Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(22): 15637-15646, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38746839

RESUMEN

Exploring low-cost and high-performance phosphorus (P) adsorbents is key to controlling P contamination in water. This study evaluated the P adsorption performance of three types of cement: Ordinary Portland cement (OPC), Portland slag cement (PSC), and Portland pozzolana cement (PPC). Furthermore, SEM-EDS, XRD, XPS, and FTIR were employed to reveal the adsorption mechanism. The results showed that the pseudo-second-order model exhibited higher regression coefficients than the pseudo-first-order model, indicating that chemisorption dominated the adsorption process. The Langmuir equation fitted the P adsorption data well, with maximum P adsorption capacities of 245.8, 226.1, and 210.0 mg g-1 for OPC, PSC, and PPC at 25 °C, respectively. P adsorption capacities decreased gradually with increasing initial pH and reached their maximum values at pH 3. The anions of F-, CO32-, and SO42- negatively affected P adsorption due to the competitive adsorption with Ca2+. The results of XPS, XRD, and FTIR confirmed that Ca-P precipitates (i.e., hydroxyapatite) were the main removal mechanism. A real domestic sewage experiment showed that 0.6 g L-1 OPC effectively reduced the P concentration from 2.4 to below 0.2 mg L-1, with a dosage cost of 0.034 $ per ton. This study indicated that cement, as a low-cost and efficient P adsorbent, has great potential for application in removing P from acidic and neutral wastewater.

2.
Sci Total Environ ; 922: 171333, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38423325

RESUMEN

Utilizing alkaline solid wastes, such as steel slag, as substrates in tidal flow constructed wetlands (TFCWs) can effectively neutralize the acidity generated by nitrification. However, the impacts of steel slag on microbial communities and the potential risk of heavy metal release remain poorly understood. To address these knowledge gaps, this study compared the performance and microbial community structure of TFCWs filled with a mixture of steel slag and zeolite (TFCW-S) to those filled with zeolite alone (TFCW-Z). TFCW-S exhibited a much higher NH4+-N removal efficiency (98.35 %) than TFCW-Z (55.26 %). Additionally, TFCW-S also achieved better TN and TP removal. The steel slag addition helped maintain the TFCW-S effluent pH at around 7.5, while the TFCW-Z effluent pH varied from 3.74 to 6.25. The nitrification and denitrification intensities in TFCW-S substrates were significantly higher than those in TFCW-Z, consistent with the observed removal performance. Moreover, steel slag did not cause excessive heavy metal release, as the effluent concentrations were below the standard limits. Microbial community analysis revealed that ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and complete ammonia-oxidizing bacteria coexisted in both TFCWs, albeit with different compositions. Furthermore, the enrichment of heterotrophic nitrification-aerobic denitrification bacteria in TFCW-S likely contributed to the high NH4+-N removal. In summary, these findings demonstrate that the combined use of steel slag and zeolite in TFCWs creates favorable pH conditions for ammonia-oxidizing microorganisms, leading to efficient ammonia removal in an environmentally friendly manner.


Asunto(s)
Microbiota , Zeolitas , Desnitrificación , Amoníaco , Humedales , Nitrógeno , Nitrificación
3.
Rev Sci Instrum ; 94(9)2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655991

RESUMEN

Long-term in situ measurements of the temperature of hydrothermal fluids have great significance in the research of seafloor hydrothermal activities. Herein, we developed a self-powered battery-free temperature logger for measuring and recording the temperature of hydrothermal fluids. A gravity heat pipe made of titanium alloy was employed as the heat-conducting element of the temperature logger to capture heat from a hydrothermal vent and transfer it to the thermoelectric unit. The thermoelectric generator used herein converted the temperature difference into electrical energy to power the circuit of the temperature logger. Numerical analyses and experiments were performed to investigate the performance of the heat pipe and temperature logger. Results show that the temperature logger can realize self-powered starting at a temperature of >76 °C during a tank test. This paper presents a discussion on a new instrument for temperature measurements of deep-sea hydrothermal fluids.

