Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Mater Eng ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38758990

RESUMEN

BACKGORUND: The development of vibration-induced finger disorders is likely associated with combined static and dynamic responses of the fingers to vibration exposure. To study the mechanism of the disorders, a new rat-tail model has been established to mimic the finger vibration and pressure exposures. However, the mechanical behavior of the tail during compression needs to be better understood to improve the model and its applications. OBJECTIVE: To investigate the static and time-dependent force responses of the rat tail during compression. METHODS: Compression tests were conducted on Sprague-Dawley cadaver rat tails using a micromechanical system at three deformation velocities and three deformation magnitudes. Contact-width and the time-histories of force and deformation were measured. Additionally, force-relaxation tests were conducted and a Prony series was used to model the force-relaxation behavior of the tail. RESULTS: The rat tails' force-deformation and stiffness-deformation relationships were strongly nonlinear and time-dependent. Force/stiffness increased with an increase in deformation and deformation velocity. The time-dependent force-relaxation characteristics of the tails can be well described using a Prony series. CONCULSIONS: We successfully quantified the static and time-dependent force responses of rat tails under compression. The identified mechanical behavior of the tail can help improve the rat-tail model and its applications.

2.
Biomed Mater Eng ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38669519

RESUMEN

BACKGROUND: Wearing protective helmets is an important prevention strategy to reduce work-related traumatic brain injuries. The existing standardized testing systems are used for quality control and do not provide a quantitative measure of the helmet performance. OBJECTIVE: To analyze the failure characterizations of Type I industrial helmets and develop a generalized approach to quantify the shock absorption performance of Type I industrial helmets based on the existing standardized setups. METHODS: A representative basic Type I construction helmet model was selected for the study. Top impact tests were performed on the helmets at different drop heights using two different impactor masses (3.6 and 5.0 kg). RESULTS: When the helmets were impacted with potential impact energies smaller than the critical potential impact energy values, there was a consistent relationship between the peak impact force and the potential impact energy. When the helmets were impacted under potential impact energies greater than the critical potential impact energy values, the peak impact forces increased steeply with increasing potential impact energy. CONCLUSION: A concept of safety margin for construction helmets based on potential impact energy was introduced to quantify the helmets' shock absorption performance. The proposed method will help helmet manufacturers improve their product quality.

3.
J Mech Med Biol ; 23(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-37361026

RESUMEN

The anterior and posterior iliac spine markers frequently used to define the pelvis, are commonly occluded during three-dimensional (3D) motion capture. The occlusion of these markers leads to the use of various tracking marker configurations on the pelvis, which affect kinematic results. The purpose of this investigation was to examine the agreement of CODA pelvis kinematic results when two different tracking marker configurations were used during roofing tasks. 3D motion data were collected on seven male subjects while mimicking two roofing tasks. Hip joint angles (HJAs) were computed using the CODA pelvis with two different tracking marker configurations, the trochanter tracking method (TTM), and virtual pelvis tracking method (VPTM). Agreement between tracking marker configurations was assessed using cross-correlations, bivariate correlations, mean absolute differences (MADs), and Bland-Altman (BA) plots. The correlations displayed no time lag and strong agreement (all r > 0.83) between the HJA from the VPTM and TTM, suggesting the timing occurrence of variables are comparable between the two tracking marker configurations. The MAD between the VPTM and TTM displayed magnitude differences, but most of the differences were within a clinically acceptable range. Caution should still be used when comparing kinematic results between various tracking marker configurations, as differences exist.

4.
Proc Inst Mech Eng H ; 237(7): 890-904, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37345449

RESUMEN

It has been hypothesized that the biodynamic responses of the human finger tissues to vibration are among the major stimuli that cause vibration health effects. Furthermore, the finger contact pressure can alter these effects. It is difficult to test these hypotheses using human subjects or existing animal models. The objective of this study was to develop a new rat-tail vibration model to investigate the combined effects of vibration and contact pressure and to identify their relationships with the biodynamic responses. Physically, the new exposure system was developed by adding a loading device to an existing rat-tail model. An analytical model of the rat-tail exposure system was proposed and used to formulate the methods for quantifying the biodynamic responses. A series of tests with six tails dissected from rat cadavers were conducted to test and evaluate the new model. The experimental and modeling results demonstrate that the new model behaves as predicted. Unlike the previous model, the vibration strain and stress of the rat tail does not depend primarily on the vibration response of the tail itself but on that of the loading device. This makes it possible to quantify and control the biodynamic responses conveniently and reliably by measuring the loading device response. This study also identified the basic characteristics of the tail biodynamic responses in the exposure system, which can be used to help design the experiments for studying vibration biological effects.


