Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 12: 709772, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484210

RESUMEN

Ebola virus remains a significant public health concern due to high morbidity and mortality rates during recurrent outbreaks in endemic areas. Therefore, the development of countermeasures against Ebola virus remains a high priority, and requires the availability of appropriate animal models for efficacy evaluations. The most commonly used nonhuman primate models for efficacy evaluations against Ebola virus utilize the intramuscular or aerosol route of exposure. Although clinical disease signs are similar to human cases, disease progression in these models is much more rapid, and this can pose significant hurdles for countermeasure evaluations. The objective of the present study was to evaluate the Ebola virus disease course that arises after cynomolgus macaques are exposed to Ebola virus by a mucosal route (the intranasal route). Two different doses (10 pfu and 100 pfu) and delivery methodologies (drop-wise and mucosal atomization device) were evaluated on this study. Differences in clinical disease between dose and delivery groups were not noted. However, a delayed disease course was identified for approximately half of the animals on study, and this delayed disease was dose and administration method independent. Therefore, it appears that mucosal exposure with Ebola virus results in a disease course in cynomolgus macaques that more accurately replicates that which is documented for human cases. In summary, the data presented support the need for further development of this model as a possible alternative to parenteral and small-particle aerosol models for the study of human Ebola virus disease and for countermeasure evaluations.


Asunto(s)
Modelos Animales de Enfermedad , Fiebre Hemorrágica Ebola/etiología , Administración Intranasal , Amilasas/metabolismo , Animales , Progresión de la Enfermedad , Femenino , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Macaca fascicularis , Masculino , ARN Viral/sangre
2.
Nature ; 531(7594): 381-5, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26934220

RESUMEN

The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.


Asunto(s)
Alanina/análogos & derivados , Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Macaca mulatta/virología , Ribonucleótidos/uso terapéutico , Adenosina Monofosfato/análogos & derivados , Alanina/farmacocinética , Alanina/farmacología , Alanina/uso terapéutico , Secuencia de Aminoácidos , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Línea Celular Tumoral , Ebolavirus/efectos de los fármacos , Femenino , Células HeLa , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Masculino , Datos de Secuencia Molecular , Especificidad de Órganos , Profármacos/farmacocinética , Profármacos/farmacología , Profármacos/uso terapéutico , Ribonucleótidos/farmacocinética , Ribonucleótidos/farmacología
3.
Artículo en Inglés | MEDLINE | ID: mdl-26955620

RESUMEN

Burkholderia mallei (Bm) is a highly infectious intracellular pathogen classified as a category B biological agent by the Centers for Disease Control and Prevention. After respiratory exposure, Bm establishes itself within host macrophages before spreading into major organ systems, which can lead to chronic infection, sepsis, and death. Previously, we combined computational prediction of host-pathogen interactions with yeast two-hybrid experiments and identified novel virulence factor genes in Bm, including BMAA0553, BMAA0728 (tssN), and BMAA1865. In the present study, we used recombinant allelic exchange to construct deletion mutants of BMAA0553 and tssN (ΔBMAA0553 and ΔTssN, respectively) and showed that both deletions completely abrogated virulence at doses of >100 times the LD50 of the wild-type Bm strain. Analysis of ΔBMAA0553- and ΔTssN-infected mice showed starkly reduced bacterial dissemination relative to wild-type Bm, and subsequent in vitro experiments characterized pathogenic phenotypes with respect to intracellular growth, macrophage uptake and phagosomal escape, actin-based motility, and multinucleated giant cell formation. Based on observed in vitro and in vivo phenotypes, we explored the use of ΔTssN as a candidate live-attenuated vaccine. Mice immunized with aerosolized ΔTssN showed a 21-day survival rate of 67% after a high-dose aerosol challenge with the wild-type Bm ATCC 23344 strain, compared to a 0% survival rate for unvaccinated mice. However, analysis of histopathology and bacterial burden showed that while the surviving vaccinated mice were protected from acute infection, Bm was still able to establish a chronic infection. Vaccinated mice showed a modest IgG response, suggesting a limited potential of ΔTssN as a vaccine candidate, but also showed prolonged elevation of pro-inflammatory cytokines, underscoring the role of cellular and innate immunity in mitigating acute infection in inhalational glanders.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Vacunas Bacterianas/inmunología , Burkholderia mallei/inmunología , Burkholderia mallei/patogenicidad , Muermo/inmunología , Inmunoglobulina G/inmunología , Administración por Inhalación , Aerosoles , Animales , Burkholderia mallei/genética , Citocinas/metabolismo , Femenino , Eliminación de Gen , Muermo/microbiología , Interacciones Huésped-Patógeno , Macrófagos/inmunología , Ratones , Ratones Endogámicos BALB C , Vacunación , Vacunas Atenuadas/inmunología , Virulencia/genética
4.
Virol J ; 6: 170, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19852817

