina/fisiología , Axones/fisiología , Epigénesis Genética/genética , Metiltransferasas/fisiología , Regeneración Nerviosa/genética , Proteínas del Tejido Nervioso/fisiología , Procesamiento Postranscripcional del ARN , Transcripción Genética , Adenosina/análogos & derivados , Animales , Ganglios Espinales/metabolismo , Ontología de Genes , Metiltransferasas/deficiencia , Ratones Noqueados , Compresión Nerviosa , Fosfohidrolasa PTEN/fisiología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/fisiología , Nervio Ciático/lesiones , Neuropatía Ciática/genética , Neuropatía Ciática/fisiopatología , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura
12.
Neuron ; 94(2): 337-346.e6, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28426967

RESUMEN

Mature neurons in the adult peripheral nervous system can effectively switch from a dormant state with little axonal growth to robust axon regeneration upon injury. The mechanisms by which injury unlocks mature neurons' intrinsic axonal growth competence are not well understood. Here, we show that peripheral sciatic nerve lesion in adult mice leads to elevated levels of Tet3 and 5-hydroxylmethylcytosine in dorsal root ganglion (DRG) neurons. Functionally, Tet3 is required for robust axon regeneration of DRG neurons and behavioral recovery. Mechanistically, peripheral nerve injury induces DNA demethylation and upregulation of multiple regeneration-associated genes in a Tet3- and thymine DNA glycosylase-dependent fashion in DRG neurons. In addition, Pten deletion-induced axon regeneration of retinal ganglion neurons in the adult CNS is attenuated upon Tet1 knockdown. Together, our study suggests an epigenetic barrier that can be removed by active DNA demethylation to permit axon regeneration in the adult mammalian nervous system.


Asunto(s)
Axones/metabolismo , Epigénesis Genética , Ganglios Espinales/citología , Regeneración Nerviosa/efectos de los fármacos , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/patología , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/farmacología , Animales , Epigénesis Genética/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ratones Endogámicos C57BL , Traumatismos de los Nervios Periféricos/tratamiento farmacológico
13.
Epigenomics ; 8(10): 1429-1442, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27642866

RESUMEN

The intrinsic growth capacity of neurons in the CNS declines during neuronal maturation, while neurons in the adult PNS are capable of regeneration. Injured mature PNS neurons require activation of an array of regeneration-associated genes to regain axonal growth competence. Accumulating evidence indicates a pivotal role of epigenetic mechanisms in transcriptional reprogramming and regulation of neuronal growth ability upon injury. In this review, we summarize the latest findings implicating epigenetic mechanisms, including histone and DNA modifications, in axon regeneration and discuss differential epigenomic configurations between neurons in the adult mammalian CNS and PNS.


Asunto(s)
Axones/fisiología , Epigénesis Genética , Regeneración Nerviosa/genética , Animales , ADN/metabolismo , Código de Histonas , Humanos , MicroARNs/genética
14.
Nat Neurosci ; 18(6): 836-43, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915473

RESUMEN

Contrary to the long-held belief that DNA methylation of terminally differentiated cells is permanent and essentially immutable, post-mitotic neurons exhibit extensive DNA demethylation. The cellular function of active DNA demethylation in neurons, however, remains largely unknown. Tet family proteins oxidize 5-methylcytosine to initiate active DNA demethylation through the base-excision repair (BER) pathway. We found that synaptic activity bi-directionally regulates neuronal Tet3 expression. Functionally, knockdown of Tet or inhibition of BER in hippocampal neurons elevated excitatory glutamatergic synaptic transmission, whereas overexpressing Tet3 or Tet1 catalytic domain decreased it. Furthermore, dysregulation of Tet3 signaling prevented homeostatic synaptic plasticity. Mechanistically, Tet3 dictated neuronal surface GluR1 levels. RNA-seq analyses further revealed a pivotal role of Tet3 in regulating gene expression in response to global synaptic activity changes. Thus, Tet3 serves as a synaptic activity sensor to epigenetically regulate fundamental properties and meta-plasticity of neurons via active DNA demethylation.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/fisiología , ADN/metabolismo , Homeostasis/fisiología , Proteínas Proto-Oncogénicas/fisiología , Transmisión Sináptica/fisiología , Animales , Metilación de ADN , Proteínas de Unión al ADN/genética , Dioxigenasas , Técnicas de Silenciamiento del Gen , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Oxidación-Reducción , Proteínas Proto-Oncogénicas/genética , Receptores AMPA/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
Nature ; 518(7539): 404-8, 2015 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-25470046

