Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 10(6)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198746

RESUMEN

Carbon monoxide (CO)-releasing molecules (CORMs) are used to deliver CO, a biological 'gasotransmitter', in biological chemistry and biomedicine. CORMs kill bacteria in culture and in animal models, but are reportedly benign towards mammalian cells. CORM-2 (tricarbonyldichlororuthenium(II) dimer, Ru2Cl4(CO)6), the first widely used and commercially available CORM, displays numerous pharmacological, biochemical and microbiological activities, generally attributed to CO release. Here, we investigate the basis of its potent antibacterial activity against Escherichia coli and demonstrate, using three globin CO sensors, that CORM-2 releases negligible CO (<0.1 mol CO per mol CORM-2). A strong negative correlation between viability and cellular ruthenium accumulation implies that ruthenium toxicity underlies biocidal activity. Exogenous amino acids and thiols (especially cysteine, glutathione and N-acetyl cysteine) protected bacteria against inhibition of growth by CORM-2. Bacteria treated with 30 µM CORM-2, with added cysteine and histidine, exhibited no significant loss of viability, but were killed in the absence of these amino acids. Their prevention of toxicity correlates with their CORM-2-binding affinities (Cys, Kd 3 µM; His, Kd 130 µM) as determined by 1H-NMR. Glutathione is proposed to be an important intracellular target of CORM-2, with CORM-2 having a much higher affinity for reduced glutathione (GSH) than oxidised glutathione (GSSG) (GSH, Kd 2 µM; GSSG, Kd 25,000 µM). The toxicity of low, but potent, levels (15 µM) of CORM-2 was accompanied by cell lysis, as judged by the release of cytoplasmic ATP pools. The biological effects of CORM-2 and related CORMs, and the design of biological experiments, must be re-examined in the light of these data.

2.
Int J Biol Macromol ; 164: 3974-3983, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32882279

RESUMEN

Solid-state NMR is a powerful analytical technique to determine the composite structure of Bombyx mori silk fibroin (SF). In our previous paper, we proposed a lamellar structure for Ala-Gly copolypeptides as a model of the crystalline fraction in Silk II. In this paper, the structure and dynamics of the crystalline fraction and of a better mimic of the crystalline fraction, (Ala-Gly-Ser-Gly-Ala-Gly)n (n = 2-5, 8), and 13C selectively labeled [3-13C]Ala-(AGSGAG)5 in Silk II forms, were studied using structural and dynamical analyses of the Ala Cß peaks in 13C cross polarization/ magic angle spinning NMR and 13C solid-state spin-lattice relaxation time (T1) measurements, respectively. Like Ala-Gly copolypeptides, these materials have lamellar structures with two kinds of Ala residues in ß-sheet, A and B, plus one distorted ß-turn, t, formed by repetitive folding using ß-turns every eighth amino acid in an antipolar arrangement. However, because of the presence of Ser residues at every sixth residue in (AGSGAG)n, the T1 values and mobilities of B decreased significantly. We conclude that the Ser hydroxyls hydrogen bond to adjacent lamellar layers and fix them together in a similar way to Velcro®.


Asunto(s)
Bombyx/química , Fibroínas/química , Péptidos/química , Seda/química , Secuencia de Aminoácidos , Animales , Fenómenos Químicos , Enlace de Hidrógeno , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Análisis Espectral
3.
Redox Biol ; 18: 114-123, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30007887