4.
Food Sci Nutr ; 11(9): 5318-5324, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37701238

RESUMEN

Macadamia oil cake (MOC) is a type of macadamia nut by-product, that is extremely rich in amino acids and has beneficial health effects. It lowers blood lipid levels and regulates the intestinal microbiota. MOC effectively attenuated total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels in model rats. Depending on the morphology of the colon, MOC can effectively attenuate damage to the tissue structure. The 16S rDNA gene of the rat intestinal microbiota was sequenced using Illumina PE250 high-throughput sequencing technology, and the changes in the intestinal microbiota in each group are discussed. Supplementing MOC at different doses significantly increased the microbiota of Dorea, Erysipelotrichaceae, Stercoris, etc. in the intestinal tracts of rats fed a high-fat diet. Therefore, MOC can be included in lipid healthy dietary patterns to lower lipid characteristics and restructure the intestinal microbiota. Future clinical trials are required to determine the therapeutic effects and mechanisms of hypolipidemia.

5.
J Hazard Mater ; 448: 130973, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36860081

RESUMEN

The formation of As(V) substituted hydroxylapatite (HAP) has a vital influence on the fate of As(V) in the environment. However, despite growing evidence showing that HAP crystallizes in vivo and in vitro with amorphous calcium phosphate (ACP) as a precursor, a knowledge gap exists concerning the transformation from arsenate-bearing ACP (AsACP) to arsenate-bearing HAP (AsHAP). Here we synthesized AsACP nano-particles with varied As contents and investigated the arsenic incorporation during their phase evolution. The phase evolution results showed that the transformation process of AsACP to AsHAP could be divided into three Stages. A higher As(V) loading significantly delayed the transformation of AsACP, increased the distortion degree, and decreased the crystallinity of AsHAP. NMR result showed that the PO43- tetrahedral is geometrically preserved when PO43- is substituted by AsO43-. From AsACP to AsHAP, the As-substitution led to the transformation inhibition and As(V) immobilization.

6.
Chemosphere ; 326: 138435, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36933838

RESUMEN

Calcium oxalate (CaOx) crystals in plants act as a sink for excess Ca and play an essential role in detoxifying heavy metals (HMs). However, the mechanism and related influencing factors remain unclear. Amaranth (Amaranthus tricolor L.) is a common edible vegetable rich in CaOx and a potential Cd hyperaccumulation species. In this study, the hydroponic experiment was carried out to investigate the effect of exogenous Ca concentrations on Cd uptake by amaranth. The results showed that either insufficient or excess Ca supply inhibited amaranth growth, while the Cd bioconcentration factor (BCF) increased with Ca concentration. Meanwhile, the sequence extraction results demonstrated that Cd mainly accumulated as pectate and protein-bound species (NaCl extracted) in the root and stem, compared to pectate, protein, and phosphate-bound (acetic acid extractable) species in the leaf. Correlation analysis showed that the concentration of exogenous Ca was positively correlated with amaranth-produced CaOx crystals but negatively correlated with insoluble oxalate-bound Cd in the leaf. However, since the accumulated insoluble oxalate-bound Cd was relatively low, Cd detoxification via the CaOx pathway in amaranth is limited.


Asunto(s)
Amaranthus , Metales Pesados , Contaminantes del Suelo , Cadmio/análisis , Calcio/metabolismo , Amaranthus/metabolismo , Oxalato de Calcio/metabolismo , Metales Pesados/metabolismo , Calcio de la Dieta/metabolismo , Contaminantes del Suelo/análisis
7.
Microorganisms ; 11(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36838501