RESUMEN

Contusive spinal cord injury leads to a variety of disabilities owing to limited neuronal regeneration and functional plasticity. It is well established that an upregulation of glial-derived chondroitin sulphate proteoglycans (CSPGs) within the glial scar and perineuronal net creates a barrier to axonal regrowth and sprouting. Protein tyrosine phosphatase σ (PTPσ), along with its sister phosphatase leukocyte common antigen-related (LAR) and the nogo receptors 1 and 3 (NgR), have recently been identified as receptors for the inhibitory glycosylated side chains of CSPGs. Here we find in rats that PTPσ has a critical role in converting growth cones into a dystrophic state by tightly stabilizing them within CSPG-rich substrates. We generated a membrane-permeable peptide mimetic of the PTPσ wedge domain that binds to PTPσ and relieves CSPG-mediated inhibition. Systemic delivery of this peptide over weeks restored substantial serotonergic innervation to the spinal cord below the level of injury and facilitated functional recovery of both locomotor and urinary systems. Our results add a new layer of understanding to the critical role of PTPσ in mediating the growth-inhibited state of neurons due to CSPGs within the injured adult spinal cord.


Asunto(s)
Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Regeneración Nerviosa , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Secuencia de Aminoácidos , Animales , Matriz Extracelular/química , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Femenino , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/fisiología , Humanos , Ratones , Datos de Secuencia Molecular , Regeneración Nerviosa/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/química , Traumatismos de la Médula Espinal/patología
16.
Neurotherapeutics ; 10(4): 556-67, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24150811

RESUMEN

Mounting evidence has recently underscored the importance of DNA methylation in normal brain functions. DNA methylation machineries are responsible for dynamic regulation of methylation patterns in discrete brain regions. In addition to methylation of cytosines in genomic DNA (5-methylcytosine; 5mC), other forms of modified cytosines, such as 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, can potentially act as epigenetic marks that regulate gene expression. Importantly, epigenetic modifications require cognate binding proteins to read and translate information into gene expression regulation. Abnormal or incorrect interpretation of DNA methylation patterns can cause devastating consequences, including mental illnesses and neurological disorders. Although DNA methylation was generally considered to be a stable epigenetic mark in post-mitotic cells, recent studies have revealed dynamic DNA modifications in neurons. Such reversibility of 5mC sheds light on potential mechanisms underlying some neurological disorders and suggests a new route to correct aberrant methylation patterns associated with these disorders.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN , Enfermedades del Sistema Nervioso/genética , Neuronas/metabolismo , 5-Metilcitosina/análogos & derivados , Citosina/análogos & derivados , Citosina/metabolismo , Epigénesis Genética , Regulación de la Expresión Génica , Humanos , Enfermedades del Sistema Nervioso/metabolismo
17.
J Neurosci ; 31(12): 4421-33, 2011 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-21430143

RESUMEN

The multiprotein complexes that receive and transmit axon pathfinding cues during development are essential to circuit generation. Here, we identify and characterize the Drosophila sterile α-motif (SAM) domain-containing protein Caskin, which shares homology with vertebrate Caskin, a CASK [calcium/calmodulin-(CaM)-activated serine-threonine kinase]-interacting protein. Drosophila caskin (ckn) is necessary for embryonic motor axon pathfinding and interacts genetically and physically with the leukocyte common antigen-related (Lar) receptor protein tyrosine phosphatase. In vivo and in vitro analyses of a panel of ckn loss-of-function alleles indicate that the N-terminal SAM domain of Ckn mediates its interaction with Lar. Like Caskin, Liprin-α is a neuronal adaptor protein that interacts with Lar via a SAM domain-mediated interaction. We present evidence that Lar does not bind Caskin and Liprin-α concurrently, suggesting they may assemble functionally distinct signaling complexes on Lar. Furthermore, a vertebrate Caskin homolog interacts with LAR family members, arguing that the role of ckn in Lar signal transduction is evolutionarily conserved. Last, we characterize several ckn mutants that retain Lar binding yet display guidance defects, implying the existence of additional Ckn binding partners. Indeed, we identify the SH2/SH3 adaptor protein Dock as a second Caskin-binding protein and find that Caskin binds Lar and Dock through distinct domains. Furthermore, whereas ckn has a nonredundant function in Lar-dependent signaling during motor axon targeting, ckn and dock have overlapping roles in axon outgrowth in the CNS. Together, these studies identify caskin as a neuronal adaptor protein required for axon growth and guidance.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Axones/fisiología , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Proteínas Tirosina Fosfatasas Similares a Receptores/fisiología , Transducción de Señal/fisiología , Alelos , Animales , Animales Modificados Genéticamente , ADN Complementario/genética , Drosophila , Vías Eferentes/citología , Vías Eferentes/fisiología , Metanosulfonato de Etilo/farmacología , Glutatión Transferasa/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Mutagénesis , Mutágenos/farmacología , Mutación/genética , Mutación/fisiología , Plásmidos/genética , Unión Proteica , ARN/biosíntesis , ARN/genética , Proteínas Tirosina Fosfatasas Similares a Receptores/genética , Transfección
18.
J Cell Sci ; 123(Pt 21): 3745-55, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20940261