Asunto(s)
Cola (estructura animal) , Vibración , Humanos , Ratas , Animales , Dedos/fisiología , Extremidad Superior , Cadáver
5.
Toxicol Rep ; 9: 219-229, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36518455

RESUMEN

Previous studies from our laboratory showed that prenatal exposure to hexavalent chromium, Cr(VI), caused premature ovarian failure and decreased pregnancy rates and litter size. Exposure to the endocrine disrupting chemicals (EDCs) can cause X-chromosome aneuploidy of the oocytes, increasing chromosome missegregation and risk of infertility, autoimmune diseases, cancers, and various genetic disorders. Cr(VI) is an EDC that is widely used in numerous industries. Environmental exposure to Cr(VI) caused detrimental reproductive effects in women and health effects in infants from California. Women with occupational Cr(VI) exposure experienced infertility, pregnancy loss, spontaneous abortion, and stillbirth. However, the adverse effects of Cr(VI) on oocyte development and quality have not been reported. Mitochondrial membrane potential and function are the critical determinants of oocyte quality in natural pregnancies and successful assisted reproductive techniques. The cytoskeletal machinery of the oocytes orchestrates the meiotic division of the oocytes, whereas cortical granules (CGs) prevent polyspermy. Therefore, the objective of the current study was to examine whether the mechanism by which Cr(VI) compromises oocyte quality and morphology is by altering cytoskeleton dynamics and mitochondrial function of the metaphase II (MII) oocytes. Rats were treated with environmentally relevant doses of Cr(VI) (1 and 5 ppm potassium dichromate) in drinking water from postnatal day (PND) 22-28, followed by superovulation and retrieval of MII oocytes. The data indicate that Cr(VI) exposure disrupted F-actin structure and distribution pattern, compromised mitochondrial function, altered CGs distribution, increased dysmorphic and degenerated oocytes, delayed first polar body extrusion, and caused infertility.

6.
Ann Biomed Eng ; 50(11): 1565-1578, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35124769

RESUMEN

The performance of Type I industrial helmets for fall protection is not required to be tested in standardized tests. The current study analyzed the fall protection performance of Type I industrial helmets and evaluated if the use of a chin strap and the suspension system tightness have any effect on protection performance. Head impact tests were performed using an instrumented manikin. There were 12 combinations of test conditions: with or without chin strap usage, three levels of suspension system tightness, and two impact surfaces. Four representative helmet models (two basic and two advanced models) were selected for the study. Impact tests without a helmet under all other applicable test conditions were used as a control group. There were four replicates for each test condition-a total of 192 impact tests with helmets and eight impact tests for the control group. The peak acceleration and the calculated head impact criteria (HIC) were used to evaluate shock absorption performance of the helmets. The results showed that all four helmet models demonstrated excellent performance for fall protection compared to the barehead control group. The fall protection performance of the advanced helmet models was substantially better than the basic helmet models. However, the effects of the use of chin straps and suspension system tightness on the helmets' fall protection performance were statistically not significant.


Asunto(s)
Traumatismos Craneocerebrales , Dispositivos de Protección de la Cabeza , Humanos , Aceleración , Traumatismos Craneocerebrales/prevención & control
7.
Saf Sci ; 1332021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34552310

RESUMEN

Slips and falls on sloped roof surfaces remain an important safety issue among construction workers. The slip potential has been conventionally analyzed and assessed primarily based on ground reaction forces, which cannot differentiate the specific roles of each of the force factors (e.g., workers' motions-induced dynamic forces and slope-induced static forces) contributing to the slip potential. Their differentiation may enhance the understanding of the slip mechanisms on the sloped roof surfaces and help develop effective walking and working strategies/tactics to minimize the dangerous slips on the elevated roofs. Hence, the objective of this study is to develop a biodynamic method as an additional tool for analyzing the slip potential of a worker walking or working on sloped roof surfaces. A whole-body biodynamic model is proposed and used to develop the alternative method, in which the slip potential is expressed as an analytical function of its major controlling factors including coefficient of friction, slope angle, and biodynamic forces. Some experimental data available in the literature are used to demonstrate the application of the proposed method. The results suggest that the slope may not change the basic trends of the biodynamic forces, but the slope may affect their magnitudes, which can be explained using the system's energy equation also derived from the whole-body biodynamic model. The analytical results suggest that reducing the body acceleration in uphill direction or the deceleration in downhill direction can reduce the slip potential. 'Zigging' and 'zagging' walking on a sloped surface may also reduce the slip potential, as it reduces the effective slope angle. The proposed biodynamic theory can be used to enhance the safety guidelines not only for roofers but also for people walking on ramps, inclined walkways, and mountain terrains.

