Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(18): 5970-5983, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32184353

RESUMEN

Barttin is the accessory subunit of the human ClC-K chloride channels, which are expressed in both the kidney and inner ear. Barttin promotes trafficking of the complex it forms with ClC-K to the plasma membrane and is involved in activating this channel. Barttin undergoes post-translational palmitoylation that is essential for its functions, but the enzyme(s) catalyzing this post-translational modification is unknown. Here, we identified zinc finger DHHC-type containing 7 (DHHC7) protein as an important barttin palmitoyl acyltransferase, whose depletion affected barttin palmitoylation and ClC-K-barttin channel activation. We investigated the functional role of barttin palmitoylation in vivo in Zdhhc7-/- mice. Although palmitoylation of barttin in kidneys of Zdhhc7-/- animals was significantly decreased, it did not pathologically alter kidney structure and functions under physiological conditions. However, when Zdhhc7-/- mice were fed a low-salt diet, they developed hyponatremia and mild metabolic alkalosis, symptoms characteristic of human Bartter syndrome (BS) type IV. Of note, we also observed decreased palmitoylation of the disease-causing R8L barttin variant associated with human BS type IV. Our results indicate that dysregulated DHHC7-mediated barttin palmitoylation appears to play an important role in chloride channel dysfunction in certain BS variants, suggesting that targeting DHHC7 activity may offer a potential therapeutic strategy for reducing hypertension.


Asunto(s)
Aciltransferasas/metabolismo , Canales de Cloruro/metabolismo , Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional , Aciltransferasas/deficiencia , Aciltransferasas/genética , Animales , Perros , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Riñón/citología , Riñón/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Mutación , Fenotipo
2.
Nat Commun ; 11(1): 633, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005803

RESUMEN

Despite proven efficacy of pharmacotherapies targeting primarily global neurohormonal dysregulation, heart failure (HF) is a growing pandemic with increasing burden. Treatments mechanistically focusing at the cardiomyocyte level are lacking. MicroRNAs (miRNA) are transcriptional regulators and essential drivers of disease progression. We previously demonstrated that miR-132 is both necessary and sufficient to drive the pathological cardiomyocytes growth, a hallmark of adverse cardiac remodelling. Therefore, miR-132 may serve as a target for HF therapy. Here we report further mechanistic insight of the mode of action and translational evidence for an optimized, synthetic locked nucleic acid antisense oligonucleotide inhibitor (antimiR-132). We reveal the compound's therapeutic efficacy in various models, including a clinically highly relevant pig model of HF. We demonstrate favourable pharmacokinetics, safety, tolerability, dose-dependent PK/PD relationships and high clinical potential for the antimiR-132 treatment scheme.


Asunto(s)
Terapia Genética/métodos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/terapia , MicroARNs/genética , Oligonucleótidos Antisentido/genética , Animales , Evaluación Preclínica de Medicamentos , Femenino , Regulación de la Expresión Génica , Insuficiencia Cardíaca/metabolismo , Humanos , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Oligonucleótidos Antisentido/metabolismo , Oligonucleótidos Antisentido/farmacocinética , Porcinos
3.
Sci Rep ; 9(1): 11173, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371804

RESUMEN

Loss-of-function mutations of the SCN5A gene encoding for the sodium channel α-subunit NaV1.5 result in the autosomal dominant hereditary disease Brugada Syndrome (BrS) with a high risk of sudden cardiac death in the adult. We here engineered human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) carrying the CRISPR/Cas9 introduced BrS-mutation p.A735V-NaV1.5 (g.2204C > T in exon 14 of SCN5A) as a novel model independent of patient´s genetic background. Recent studies raised concern regarding the use of hiPSC-CMs for studying adult-onset hereditary diseases due to cells' immature phenotype. To tackle this concern, long-term cultivation of hiPSC-CMs on a stiff matrix (27-42 days) was applied to promote maturation. Patch clamp recordings of A735V mutated hiPSC-CMs revealed a substantially reduced upstroke velocity and sodium current density, a prominent rightward shift of the steady state activation curve and decelerated recovery from inactivation as compared to isogenic hiPSC-CMs controls. These observations were substantiated by a comparative study on mutant A735V-NaV1.5 channels heterologously expressed in HEK293T cells. In contrast to mutated hiPSC-CMs, a leftward shift of sodium channel inactivation was not observed in HEK293T, emphasizing the importance of investigating mechanisms of BrS in independent systems. Overall, our approach supports hiPSC-CMs' relevance for investigating channelopathies in a dish.