RESUMEN

Through analysis of a chemotaxis mutant obtained from a genetic screen in Dictyostelium discoideum, we have identified a new gene involved in regulating cell migration and have named it costars (cosA). The 82 amino acid Costars protein sequence appears highly conserved among diverse species, and significantly resembles the C-terminal region of the striated muscle activator of Rho signaling (STARS), a mammalian protein that regulates the serum response factor transcriptional activity through actin binding and Rho GTPase activation. The cosA-null (cosA(-)) cells formed smooth plaques on bacterial lawns, produced abnormally small fruiting bodies when developed on the non-nutrient agar and displayed reduced migration towards the cAMP source in chemotactic assays. Analysis of cell motion in cAMP gradients revealed decreased speed but wild-type-like directional persistence of cosA(-) cells, suggesting a defect in the cellular machinery for motility rather than for chemotactic orientation. Consistent with this notion, cosA(-) cells exhibited changes in the actin cytoskeleton, showing aberrant distribution of F-actin in fluorescence cell staining and an increased amount of cytoskeleton-associated actin. Excessive pseudopod formation was also noted in cosA(-) cells facing chemoattractant gradients. Expressing cosA or its human counterpart mCostars eliminated abnormalities of cosA(-) cells. Together, our results highlight a role for Costars in modulating actin dynamics and cell motility.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Citoesqueleto/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Protozoarias/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Movimiento Celular/genética , Secuencia Conservada/genética , Dictyostelium , Evolución Molecular , Pruebas Genéticas , Humanos , Proteínas de Microfilamentos/genética , Datos de Secuencia Molecular , Mutación/genética , Estructura Terciaria de Proteína/genética , Proteínas Protozoarias/genética , Homología de Secuencia de Aminoácido , Factores de Transcripción/genética
19.
Biochem Biophys Res Commun ; 360(1): 83-9, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17588537

RESUMEN

LARGE is a putative glycosyltransferase found to be mutated in mice with myodystrophy or patients with congenital muscular dystrophy. By homology searches, we identified in the Dictyostelium discoideum genome four open reading frames, i.e. gnt12-15, encoding proteins with sequence similarity to LARGE. Semi-quantitative RT-PCR analysis revealed distinct temporal expression patterns of the four gnt genes throughout Dictyostelium development. To explore the gene function, we performed targeted disruptions of gnt14 and gnt15. The gnt14(-) strains showed no obvious phenotypes. However, gnt15(-) cells grew slowly, changed in morphology, and displayed a developmental phenotype arresting at early stages. Compared with the wild type, gnt15(-) cells were more adhesive and exhibited altered levels of some surface adhesion molecules. Moreover, lectin-binding analysis demonstrated that gnt15 disruption affected profiles of membrane glycoproteins. Taken together, our data suggest that Gnt15 is essential for Dictyostelium development and may have a role in modulating cell adhesion and glycosylation.


Asunto(s)
Tipificación del Cuerpo/genética , Dictyostelium/crecimiento & desarrollo , Dictyostelium/genética , Regulación del Desarrollo de la Expresión Génica/genética , N-Acetilglucosaminiltransferasas/genética , Animales , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...