RESUMEN

Carbon monoxide (CO)-releasing molecules (CORMs), mostly metal carbonyl compounds, are extensively used as experimental tools to deliver CO, a biological 'gasotransmitter', in mammalian systems. CORMs are also explored as potential novel antimicrobial drugs, effectively and rapidly killing bacteria in vitro and in animal models, but are reportedly benign towards mammalian cells. Ru-carbonyl CORMs, exemplified by CORM-3 (Ru(CO)3Cl(glycinate)), exhibit the most potent antimicrobial effects against Escherichia coli. We demonstrate that CORM-3 releases little CO in buffers and cell culture media and that the active antimicrobial agent is Ru(II), which binds tightly to thiols. Thus, thiols and amino acids in complex growth media - such as histidine, methionine and oxidised glutathione, but most pertinently cysteine and reduced glutathione (GSH) - protect both bacterial and mammalian cells against CORM-3 by binding and sequestering Ru(II). No other amino acids exert significant protective effects. NMR reveals that CORM-3 binds cysteine and GSH in a 1:1 stoichiometry with dissociation constants, Kd, of about 5 µM, while histidine, GSSG and methionine are bound less tightly, with Kd values ranging between 800 and 9000 µM. There is a direct positive correlation between protection and amino acid affinity for CORM-3. Intracellular targets of CORM-3 in both bacterial and mammalian cells are therefore expected to include GSH, free Cys, His and Met residues and any molecules that contain these surface-exposed amino acids. These results necessitate a major reappraisal of the biological effects of CORM-3 and related CORMs.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Monóxido de Carbono/farmacología , Escherichia coli/efectos de los fármacos , Compuestos Organometálicos/farmacología , Rutenio/farmacología , Antibacterianos/química , Antineoplásicos/química , Monóxido de Carbono/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Infecciones por Escherichia coli/tratamiento farmacológico , Humanos , Neoplasias/tratamiento farmacológico , Compuestos Organometálicos/química , Rutenio/química
4.
Nat Commun ; 8(1): 2280, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29273788

RESUMEN

Mycobacterium tuberculosis causes pulmonary tuberculosis (TB) and claims ~1.8 million human lives per annum. Host nitric oxide (NO) is important in controlling TB infection. M. tuberculosis WhiB1 is a NO-responsive Wbl protein (actinobacterial iron-sulfur proteins first identified in the 1970s). Until now, the structure of a Wbl protein has not been available. Here a NMR structural model of WhiB1 reveals that Wbl proteins are four-helix bundles with a core of three α-helices held together by a [4Fe-4S] cluster. The iron-sulfur cluster is required for formation of a complex with the major sigma factor (σA) and reaction with NO disassembles this complex. The WhiB1 structure suggests that loss of the iron-sulfur cluster (by nitrosylation) permits positively charged residues in the C-terminal helix to engage in DNA binding, triggering a major reprogramming of gene expression that includes components of the virulence-critical ESX-1 secretion system.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN/metabolismo , Proteínas Hierro-Azufre/metabolismo , Mycobacterium tuberculosis/metabolismo , Óxido Nítrico/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/química , Regulación Bacteriana de la Expresión Génica , Proteínas Hierro-Azufre/química , Espectroscopía de Resonancia Magnética , Mycobacterium tuberculosis/química , Conformación Proteica en Hélice alfa , Estructura Terciaria de Proteína , Factor sigma/metabolismo , Factores de Transcripción/química , Sistemas de Secreción Tipo VII/genética
5.
Nucleic Acids Res ; 45(21): 12577-12584, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29045748

RESUMEN

Double-stranded RNA-binding domains (dsRBDs) are commonly found in modular proteins that interact with RNA. Two varieties of dsRBD exist: canonical Type A dsRBDs interact with dsRNA, while non-canonical Type B dsRBDs lack RNA-binding residues and instead interact with other proteins. In higher eukaryotes, the microRNA biogenesis enzyme Dicer forms a 1:1 association with a dsRNA-binding protein (dsRBP). Human Dicer associates with HIV TAR RNA-binding protein (TRBP) or protein activator of PKR (PACT), while Drosophila Dicer-1 associates with Loquacious (Loqs). In each case, the interaction involves a region of the protein that contains a Type B dsRBD. All three dsRBPs are reported to homodimerize, with the Dicer-binding region implicated in self-association. We report that these dsRBD homodimers display structural asymmetry and that this unusual self-association mechanism is conserved from flies to humans. We show that the core dsRBD is sufficient for homodimerization and that mutation of a conserved leucine residue abolishes self-association. We attribute differences in the self-association properties of Loqs, TRBP and PACT to divergence of the composition of the homodimerization interface. Modifications that make TRBP more like PACT enhance self-association. These data are examined in the context of miRNA biogenesis and the protein/protein interaction properties of Type B dsRBDs.