RESUMEN

The transition areas of riverine, estuarine, and marine environments are particularly valuable for the research of microbial ecology, biogeochemical processes, and other physical-chemical studies. Although a large number of microbial-related studies have been conducted within such systems, the vast majority of sampling have been conducted over a large span of time and distance, which may lead to separate batches of samples receiving interference from different factors, thus increasing or decreasing the variability between samples to some extent. In this study, a new in situ filtration system was used to collect membrane samples from six different sampling sites along the Sanya River, from upstream freshwater to the sea, over a nine-hour period. We used high-throughput sequencing of 16S and 18S rRNA genes to analyze the diversity and composition of prokaryotic and eukaryotic communities. The results showed that the structures of these communities varied according to the different sampling sites. The α-diversity of the prokaryotic and eukaryotic communities both decreased gradually along the downstream course. The structural composition of prokaryotic and eukaryotic communities changed continuously with the direction of river flow; for example, the relative abundances of Rhodobacteraceae and Flavobacteriaceae increased with distance downstream, while Sporichthyaceae and Comamonadaceae decreased. Some prokaryotic taxa, such as Phycisphaeraceae and Chromobacteriaceae, were present nearly exclusively in pure freshwater environments, while some additional prokaryotic taxa, including the SAR86 clade, Clade I, AEGEAN-169 marine group, and Actinomarinaceae, were barely present in pure freshwater environments. The eukaryotic communities were mainly composed of the Chlorellales X, Chlamydomonadales X, Sphaeropleales X, Trebouxiophyceae XX, Annelida XX, and Heteroconchia. The prokaryotic and eukaryotic communities were split into abundant, common, and rare communities for NCM analysis, respectively, and the results showed that assembly of the rare community assembly was more impacted by stochastic processes and less restricted by species dispersal than that of abundant and common microbial communities for both prokaryotes and eukaryotes. Overall, this study provides a valuable reference and new perspectives on microbial ecology during the transition from freshwater rivers to estuaries and the sea.

8.
Environ Pollut ; 319: 121005, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608731

RESUMEN

The organic modification of three-dimensional porous diatom frustules (biosilica) and their fossils (diatomite) is promising in heavy metal adsorption. However, the preparation of such materials involves complex processes, high costs, and environmental hazards. In this study, organic-biosilica composites based on in situ self-modification of diatoms were prepared by freeze-drying pretreatment. Freeze-drying resulted in the release of the intercellular organic components of diatoms, followed by loading on the surface of their diatom frustules. The bio-adsorbent exhibits outstanding Cd2+ adsorption capacity (up to 220.3 mg/g). The adsorption isotherms fitted the Langmuir model and the maximum adsorption capacity was 4 times greater than that of diatom biosilica (54.1 mg/g). The adsorption kinetics of Cd2+ was adequately described by a pseudo-second-order model and reached equilibrium within 30 min. By combining focused ion beam thinning with transmission electron microscopy-energy dispersive X-ray spectroscopy, the internal structure of the composite and the Cd2+ distribution were investigated. The results showed that the organic matter of the composite adsorbed approximately 10 times more Cd2+ than inorganic biosilica. The adsorption mechanism was dominated by complexation between the abundant organic functional groups (amide, carboxyl, and amino groups) on the surfaces of composite and Cd2+. The bio-adsorbent was demonstrated to have wide applicability in the presence of competitive cations (Na+, K+, Ca2+, and Mg2+) and under a wide range of pH (3-10) conditions. Thus, the self-modification of diatoms offers a promising organic-inorganic composite for heavy metal remediation.


Asunto(s)
Diatomeas , Metales Pesados , Contaminantes Químicos del Agua , Diatomeas/química , Cadmio , Microscopía Electrónica de Transmisión , Cationes , Adsorción , Cinética , Concentración de Iones de Hidrógeno
9.
Environ Pollut ; 316(Pt 1): 120491, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36283469

RESUMEN

Carbonate-bound speciation is a critical sink of potentially toxic elements (PTEs) like cadmium (Cd) in soil and sediment. In a phosphate-rich environment, carbonate minerals could be replaced by phosphate minerals such as dicalcium phosphate dihydrate (DCPD, also known as brushite), octacalcium phosphate (OCP), and hydroxylapatite (HAP). Currently, it is unclear the migration and fate of PTEs during the replacement of PTEs-bearing carbonates by HAP and related intermediate minerals. Therefore, we synthesized Cd-bearing calcite by the coprecipitation method and converted it to DCPD, OCP, and HAP to investigate the redistribution and fate of Cd. The results showed that Cd incorporation in calcite significantly inhibited their replacement by DCPD and OCP, respectively. 1.26% of Cd in calcite was released into the solution when DCPD replaced calcite, and subsequently, most of the released Cd was recaptured by OCP. Significantly, the released Cd was below 0.05‰ when all the solid converted to HAP. These results suggested that with the application of phosphate fertilizer in alkaline soil, the secondary calcium phosphate minerals could control the environmental behavior of Cd.