8.
Vibration ; 4(2): 482-528, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34414357

RESUMEN

Studies on hand-transmitted vibration exposure, biodynamic responses, and biological effects were conducted by researchers at the Health Effects Laboratory Division (HELD) of the National Institute for Occupational Safety and Health (NIOSH) during the last 20 years. These studies are systematically reviewed in this report, along with the identification of areas where additional research is needed. The majority of the studies cover the following aspects: (i) the methods and techniques for measuring hand-transmitted vibration exposure; (ii) vibration biodynamics of the hand-arm system and the quantification of vibration exposure; (iii) biological effects of hand-transmitted vibration exposure; (iv) measurements of vibration-induced health effects; (iv) quantification of influencing biomechanical effects; and (v) intervention methods and technologies for controlling hand-transmitted vibration exposure. The major findings of the studies are summarized and discussed.

9.
Crit Rev Biomed Eng ; 49(4): 1-13, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35695600

RESUMEN

Industrial exoskeletons have been used to assist workers during occupational activities, such as overhead work, tool-use, mobility, stooping/squatting, and/or load carrying in various industries. Despite the promise of reducing the risk of work-related musculoskeletal disorders, there is a lack of sufficient evidence to support the safe and effective use of industrial exoskeletons. To assess the merits and residual risks of various types of exoskeletons in different work settings, more comprehensive evaluation procedures are needed. This review study aims to provide an overview of the existing viable and promising methods for evaluating the effectiveness of industrial exoskeletons. The different evaluation methods are organized into three categories-in vitro, in vivo, and in silico studies. The limitations and challenges in different types of evaluation approaches are also discussed. In summary, this review sheds light on choosing appropriate evaluation approaches and may help with decision-making during the development, evaluation, and application of industrial exoskeletons.


Asunto(s)
Dispositivo Exoesqueleto , Humanos
10.
Biomed Mater Eng ; 32(1): 1-14, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33252060

RESUMEN

BACKGROUND: The use of helmets was considered to be one of the important prevention strategies employed on construction sites. The shock absorption performance of a construction (or industrial) helmet is its most important performance parameter. Industrial helmets will experience cumulative structural damage when being impacted repeatedly with impact magnitudes greater than its endurance limit. OBJECTIVE: The current study is to test if the shock absorption performance of Type I construction helmets subjected to repeated impacts can be improved by applying polyethylene air-bubble cushions to the helmet suspension system. METHODS: Drop impact tests were performed using a commercial drop tower test machine following the ANSI Z89.1 Type I drop impact protocol. Typical off-the-shelf Type I construction helmets were evaluated in the study. A 5 mm thick air-bubble cushioning liner was placed between the headform and the helmet to be tested. Helmets were impacted ten times at different drop heights from 0.61 to 1.73 m. The effects of the air-bubble cushioning liner on the helmets' shock absorption performance were evaluated by comparing the peak transmitted forces collected from the original off-the-shelf helmet samples to the helmets equipped with air-bubble cushioning liners. RESULTS: Our results showed that a typical Type I construction helmet can be subjected to repeated impacts with a magnitude less than 22 J (corresponding to a drop height 0.61 m) without compromising its shock absorption performance. In comparison, the same construction helmet, when equipped with an air-bubble cushioning liner, can be subjected to repeated impacts of a magnitude of 54 J (corresponding to a drop height 1.52 m) without compromising its shock absorption performance. CONCLUSIONS: The results indicate that the helmet's shock absorbing endurance limit has been increased by 145% with addition of an air-bubble cushioning liner.