Asunto(s)
Proteínas de Unión al ARN/química , Proteínas de Drosophila , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Multimerización de Proteína , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
PLoS Genet ; 13(8): e1006957, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28859103

RESUMEN

Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs) in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense). The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms "mental retardation". To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus.


Asunto(s)
Regulación de la Expresión Génica/genética , Hipotálamo/fisiología , Discapacidad Intelectual/genética , Proteínas del Tejido Nervioso/genética , Obesidad/genética , Factores de Transcripción/genética , Adulto , Animales , Sistemas CRISPR-Cas , Línea Celular , Niño , Deleción Cromosómica , Cromosomas Humanos Par 2/genética , Femenino , Técnicas de Inactivación de Genes , Humanos , Hipotálamo/metabolismo , Hipotálamo/patología , Discapacidad Intelectual/fisiopatología , Masculino , Mutación , Obesidad/fisiopatología , Polimorfismo de Nucleótido Simple/genética , Pez Cebra
7.
Chemistry ; 22(23): 7885-94, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27112228

RESUMEN

Formation of magnetite nanocrystals by magnetotactic bacteria is controlled by specific proteins which regulate the particles' nucleation and growth. One such protein is Mms6. This small, amphiphilic protein can self-assemble and bind ferric ions to aid in magnetite formation. To understand the role of Mms6 during in vitro iron oxide precipitation we have performed in situ pH titrations. We find Mms6 has little effect during ferric salt precipitation, but exerts greatest influence during the incorporation of ferrous ions and conversion of this salt to mixed-valence iron minerals, suggesting Mms6 has a hitherto unrecorded ferrous iron interacting property which promotes the formation of magnetite in ferrous-rich solutions. We show ferrous binding to the DEEVE motif within the C-terminal region of Mms6 by NMR spectroscopy, and model these binding events using molecular simulations. We conclude that Mms6 functions as a magnetite nucleating protein under conditions where ferrous ions predominate.

8.
Front Plant Sci ; 7: 292, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014315

RESUMEN

In the chlorophyll (Chl) biosynthesis pathway the formation of protochlorophyllide is catalyzed by Mg-protoporphyrin IX methyl ester (MgPME) cyclase. The Ycf54 protein was recently shown to form a complex with another component of the oxidative cyclase, Sll1214 (CycI), and partial inactivation of the ycf54 gene leads to Chl deficiency in cyanobacteria and plants. The exact function of the Ycf54 is not known, however, and further progress depends on construction and characterization of a mutant cyanobacterial strain with a fully inactivated ycf54 gene. Here, we report the complete deletion of the ycf54 gene in the cyanobacterium Synechocystis 6803; the resulting Δycf54 strain accumulates huge concentrations of the cyclase substrate MgPME together with another pigment, which we identified using nuclear magnetic resonance as 3-formyl MgPME. The detection of a small amount (~13%) of Chl in the Δycf54 mutant provides clear evidence that the Ycf54 protein is important, but not essential, for activity of the oxidative cyclase. The greatly reduced formation of protochlorophyllide in the Δycf54 strain provided an opportunity to use (35)S protein labeling combined with 2D electrophoresis to examine the synthesis of all known Chl-binding protein complexes under drastically restricted de novo Chl biosynthesis. We show that although the Δycf54 strain synthesizes very limited amounts of photosystem I and the CP47 and CP43 subunits of photosystem II (PSII), the synthesis of PSII D1 and D2 subunits and their assembly into the reaction centre (RCII) assembly intermediate were not affected. Furthermore, the levels of other Chl complexes such as cytochrome b 6 f and the HliD- Chl synthase remained comparable to wild-type. These data demonstrate that the requirement for de novo Chl molecules differs completely for each Chl-binding protein. Chl traffic and recycling in the cyanobacterial cell as well as the function of Ycf54 are discussed.