Asunto(s)
Síndrome de Brugada/genética , Células Madre Pluripotentes Inducidas/citología , Mutación , Miocitos Cardíacos/patología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Síndrome de Brugada/patología , Sistemas CRISPR-Cas , Células HEK293 , Humanos , Técnicas de Placa-Clamp
4.
Front Physiol ; 9: 1490, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30405442

RESUMEN

Dent disease 1 (DD1) is a renal salt-wasting tubulopathy associated with mutations in the Cl-/H+ antiporter ClC-5. The disease typically manifests with proteinuria, hypercalciuria, nephrocalcinosis, and nephrolithiasis but is characterized by large phenotypic variability of no clear origin. Several DD1 cases have been reported lately with additional atypical hypokalemic metabolic alkalosis and hyperaldosteronism, symptoms usually associated with another renal disease termed Bartter syndrome (BS). Expression of the Bartter-like DD1 mutant ClC-5 G261E in HEK293T cells showed that it is retained in the ER and lacks the complex glycosylation typical for ClC-5 WT. Accordingly, the mutant abolished CLC ionic transport. Such phenotype is not unusual and is often observed also in DD1 ClC-5 mutants not associated with Bartter like phenotype. We noticed, therefore, that one type of BS is associated with mutations in the protein barttin that serves as an accessory subunit regulating the function and subcellular localization of ClC-K channels. The overlapping symptomatology of DD1 and BS, together with the homology between the proteins of the CLC family, led us to investigate whether barttin might also regulate ClC-5 transport. In HEK293T cells, we found that barttin cotransfection impairs the complex glycosylation and arrests ClC-5 in the endoplasmic reticulum. As barttin and ClC-5 are both expressed in the thin and thick ascending limbs of the Henle's loop and the collecting duct, interactions between the two proteins could potentially contribute to the phenotypic variability of DD1. Pathologic barttin mutants differentially regulated trafficking and processing of ClC-5, suggesting that the interaction between the two proteins might be relevant also for the pathophysiology of BS. Our findings show that barttin regulates the subcellular localization not only of kidney ClC-K channels but also of the ClC-5 transporter, and suggest that ClC-5 might potentially play a role not only in kidney proximal tubules but also in tubular kidney segments expressing barttin. In addition, they demonstrate that the spectrum of clinical, genetic and molecular pathophysiology investigation of DD1 should be extended.

5.
J Biol Chem ; 293(22): 8626-8637, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29674316

RESUMEN

ClC-K channels belong to the CLC family of chloride channels and chloride/proton antiporters. They contribute to sodium chloride reabsorption in Henle's loop of the kidney and to potassium secretion into the endolymph by the stria vascularis of the inner ear. Their accessory subunit barttin stabilizes the ClC-K/barttin complex, promotes its insertion into the surface membrane, and turns the pore-forming subunits into a conductive state. Barttin mutations cause Bartter syndrome type IV, a salt-wasting nephropathy with sensorineural deafness. Here, studying ClC-K/barttin channels heterologously expressed in MDCK-II and HEK293T cells with confocal imaging and patch-clamp recordings, we demonstrate that the eight-amino-acids-long barttin N terminus is required for channel trafficking and activation. Deletion of the complete N terminus (Δ2-8 barttin) retained barttin and human hClC-Ka channels in intracellular compartments. Partial N-terminal deletions did not compromise subcellular hClC-Ka trafficking but drastically reduced current amplitudes. Sequence deletions encompassing Thr-6, Phe-7, or Arg-8 in barttin completely failed to activate hClC-Ka. Analyses of protein expression and whole-cell current noise revealed that inactive channels reside in the plasma membrane. Substituting the deleted N terminus with a polyalanine sequence was insufficient for recovering chloride currents, and single amino acid substitutions highlighted that the correct sequence is required for proper function. Fast and slow gate activation curves obtained from rat V166E rClC-K1/barttin channels indicated that mutant barttin fails to constitutively open the slow gate. Increasing expression of barttin over that of ClC-K partially recovered this insufficiency, indicating that N-terminal modifications of barttin alter both binding affinities and gating properties.