Asunto(s)
Dispositivos de Protección de la Cabeza , Polietileno , Aceleración
11.
Ergonomics ; 63(9): 1182-1193, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32436438

RESUMEN

Awkward and extreme kneeling during roofing generates high muscular tension which can lead to knee musculoskeletal disorders (MSDs) among roofers. However, the combined impact of roof slope and kneeling posture on the activation of the knee postural muscles and their association to potential knee MSD risks among roofers have not been studied. The current study evaluated the effects of kneeling posture and roof slope on the activation of major knee postural muscles during shingle installation via a laboratory assessment. Maximum normalized electromyography (EMG) data were collected from knee flexor and extensor muscles of seven subjects, who mimicked the shingle installation process on a slope-configurable wooden platform. The results revealed a significant increase in knee muscle activation during simulated shingle installation on sloped rooftops. Given the fact that increased muscle activation of knee postural muscles has been associated with knee MSDs, roof slope and awkward kneeling posture can be considered as potential knee MSD risk factors. Practitioner Summary: This study demonstrated significant effects of roof slope and kneeling posture on the peak activation of knee postural muscles. The findings of this study suggested that residential roofers could be exposed to a greater risk of developing knee MSDs with the increase of roof slope during shingle installation due to increased muscle loading. Abbreviations: MSDs: musculoskeletal disorders; EMG: electromyography; ANOVA: analysis of variance; MNMA: maximum normalized muscle activation; RF: rectus femoris; VL: vastus lateralis; VM: vastus medialis; BF: biceps femoris; S: semitendinosus.


Asunto(s)
Industria de la Construcción , Rodilla/fisiología , Músculo Esquelético/fisiología , Salud Laboral , Postura/fisiología , Trabajo/fisiología , Adulto , Fenómenos Biomecánicos , Electromiografía , Humanos , Masculino , Análisis y Desempeño de Tareas , Adulto Joven
12.
Int J Ind Ergon ; 772020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33897076

RESUMEN

Trunk musculoskeletal disorders are common among residential roofers. Addressing this problem requires a better understanding of the movements required to complete working tasks, such as affixing shingles on a sloped residential roof. We analyzed the extent to which the trunk kinematics during a shingling process are altered due to different angles of roof slope. Eight male subjects completed a kneeling shingle installation process on three differently sloped roof surfaces. The magnitude of the trunk kinematics was significantly influenced by both slope and task phase of the shingling process, depending on the metric. The results unequivocally point to roof slope and task phase as significant factors altering trunk kinematics. However, extension of the results to roofing workers should be done carefully, depending on the degree to which the study protocol represents the natural setting. Future studies on shingle installation in residential roofing should absolutely consider capturing a wider array of shingling procedures in order to encapsulate all the possible methods that are used due to the lack of a standardized procedure.

13.
Autom Constr ; 1192020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33897107

RESUMEN

Field or laboratory data collected for work-related musculoskeletal disorder (WMSD) risk assessment in construction often becomes unreliable as a large amount of data go missing due to technology-induced errors, instrument failures or sometimes at random. Missing data can adversely affect the assessment conclusions. This study proposes a method that applies Canonical Polyadic Decomposition (CPD) tensor decomposition to fuse multiple sparse risk-related datasets and fill in missing data by leveraging the correlation among multiple risk indicators within those datasets. Two knee WMSD risk-related datasets-3D knee rotation (kinematics) and electromyography (EMG) of five knee postural muscles-collected from previous studies were used for the validation and demonstration of the proposed method. The analysis results revealed that for a large portion of missing values (40%), the proposed method can generate a fused dataset that provides reliable risk assessment results highly consistent (70%-87%) with those obtained from the original experimental datasets. This signified the usefulness of the proposed method for use in WMSD risk assessment studies when data collection is affected by a significant amount of missing data, which will facilitate reliable assessment of WMSD risks among construction workers. In the future, findings of this study will be implemented to explore whether, and to what extent, the fused dataset outperforms the datasets with missing values by comparing consistencies of the risk assessment results obtained from these datasets for further investigation of the fusion performance.

14.
J Test Eval ; 49(3)2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-35924119

RESUMEN

The helmets used by construction site workers are mainly designed for head protection when objects are dropped from heights. Construction helmets are also casually called "hard hats" in industries. Common construction helmets are mostly categorized as type 1 according to different standards. All type 1 helmets have to pass type 1 standard impact tests, which are top impact tests-the helmet is fixed and is impacted by a free falling impactor on the top crown of the helmet shell. The purpose of this study was to develop an approach that can determine the performance characterization of a helmet. A total of 31 drop impact tests using a representative type 1 helmet model were performed at drop heights from 0.30 to 2.23 m, which were estimated to result in impact speeds from 2.4 to 6.6 m/s. Based on our results, we identified a critical drop height that was used to evaluate the performance of helmets. The peak impact forces and peak accelerations varied nonproportionally with the drop height. When the drop height is less than the critical height, the peak force and peak acceleration increase gradually and slowly with increasing drop height. When the drop height is greater than the critical height, the peak force and peak acceleration increase steeply with even a slight increase in drop height. Based on the critical drop height, we proposed an approach to determine the safety margin of a helmet. The proposed approach would make it possible to determine the performance characteristics of a helmet and to estimate the safety margin afforded by the helmet, if the helmet first passes the existing standardized tests. The proposed test approach would provide supplementary information for consumers to make knowledgeable decisions when selecting construction helmets.