9.
J Am Soc Nephrol ; 27(4): 1159-73, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26311459

RESUMEN

Mutations in polycystin-1 (PC1) give rise to autosomal dominant polycystic kidney disease, an important and common cause of kidney failure. Despite its medical importance, the function of PC1 remains poorly understood. Here, we investigated the role of the intracellular polycystin-1, lipoxygenase, and α-toxin (PLAT) signature domain of PC1 using nuclear magnetic resonance, biochemical, cellular, and in vivo functional approaches. We found that the PLAT domain targets PC1 to the plasma membrane in polarized epithelial cells by a mechanism involving the selective binding of the PLAT domain to phosphatidylserine and L-α-phosphatidylinositol-4-phosphate (PI4P) enriched in the plasma membrane. This process is regulated by protein kinase A phosphorylation of the PLAT domain, which reduces PI4P binding and recruits ß-arrestins and the clathrin adaptor AP2 to trigger PC1 internalization. Our results reveal a physiological role for the PC1-PLAT domain in renal epithelial cells and suggest that phosphorylation-dependent internalization of PC1 is closely linked to its function in renal development and homeostasis.


Asunto(s)
Lipooxigenasa/fisiología , Canales Catiónicos TRPP/fisiología , Humanos , Lipooxigenasa/genética , Mutación , Estructura Terciaria de Proteína , Canales Catiónicos TRPP/genética
10.
Nat Commun ; 5: 4269, 2014 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-24978025

RESUMEN

Carbohydrate recognition is essential for growth, cell adhesion and signalling in all living organisms. A highly conserved carbohydrate binding module, LysM, is found in proteins from viruses, bacteria, fungi, plants and mammals. LysM modules recognize polysaccharides containing N-acetylglucosamine (GlcNAc) residues including peptidoglycan, an essential component of the bacterial cell wall. However, the molecular mechanism underpinning LysM-peptidoglycan interactions remains unclear. Here we describe the molecular basis for peptidoglycan recognition by a multimodular LysM domain from AtlA, an autolysin involved in cell division in the opportunistic bacterial pathogen Enterococcus faecalis. We explore the contribution of individual modules to the binding, identify the peptidoglycan motif recognized, determine the structures of free and bound modules and reveal the residues involved in binding. Our results suggest that peptide stems modulate LysM binding to peptidoglycan. Using these results, we reveal how the LysM module recognizes the GlcNAc-X-GlcNAc motif present in polysaccharides across kingdoms.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Enterococcus faecalis/metabolismo , Peptidoglicano/metabolismo , Proteínas Bacterianas/genética , Enterococcus faecalis/química , Enterococcus faecalis/genética , Peptidoglicano/química , Unión Proteica , Estructura Terciaria de Proteína
11.
Biochemistry ; 52(11): 1874-85, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-23421577

RESUMEN

It is becoming increasingly clear that proteins transiently populate high-energy excited states as a necessary requirement for function. Here, we demonstrate that rational mutation based on the characteristics of the structure and dynamics of proteins obtained from pressure experiments is a new strategy for amplifying particular fluctuations in proteins. We have previously shown that ubiquitin populates a high-energy conformer, N2, at high pressures. Here, we show that the Q41N mutation favors N2: high-pressure nuclear magnetic resonance (NMR) shows that N2 is ∼70% populated in Q41N but only ∼20% populated in the wild type at ambient pressure. This allows us to characterize the structure of N2, in which α1-helix, the following loop, ß3-strand, and ß5-strand change their orientations relative to the remaining regions. Conformational fluctuation on the microsecond time scale, characterized by (15)N spin relaxation NMR analysis, is markedly increased for these regions of the mutant. The N2 conformers produced by high pressure and by the Q41N mutation are quite similar in both structure and dynamics. The conformational change to produce N2 is proposed to be a novel dynamic feature beyond the known recognition dynamics of the protein. Indeed, it is orthogonal to that seen when proteins containing a ubiquitin-interacting motif bind at the hydrophobic patch of ubiquitin but matches changes seen on binding to the E2 conjugating enzyme. More generally, structural and dynamic effects of hydrodynamic pressure are shown to be useful for characterizing functionally important intermediates.