Asunto(s)
Membrana Celular/metabolismo , Canales de Cloruro/metabolismo , Activación del Canal Iónico/fisiología , Riñón/metabolismo , Mutación , Transporte Biológico , Células Cultivadas , Canales de Cloruro/genética , Células HEK293 , Humanos , Dominios Proteicos
6.
J Biol Chem ; 290(30): 18732-43, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26063802

RESUMEN

CLC-K chloride channels are expressed in the kidney and in the inner ear and require the accessory subunit barttin for proper function and membrane insertion. Barttin exerts multiple functions on CLC-proteins: it modifies protein stability and intracellular trafficking as well as channel activity, ion conduction, and gating. So far, the molecular determinants of these distinct barttin functions have remained elusive. Here we performed serial perturbation mutagenesis to identify the sequence determinants of barttin function. Barttin consists of two transmembrane helices followed by a long intracellular carboxyl terminus, and earlier work demonstrated that the transmembrane core of barttin suffices for most effects on the α-subunit. We individually substituted every amino acid of the predicted transmembrane core (amino acids 9-26 and 35-55) with tryptophan, co-expressed mutant barttin with hClC-Ka or V166E rClC-K1, and characterized CLC-K/barttin channels by patch clamp techniques, biochemistry, and confocal microscopy. The majority of mutations left the chaperone function of barttin, i.e. the effects on endoplasmic reticulum exit and surface membrane insertion, unaffected. In contrast, tryptophan insertion at multiple positions resulted in impaired activity of hClC-Ka/barttin and changes in gating of V166E rClC-K1/barttin. These results demonstrate that mutations in a cluster of hydrophobic residues within transmembrane domain 1 affect barttin-CLC-K interaction and impair gating modification by the accessory subunit. Whereas tight interaction is necessary for functional modification, even impaired association of barttin and CLC-K suffices for normal intracellular trafficking. Our findings allow definition of a likely interaction surface and clarify the mechanisms underlying CLC-K channel modification by barttin.


Asunto(s)
Canales de Cloruro/metabolismo , Riñón/fisiología , Triptófano/metabolismo , Animales , Canales de Cloruro/química , Canales de Cloruro/genética , Citoplasma/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Riñón/metabolismo , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Mutación , Técnicas de Placa-Clamp , Triptófano/química , Triptófano/genética
7.
J Biol Chem ; 290(28): 17390-400, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26013830

RESUMEN

CLC-K/barttin chloride channels are essential for NaCl re-absorption in Henle's loop and for potassium secretion by the stria vascularis in the inner ear. Here, we studied the posttranslational modification of such channels by palmitoylation of their accessory subunit barttin. We found that barttin is palmitoylated in vivo and in vitro and identified two conserved cysteine residues at positions 54 and 56 as palmitoylation sites. Point mutations at these two residues reduce the macroscopic current amplitudes in cells expressing CLC-K/barttin channels proportionally to the relative reduction in palmitoylated barttin. CLC-K/barttin expression, plasma membrane insertion, and single channel properties remain unaffected, indicating that these mutations decrease the number of active channels. R8W and G47R, two naturally occurring barttin mutations identified in patients with Bartter syndrome type IV, reduce barttin palmitoylation and CLC-K/barttin channel activity. Palmitoylation of the accessory subunit barttin might thus play a role in chloride channel dysfunction in certain variants of Bartter syndrome. We did not observe pronounced alteration of barttin palmitoylation upon increased salt and water intake or water deprivation, indicating that this posttranslational modification does not contribute to long term adaptation to variable water intake. Our results identify barttin palmitoylation as a novel posttranslational modification of CLC-K/barttin chloride channels.