15.
J Biomech ; 96: 109333, 2019 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-31558308

RESUMEN

Epidemiological studies indicate that occupational activities that require extended deep knee flexion or kneeling are associated with a higher prevalence of knee osteoarthritis. In many sport activities, such as a catcher in a baseball or a softball game, athletes have to make repetitive deep squatting motions, which have been associated with the development of osteochondritis dissecans. Excessive deep knee flexion postures may cause excessive loading in the knee joint. In deep knee flexion postures, the posterior aspect of the shank will contact the posterior thigh, resulting in a compressive force within the soft tissues. The current study was aimed at analyzing the effects of the posterior thigh/shank contact on the joint loading during deep knee flexion in a natural knee. An existing, whole body model with detailed anatomical components of the knee (AnyBody) has been adopted and modified for this study. The effects of the posterior thigh/shank contact were evaluated by comparing the results of the inverse dynamic analysis for two scenarios: with and without the posterior thigh/shank contact force. Our results showed that, in a deep squatting posture (knee flexion 120+ degrees), the posterior thigh/shank contact helps reduce the patellofemoral (PF) and tibiofemoral (TF) normal contact forces by 42% and 57%, respectively.


Asunto(s)
Fenómenos Mecánicos , Modelos Biológicos , Movimiento/fisiología , Postura/fisiología , Muslo/fisiología , Fenómenos Biomecánicos , Humanos , Rodilla/fisiología , Masculino , Presión , Soporte de Peso
16.
Eng Fail Anal ; 96: 330-339, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31555053

RESUMEN

It is accepted in industries that an industrial helmet should be disposed of when it is subjected to a significant impact. There is no scientific evidence that supports this well-accepted belief. The current study was intended to evaluate the shock absorption performance of industrial helmets under repeated impacts. Common industrial or construction helmets are categorized as Type I according to ANSI Z89.1 and they are designed to mainly protect top impacts. A representative basic Type I construction helmet model was selected in the study. Helmets were repeatedly impacted ten times using a commercial drop tower tester with an impactor (mass 3.6 kg) at different drop heights from 0.30 to 2.03 m. A total of 80 impact trials were performed in the study. The relationships of the transmitted force with the drop height and with impact number were analyzed. A new parameter - the endurance limit - was proposed to evaluate the shock absorption performance of a helmet. The helmets were observed to experience cumulative structural damage with increasing impact number, resulting in a degrading shock absorption performance, when being impacted repeatedly with magnitudes greater than the endurance limit. Repeated impacts with magnitudes smaller than the endurance limit did not cause measurable cumulative structural damage to the helmets in our study.

17.
Appl Ergon ; 81: 102901, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31422268

RESUMEN

Roofers often suffer from musculoskeletal disorders (MSDs) to their knees due to spending a large amount of time kneeling while performing work-related roofing activities on sloped rooftops. Several ergonomic studies have identified kneeling as a potential risk factor for knee injuries and disorders. Existing biomechanical models and sensor technologies used to assess work-related risk factors for different construction trades are not applicable in roof work settings especially on slanted rooftop surfaces. This work assesses the impacts of work-related factors, namely working posture and roof slope, on the potential risk of developing knee MSDs due to residential roofing tasks in a laboratory setting. Nine human subjects participated in the experiment and mimicked shingle installation on a slope-configurable wooden platform. Maximum angles of right and left knee flexion, abduction, adduction, and axial rotation (internal and external) were measured as risk indicators using a motion capture system under different roof slope settings. The results demonstrated that roof slope, working posture and their interaction may have significant impacts on developing knee MSDs during roofing activities. Knees are likely to be exposed to increased risk of MSDs due to working in a dynamic kneeling posture during shingle installation. In our study, flexion in both knees and adduction in the right knee were found lower in high-pitched rooftops; however, abduction in the left knee and internal rotation in the right knee were found higher during shingle installation. Hence proper attention is needed for these situations. This study provides useful information about the impact of roof work settings on knee MSDs development, which may facilitate effective interventions such as education, training, and tools to prevent knee injuries in construction roofing tasks.