Asunto(s)
Pliegue de Proteína , Ubiquitina/química , Ubiquitina/genética , Secuencia de Aminoácidos , Animales , Bovinos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Mutación Puntual , Conformación Proteica , Estructura Secundaria de Proteína , Termodinámica
12.
PLoS One ; 6(9): e25501, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21980479

RESUMEN

BACKGROUND: Many bacteria undergo transitions between environments with differing O2 availabilities as part of their natural lifestyles and during biotechnological processes. However, the dynamics of adaptation when bacteria experience changes in O2 availability are understudied. The model bacterium and facultative anaerobe Escherichia coli K-12 provides an ideal system for exploring this process. METHODS AND FINDINGS: Time-resolved transcript profiles of E. coli K-12 during the initial phase of transition from anaerobic to micro-aerobic conditions revealed a reprogramming of gene expression consistent with a switch from fermentative to respiratory metabolism. The changes in transcript abundance were matched by changes in the abundances of selected central metabolic proteins. A probabilistic state space model was used to infer the activities of two key regulators, FNR (O2 sensing) and PdhR (pyruvate sensing). The model implied that both regulators were rapidly inactivated during the transition from an anaerobic to a micro-aerobic environment. Analysis of the external metabolome and protein levels suggested that the cultures transit through different physiological states during the process of adaptation, characterized by the rapid inactivation of pyruvate formate-lyase (PFL), a slower induction of pyruvate dehydrogenase complex (PDHC) activity and transient excretion of pyruvate, consistent with the predicted inactivation of PdhR and FNR. CONCLUSION: Perturbation of anaerobic steady-state cultures by introduction of a limited supply of O2 combined with time-resolved transcript, protein and metabolite profiling, and probabilistic modeling has revealed that pyruvate (sensed by PdhR) is a key metabolic signal in coordinating the reprogramming of E. coli K-12 gene expression by working alongside the O2 sensor FNR during transition from anaerobic to micro-aerobic conditions.


Asunto(s)
Técnicas de Cultivo , Ambiente , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Transcriptoma , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Aerobiosis , Anaerobiosis , Reactores Biológicos , Escherichia coli K12/efectos de los fármacos , Escherichia coli K12/crecimiento & desarrollo , Proteínas de Escherichia coli/metabolismo , Fermentación/efectos de los fármacos , Fermentación/genética , Proteínas Hierro-Azufre/metabolismo , Metaboloma/efectos de los fármacos , Metaboloma/genética , Oxígeno/farmacología , Ácido Pirúvico/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/metabolismo , Factores de Tiempo
13.
Biochim Biophys Acta ; 1807(1): 95-107, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20937243

RESUMEN

The PufX polypeptide is an integral component of some photosynthetic bacterial reaction center-light harvesting 1 (RC-LH1) core complexes. Many aspects of the structure of PufX are unresolved, including the conformation of its long membrane-spanning helix and whether C-terminal processing occurs. In the present report, NMR data recorded on the Rhodobacter sphaeroides PufX in a detergent micelle confirmed previous conclusions derived from equivalent data obtained in organic solvent, that the α-helix of PufX adopts a bent conformation that would allow the entire helix to reside in the membrane interior or at its surface. In support of this, it was found through the use of site-directed mutagenesis that increasing the size of a conserved glycine on the inside of the bend in the helix was not tolerated. Possible consequences of this bent helical structure were explored using a series of N-terminal deletions. The N-terminal sequence ADKTIFNDHLN on the cytoplasmic face of the membrane was found to be critical for the formation of dimers of the RC-LH1 complex. It was further shown that the C-terminus of PufX is processed at an early stage in the development of the photosynthetic membrane. A model in which two bent PufX polypeptides stabilise a dimeric RC-LH1 complex is presented, and it is proposed that the N-terminus of PufX from one half of the dimer engages in electrostatic interactions with charged residues on the cytoplasmic surface of the LH1α and ß polypeptides on the other half of the dimer.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Rhodobacter sphaeroides/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/aislamiento & purificación , Secuencia Conservada , Dimerización , Membranas Intracelulares/enzimología , Complejos de Proteína Captadores de Luz/aislamiento & purificación , Espectroscopía de Resonancia Magnética/métodos , Micelas , Microscopía de Fuerza Atómica/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Fotosíntesis , Conformación Proteica , Rhodobacter sphaeroides/crecimiento & desarrollo , Rhodobacter sphaeroides/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido
14.
Biochemistry ; 49(29): 6193-205, 2010 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-20496884