RESUMEN

Mice and guinea pigs were experimentally exposed to aerosols containing regionally-distinct strains (NJ1959 or ArgM) of eastern equine encephalitis virus (EEEV) at two exclusive particle size distributions. Mice were more susceptible to either strain of aerosolized EEEV than were guinea pigs; however, clinical signs indicating encephalitis were more readily observed in the guinea pigs. Lower lethality was observed in both species when EEEV was presented at the larger aerosol distribution (> 6 mum), although the differences in the median lethal dose (LD50) were not significant. Virus isolation and immunohistochemistry indicated that virus invaded the brains of guinea pigs within one day postexposure, regardless of viral strain or particle size distribution. Immunohistochemistry further demonstrated that neuroinvasion occurred through the olfactory system, followed by transneuronal spread to all regions of the brain. Olfactory bipolar neurons and neurons throughout the brain were the key viral targets. The main microscopic lesions in infected guinea pigs were neuronal necrosis, inflammation of the meninges and neuropil of the brain, and vasculitis in the brain. These results indicate that guinea pigs experimentally infected by aerosolized EEEV recapitulate several key features of fatal human infection and thus should serve as a suitable animal model for aerosol exposure to EEEV.


Asunto(s)
Aerosoles , Virus de la Encefalitis Equina del Este/patogenicidad , Encefalomielitis Equina/patología , Encefalomielitis Equina/virología , Animales , Encéfalo/patología , Encéfalo/virología , Modelos Animales de Enfermedad , Encefalomielitis Equina/fisiopatología , Femenino , Cobayas , Humanos , Inmunohistoquímica , Dosificación Letal Mediana , Masculino , Ratones , Ratones Endogámicos BALB C , Vías Olfatorias/patología , Vías Olfatorias/virología , Análisis de Supervivencia
5.
Am J Vet Res ; 65(5): 644-52, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15141886

RESUMEN

OBJECTIVE: To develop an aerosol exposure method for induction of brucellosis in rhesus macaques (Macaca mulatta). ANIMALS: 10 adult rhesus macaques. PROCEDURE: 8 rhesus macaques were challenge exposed with 10(2) to 10(5) colony-forming units of Brucella melitensis 16M by use of an aerosol-exposure technique, and 2 served as control animals. All macaques were euthanatized 63 days after challenge exposure. Gross and microscopic lesions, bacterial burden in target organs, and histologic changes in tissues were evaluated. RESULTS: Grossly, spleen weights were increased in exposed macaques, compared with spleen weights in control macaques. Histologically, there was inflammation in the liver, kidneys, spleen, testes, and epididymides in exposed macaques. The spleen and lymph nodes had increased numbers of lymphohistiocytic cells. Morphometrically, the spleen also had an increased ratio of white pulp to red pulp. Areas of hepatitis and amount of splenic white pulp increased with increasing exposure dose. CONCLUSIONS AND CLINICAL RELEVANCE: Pathologic findings in rhesus macaques after aerosol exposure to B melitensis are similar to those observed in humans with brucellosis. IMPACT FOR HUMAN MEDICINE: These results may aid in the development of a vaccine against brucellosis that can be used in humans.