Asunto(s)
Industria de la Construcción , Ergonomía , Traumatismos de la Rodilla/etiología , Traumatismos Ocupacionales/etiología , Trabajo/fisiología , Adulto , Fenómenos Biomecánicos , Voluntarios Sanos , Humanos , Rodilla/fisiopatología , Masculino , Enfermedades Musculoesqueléticas/etiología , Enfermedades Profesionales/etiología , Postura , Rango del Movimiento Articular , Factores de Riesgo , Lugar de Trabajo
18.
Int J Ind Ergon ; 742019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32327865

RESUMEN

One factor commonly associated with musculoskeletal disorder risk is extreme postures. To lessen this risk, individuals must be in an as neutral posture as possible while working. We analyzed how the inclusion of different combinations of two interventions-knee pads and knee savers-can alter lower extremity kinematics during deep or near full flexion kneeling occurs while on different sloped surfaces. Nine male subjects were requested to keep a typical resting posture while kneeling on sloped roofing simulator. We observed that the introduction of a wearable third party device considerably altered lower extremity full flexion kneeling kinematics compared to level deep kneeling. This study provided a sound base for the use of third party devices to reduce musculoskeletal disorder risk on a sloped surface, however further testing with other musculoskeletal disorder risk factors is needed prior to conclusive recommendation.

19.
Biomed Mater Eng ; 29(5): 629-639, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30400076

RESUMEN

The rehabilitation squeeze ball is a popular device to help strengthen the hand, fingers and forearm muscles. The distributions of the contact pressure in the interface between the therapy ball and hand/fingers can affect the joint moment of each of the individual fingers, thereby affecting rehabilitation effects. In the current study, we evaluated the contact force distributions on the fingers when gripping a spherical object. Eight female adults [age 29 (9.1) years, mass 64.6 (7.1) kg, height 163.5 (1.9) cm, hand length 17.2 (0.7) cm] participated in the study. Contact force sensors were attached to the middle of the palmar surfaces of the distal, middle, and proximal phalanges of the four fingers in the longitudinal direction. In order to evaluate the effects of the ball stiffness on the contact force distributions on the fingers, subjects were requested to perform quasi-static gripping on a standard tennis ball and on a rehabilitation ball. The tennis ball is much stiffer and experiences smaller deformation under compression compared to the rehabilitation ball. We analyzed the force share among the distal, middle, and proximal finger segments, when subjects gripping balls of different stiffnesses (tennis ball vs. rehabilitation ball) and at three different grip efforts. Our results indicated that the grip force is contributed about 60% and 40% by the middle/ring fingers and by the index/little fingers, respectively. These characteristics are independent of the grip force levels and stiffness of the contact surface.


Asunto(s)
Dedos/fisiología , Fuerza de la Mano/fisiología , Mano/fisiología , Manipulaciones Musculoesqueléticas/métodos , Adulto , Algoritmos , Fenómenos Biomecánicos , Femenino , Humanos , Movimiento , Adulto Joven
20.
Int J Ind Ergon ; 62: 1-12, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29123326

RESUMEN

Some powered hand tools can generate significant vibration at frequencies below 25 Hz. It is not clear whether such vibration can be effectively transmitted to the upper arm, shoulder, neck, and head and cause adverse effects in these substructures. The objective of this study is to investigate the vibration transmission from the human hands to these substructures. Eight human subjects participated in the experiment, which was conducted on a 1-D vibration test system. Unlike many vibration transmission studies, both the right and left hand-arm systems were simultaneously exposed to the vibration to simulate a working posture in the experiment. A laser vibrometer and three accelerometers were used to measure the vibration transmitted to the substructures. The apparent mass at the palm of each hand was also measured to help in understanding the transmitted vibration and biodynamic response. This study found that the upper arm resonance frequency was 7-12 Hz, the shoulder resonance was 7-9 Hz, and the back and neck resonances were 6-7 Hz. The responses were affected by the hand-arm posture, applied hand force, and vibration magnitude. The transmissibility measured on the upper arm had a trend similar to that of the apparent mass measured at the palm in their major resonant frequency ranges. The implications of the results are discussed. RELEVANCE TO INDUSTRY: Musculoskeletal disorders (MSDs) of the shoulder and neck are important issues among many workers. Many of these workers use heavy-duty powered hand tools. The combined mechanical loads and vibration exposures are among the major factors contributing to the development of MSDs. The vibration characteristics of the body segments examined in this study can be used to help understand MSDs and to help develop more effective intervention methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...