RESUMEN

The deconstruction of the plant cell wall is an important biological process that is attracting considerable industrial interest, particularly in the bioenergy sector. Enzymes that attack the plant cell wall generally contain one or more noncatalytic carbohydrate binding modules (CBMs) that play an important targeting function. While CBMs that bind to the backbones of plant structural polysaccharides have been widely described, modules that recognize components of the vast array of decorations displayed on these polymers have been relatively unexplored. Here we show that a family 35 CBM member (CBM35), designated CtCBM35-Gal, binds to alpha-D-galactose (Gal) and, within the context of the plant cell wall, targets the alpha-1,6-Gal residues of galactomannan but not the beta-D-Gal residues in xyloglucan. The crystal structure of CtCBM35-Gal reveals a canonical beta-sandwich fold. Site-directed mutagenesis studies showed that the ligand is accommodated within the loops that connect the two beta-sheets. Although the ligand binding site of the CBM displays significant structural similarity with calcium-dependent CBM35s that target uronic acids, subtle differences in the conformation of conserved residues in the ligand binding site lead to the loss of metal binding and uronate recognition. A model is proposed in which the orientation of the pair of aromatic residues that interact with the two faces of the Gal pyranose ring plays a pivotal role in orientating the axial O4 atom of the ligand toward Asn140, which is invariant in CBM35. The ligand recognition site of exo-CBM35s (CBM35-Gal and the uronic acid binding CBM35s) appears to overlap with that of CBM35-Man, which binds to the internal regions of mannan, a beta-polymer of mannose. Using site-directed mutagenesis, we show that although there is conservation of several functional residues within the binding sites of endo- and exo-CBM35s, the endo-CBM does not utilize Asn113 (equivalent to Asn140 in CBM35-Gal) in mannan binding, despite the importance of the equivalent residue in ligand recognition across the CBM35 and CBM6 landscape. The data presented in this report are placed within a wider phylogenetic context for the CBM35 family.


Asunto(s)
Proteínas Bacterianas/química , Clostridium thermocellum/enzimología , Galactosa/química , Mananos/química , Secuencia de Aminoácidos , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Dominio Catalítico , Pared Celular/química , Cristalografía por Rayos X , Ligandos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Plantas/química , Estructura Secundaria de Proteína
15.
EMBO J ; 29(7): 1176-91, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20168298

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. Earlier work has shown that PC1 and PC2 assemble into a polycystin complex implicated in kidney morphogenesis. PC2 also assembles into homomers of uncertain functional significance. However, little is known about the molecular mechanisms that direct polycystin complex assembly and specify its functions. We have identified a coiled coil in the C-terminus of PC2 that functions as a homodimerization domain essential for PC1 binding but not for its self-oligomerization. Dimerization-defective PC2 mutants were unable to reconstitute PC1/PC2 complexes either at the plasma membrane (PM) or at PM-endoplasmic reticulum (ER) junctions but could still function as ER Ca(2+)-release channels. Expression of dimerization-defective PC2 mutants in zebrafish resulted in a cystic phenotype but had lesser effects on organ laterality. We conclude that C-terminal dimerization of PC2 specifies the formation of polycystin complexes but not formation of ER-localized PC2 channels. Mutations that affect PC2 C-terminal homo- and heteromerization are the likely molecular basis of cyst formation in ADPKD.