Asunto(s)
Canales de Cloruro/química , Canales de Cloruro/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Síndrome de Bartter/genética , Síndrome de Bartter/metabolismo , Canales de Cloruro/genética , Cisteína/química , Perros , Células HEK293 , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/metabolismo , Humanos , Lipoilación , Células de Riñón Canino Madin Darby , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Puntual , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
8.
Stem Cell Reports ; 3(6): 1132-46, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25454631

RESUMEN

To harness the potential of human pluripotent stem cells (hPSCs), an abundant supply of their progenies is required. Here, hPSC expansion as matrix-independent aggregates in suspension culture was combined with cardiomyogenic differentiation using chemical Wnt pathway modulators. A multiwell screen was scaled up to stirred Erlenmeyer flasks and subsequently to tank bioreactors, applying controlled feeding strategies (batch and cyclic perfusion). Cardiomyogenesis was sensitive to the GSK3 inhibitor CHIR99021 concentration, whereas the aggregate size was no prevailing factor across culture platforms. However, in bioreactors, the pattern of aggregate formation in the expansion phase dominated subsequent differentiation. Global profiling revealed a culture-dependent expression of BMP agonists/antagonists, suggesting their decisive role in cell-fate determination. Furthermore, metallothionein was discovered as a potentially stress-related marker in hPSCs. In 100 ml bioreactors, the production of 40 million predominantly ventricular-like cardiomyocytes (up to 85% purity) was enabled that were directly applicable to bioartificial cardiac tissue formation.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Técnicas de Cultivo de Célula , Diferenciación Celular , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología , Reactores Biológicos , Medios de Cultivo , Medios de Cultivo Condicionados , Humanos , Potenciales de la Membrana , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo
9.
J Physiol ; 590(15): 3449-64, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22641783

RESUMEN

Myotonia congenita is a genetic condition that is caused by mutations in the muscle chloride channel gene CLCN1 and characterized by delayed muscle relaxation and muscle stiffness. We here investigate the functional consequences of two novel disease-causing missense mutations, C277R and C277Y, using heterologous expression in HEK293T cells and patch clamp recording. Both mutations reduce macroscopic anion currents in transfected cells. Since hClC-1 is a double-barrelled anion channel, this reduction in current amplitude might be caused by altered gating of individual protopores or of joint openings and closing of both protopores. We used non-stationary noise analysis and single channel recordings to separate the mutants' effects on individual and common gating processes. We found that C277Y inverts the voltage dependence and reduces the open probabilities of protopore and common gates resulting in decreases of absolute open probabilities of homodimeric channels to values below 3%. In heterodimeric channels, C277R and C277Y also reduce open probabilities and shift the common gate activation curve towards positive potentials. Moreover, C277Y modifies pore properties of hClC-1. It reduces single protopore current amplitudes to about two-thirds of wild-type values, and inverts the anion permeability sequence to I(-) = NO(3)(-) >Br(-)>Cl(-). Our findings predict a dramatic reduction of the muscle fibre resting chloride conductance and thus fully explain the disease-causing effects of mutations C277R and C277Y. Moreover, they provide additional insights into the function of C277, a residue recently implicated in common gating of ClC channels.


Asunto(s)
Canales de Cloruro/fisiología , Mutación , Miotonía Congénita/genética , Adulto , Cloruros/fisiología , Femenino , Células HEK293 , Humanos , Activación del Canal Iónico , Masculino , Persona de Mediana Edad , Miotonía Congénita/fisiopatología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...