Asunto(s)
Brucella melitensis , Brucelosis/veterinaria , Inflamación/veterinaria , Macaca mulatta , Enfermedades de los Monos/patología , Aerosoles , Animales , Sangre/microbiología , Pesos y Medidas Corporales , Brucelosis/patología , Inmunohistoquímica , Inflamación/microbiología , Exposición por Inhalación , Bazo/patología , Vísceras/patología
6.
Mil Med ; 167(2 Suppl): 64-5, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11873520

RESUMEN

We showed previously that treatment of gamma-irradiated female B6D2F1 mice with 5-androstenediol (AED) enhanced survival, stimulated myelopoiesis, and ameliorated radiation-induced decreases in circulating neutrophils and platelets. We have now tested survival in male CD2F1 mice, and we have investigated molecular and functional effects on neutrophils and bone marrow stromal cells and screened for toxicity in female B6D2F1 mice. AED (160 mg/kg, subcutaneously, 24 hours before irradiation) enhanced survival in male CD2F1 mice with a dose-reduction factor of 1.23, similar to the dose-reduction factor of 1.26 found previously for female B6D2F1 mice. Expression of CD11b, a developmental marker, was reduced on circulating neutrophils after either in vivo AED administration or whole-body gamma-irradiation (3 Gy), but neutrophil peroxidase activity was unchanged. Stromal cell progenitors (fibroblastoid colony-forming units) were reduced in marrow 5 days after AED injection in nonirradiated mice. Clinical chemistry, histopathology, and behavioral assays showed no evidence of toxicity. We conclude that AED and related steroids are attractive candidates to explore as countermeasures to high- and low-level ionizing radiation.


Asunto(s)
Androstenodiol/farmacología , Rayos gamma , Protectores contra Radiación/farmacología , Animales , Femenino , Masculino , Ratones
7.
Immunopharmacol Immunotoxicol ; 24(4): 595-626, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12510793

RESUMEN

We previously showed that one subcutaneous (sc) injection of 5-androstene-3beta,17beta-diol (AED) stimulated the innate immune system in mice and prevented mortality due to hemopoietic suppression after whole-body ionizing irradiation with gamma rays. In the present study, we tested whether there was any significant toxicity in mice that might hinder development of this steroid for human use. There were no indications of toxicity in chemical analyses of serum after sc doses as high as 4000 mg/kg. At this dose, 2 of 54 mice died when given AED alone. When 4800 mg/kg was given orally, no deaths resulted. The only adverse findings attributed to AED administration were 1) a moderate elevation of granulocytes in abdominal organs and fat after sc injections of 320 mg/kg; and 2) occasional wasting of skin over the injection site in female B6D2F1 but not male C3H/HeN mice. Significant weight loss (6%) was observed after sc injections of 320 mg/kg but not 160 or 80 mg/kg. When male C3H/HeN mice were injected sc with AED at doses of 0-200 mg/kg 24 h before whole body gamma-irradiation (9 Gy), a significant improvement in survival was observed at doses as low as 5 mg/kg. Oral administration of AED produced significant survival enhancement at a dose of 1600 mg/kg. We conclude that the radioprotective efficacy of AED is accompanied by low toxicity.


Asunto(s)
Androstenodiol/farmacología , Protectores contra Radiación/farmacología , Administración Oral , Fosfatasa Alcalina/sangre , Androstenodiol/administración & dosificación , Androstenodiol/toxicidad , Animales , Bilirrubina/sangre , Peso Corporal/efectos de los fármacos , Femenino , Inyecciones Subcutáneas , Lipasa/sangre , Ratones , Ratones Endogámicos C3H
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...