Asunto(s)
Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/metabolismo , Secuencia de Aminoácidos , Animales , Calcio/metabolismo , Línea Celular , Dimerización , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Expresión Génica , Humanos , Riñón/patología , Datos de Secuencia Molecular , Mutación , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Canales Catiónicos TRPP/genética , Técnicas del Sistema de Dos Híbridos , Pez Cebra/genética
16.
J Mol Biol ; 396(1): 178-94, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-19931284

RESUMEN

The ubiquitin (Ub)-binding p62 scaffold protein (encoded by the SQSTM1 gene) regulates a diverse range of signalling pathways leading to activation of the nuclear factor kappa B (NF-kappaB) family of transcription factors and is an important regulator of macroautophagy. Mutations within the gene encoding p62 are commonly found in patients with Paget's disease of bone and largely cluster within the C-terminal ubiquitin-associated (UBA) domain, impairing its ability to bind Ub, resulting in dysregulated NF-kappaB signalling. However, precisely how Ub-binding is regulated at the molecular level is unclear. NMR relaxation dispersion experiments, coupled with concentration-dependent NMR, CD, isothermal titration calorimetry and fluorescence kinetic measurements, reveal that the p62 UBA domain forms a highly stable dimer (K(dim) approximately 4-12 microM at 298 K). NMR analysis shows that the dimer interface partially occludes the Ub-binding surface, particularly at the C-terminus of helix 3, making UBA dimerisation and Ub-binding mutually exclusive processes. Somewhat unusually, the monomeric UBA appears to be the biologically active form and the dimer appears to be the inactive one. Engineered point mutations in loop 1 (E409K and G410K) are shown to destabilise the dimer interface, lead to a higher proportion of the bound monomer and, in NF-kappaB luciferase reporter assays, are associated with reduced NF-kappaB activity compared with wt-p62.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , FN-kappa B/metabolismo , Multimerización de Proteína , Transducción de Señal , Ubiquitina/metabolismo , Fenómenos Biofísicos , Línea Celular , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación/genética , Poliubiquitina/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Soluciones
17.
Biochemistry ; 45(25): 7872-81, 2006 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-16784239

RESUMEN

PrrA is a global transcription regulator activated upon phosphorylation by its cognate kinase PrrB in response to low oxygen levels in Rhodobacter sphaeroides. Here we show by gel filtration, analytical ultracentrifugation, and NMR diffusion measurements that treatment of PrrA with a phosphate analogue, BeF(3)(-), results in dimerization of the protein, producing a protein that binds DNA. No dimeric species was observed in the absence of BeF(3)(-). Upon addition of BeF(3)(-), the inhibitory activity of the N-terminal domain on the C-terminal DNA-binding domain is relieved, after which PrrA becomes capable of binding DNA as a dimer. The interaction surface of the DNA-binding domain with the regulatory domain of PrrA is identified by NMR as being a well-conserved region centered on helix alpha6, which is on the face opposite from the DNA recognition helix. This suggests that there is no direct blockage of DNA binding in the inactive state but rather that PrrA dimerization promotes a correct arrangement of two adjacent DNA-binding domains that recognizes specific DNA binding sequences.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Activación Transcripcional/fisiología , Secuencia de Aminoácidos , Berilio/farmacología , Cromatografía en Gel , Proteínas de Unión al ADN/efectos de los fármacos , Dimerización , Fluoruros/farmacología , Histidina Quinasa , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Proteínas Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Rhodobacter sphaeroides/química , Alineación de Secuencia , Transducción de Señal/fisiología , Ultracentrifugación
18.
FEBS Lett ; 580(13): 3206-10, 2006 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-16684526

RESUMEN

Prr is a global regulatory system that controls a large and diverse range of genes in Rhodobacter sphaeroides in response to changing conditions of environmental redox potential. PrrB is the membrane-bound sensor kinase and previously we showed that the purified, detergent-solubilised intact membrane protein is functional in autophosphorylation, phosphotransfer and phosphatase activities. Here we confirm that it also senses and responds directly to its environmental signal, redox potential; strong autophosphorylation of PrrB occurred in response to dithiothreitol (DTT)-induced reducing conditions (and levels increased in response to a wide 0.1-100 mM DTT range), whilst under oxidising conditions, PrrB exhibited low, just detectable levels of autophosphorylation. The clear response of PrrB to changes in reducing conditions confirmed its suitability for in vitro studies to identify modulators of its phosphorylation signalling state, and was used here to investigate whether PrrB might sense more than one redox-related signal, such as signals of cell energy status. NADH, ATP and AMP were found to exert no detectable effect on maintenance of the PrrB-P signalling state. By contrast, adenosine diphosphate produced a very strong increase in PrrB-P dephosphorylation rate, presumably through the back-conversion of PrrB-P to PrrB.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Quinasas/metabolismo , Rhodobacter sphaeroides/enzimología , Adenosina Monofosfato/farmacología , Adenosina Trifosfato/farmacología , Ditiotreitol/farmacología , Metabolismo Energético , NAD/farmacología , Oxidación-Reducción , Fosforilación , Rhodobacter sphaeroides/efectos de los fármacos , Transducción de Señal
19.
Mol Microbiol ; 60(5): 1262-75, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16689801

RESUMEN

The PEB1a protein of the gastrointestinal pathogen Campylobacter jejuni mediates interactions with epithelial cells and is an important factor in host colonization. Cell fractionation and immunoblotting showed that PEB1a is most abundant in the periplasm of C. jejuni, and is detectable in the culture supernatant but not in the inner or outer membrane. The protein is homologous with periplasmic-binding proteins associated with ABC transporters and we show by fluorescence spectroscopy that purified recombinant PEB1a binds L-aspartate and L-glutamate with sub microM K(d) values. Binding of L-14C-aspartate or L-14C-glutamate was strongly out-competed by excess unlabelled aspartate or glutamate but only poorly by asparagine and glutamine. A mutant in the Cj0921c gene, encoding PEB1a, was completely unable to transport 5 microM L-14C-glutamate and showed a large reduction (approximately 20-fold) in the rate of L-14C-aspartate transport compared with the wild type. Although microaerobic growth of this mutant was little affected in complex media, growth on aspartate or glutamate in defined media was completely prevented, whereas growth with serine was similar to wild type. 1H-NMR analysis of the culture supernatants of the Cj0921c mutant showed some utilization of aspartate but not glutamate, consistent with the transport data. It is concluded that in addition to the established role of PEB1a as an adhesin, the PEB1 transport system plays a key role in the utilization of aspartate and glutamate, which may be important in vivo carbon sources for this pathogen.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Aerobiosis/fisiología , Aminoácidos Dicarboxílicos/metabolismo , Antígenos Bacterianos/metabolismo , Ácido Aspártico/metabolismo , Campylobacter jejuni/fisiología , Ácido Glutámico/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/citología , Campylobacter jejuni/genética , Medios de Cultivo/química , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fracciones Subcelulares/química
20.
J Agric Food Chem ; 53(20): 7997-8002, 2005 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-16190662

RESUMEN

Tea cream is the precipitate formed as tea cools. Its formation has been studied by X-ray scattering, and it is shown that a higher tea concentration leads to earlier onset of creaming and larger particles and that addition of theaflavin and calcium promotes creaming. Association constants between the major components of black tea have been obtained using NMR and show that calcium and glucose enhance the self-association of caffeine, polyphenols, and theaflavin but have little effect on hetero-association. Glycosylation of a polyphenol reduced self-association and reduced binding to caffeine. We conclude that theaflavin is important for the initiation of creaming, forming nanoclusters of typically 3 nm diameter, whereas caffeine acts more to fill in the gaps within the clusters and thus adds to the bulk of tea cream without being necessary for its initiation. Tea creaming may be reduced by increasing the solubility of the polyphenols (i.e., by glycosylation) or by removing calcium. Tea cream; theaflavin; caffeine; small-angle X-ray scattering; NMR; colloid.


Asunto(s)
Té/química , Biflavonoides/administración & dosificación , Biflavonoides/química , Cafeína/química , Calcio/administración & dosificación , Catequina/administración & dosificación , Catequina/química , Precipitación Química , Frío , Flavonoides/química , Glucosa/farmacología , Glicosilación , Calor , Espectroscopía de Resonancia Magnética , Tamaño de la Partícula , Fenoles/química , Polifenoles , Dispersión de Radiación , Solubilidad , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...