Asunto(s)
Cadmio , Carbonato de Calcio , Carbonato de Calcio/metabolismo , Cadmio/metabolismo , Fosfatos de Calcio , Durapatita , Carbonatos , Suelo , Minerales
10.
J Hazard Mater ; 443(Pt B): 130242, 2023 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-36327838

RESUMEN

Microbial-induced carbonate precipitation (MICP) is a promising technology to immobilize/remediate heavy metals (HMs) like cadmium (Cd). However, the long-term stability of MICP-immobilized HMs is unclear, especially in farmland where chemical fertilization is necessary. Therefore, we performed MICP treatment on soils contaminated with various Cd compounds (CdCO3, CdS, and CdCl2) and added diammonium phosphate (DAP) to explore the impact of phosphate on the MICP-immobilized Cd. The results showed that MICP treatment was practical to immobilize the exchangeable Cd but to mobilize the carbonate and Fe/Mn oxide-bound Cd. After applying DAP, soil pH declined due to ammonium nitrification. At high P/Ca molar ratios (1/2 and 1), partial previously immobilized Cd was released due to the carbonate dissolution. Contrarily, exchangeable Cd transformed to less mobilizable Fe/Mn oxide-bound at low P/Ca molar ratios (1/4 and 1/8). Meanwhile, other treatments were also helpful in avoiding the release of immobilized Cd, such as applying non-ammonium phosphate and adding lime material after soil acidification. Our investigation suggested that the long-term stability of HMs in remediated sites should be carefully evaluated, especially in agricultural areas with phosphate and nitrogen fertilizer input.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Metales Pesados/análisis , Fosfatos/química , Carbonatos , Óxidos/química , Carbonato de Calcio
11.
Chemosphere ; 309(Pt 1): 136727, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36209854

RESUMEN

The ammonia removal performance of tidal flow constructed wetlands (TFCWs) requires to be improved under high hydraulic loading rates (HLRs). The pH decrease caused by nitrification may adversely affect the NH4+-N removal and ammonia-oxidizing microorganisms (AOMs) of TFCWs. Herein, TFCWs with zeolite (TFCW_Z) and a mixture of zeolite and steel slag (TFCW_S) were built to investigate the influence of steel slag on NH4+-N removal and AOMs. Both TFCWs were operated under short flooding/drying (F/D) cycles and high HLRs (3.13 and 4.69 m3/(m2 d)). The results revealed that a neutral effluent pH (6.98-7.82) was achieved in TFCW_S owing to the CaO dissolution of steel slag. The NH4+-N removal efficiencies in TFCW_S (91.2 ± 5.1%) were much higher than those in TFCW_Z (73.2 ± 7.1%). Total nitrogen (TN) removal was poor in both TFCWs mainly due to the low influent COD/TN. Phosphorus removal in TFCW_S was unsatisfactory because of the short hydraulic retention time. The addition of steel slag stimulated the flourishing AOMs, including Nitrosomonas (ammonia-oxidizing bacteria, AOB), Candidatus_Nitrocosmicus (ammonia-oxidizing archaea, AOA), and comammox Nitrospira, which may be responsible for the better ammonia removal performance in TFCW_S. PICRUSt2 showed that steel slag also enriched the relative abundance of functional genes involved in nitrification (amoCAB, hao, and nxrAB) but inhibited genes related to denitrification (nirK, norB, and nosZ). Quantitative polymerase chain reaction (qPCR) revealed that complete AOB (CAOB) and AOB contributed more to the amoA genes in TFCW_S and TFCW_Z, respectively. Therefore, this study revealed that the dominant AOMs could be significantly changed in zeolite-based TFCW by adding steel slag to regulate the pH in situ, resulting in a more efficient NH4+-N removal performance.


Asunto(s)
Humedales , Zeolitas , Amoníaco , Acero , Nitrificación , Nitrógeno , Archaea , Fósforo , Oxidación-Reducción
13.
J Hazard Mater ; 434: 128936, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35461002

RESUMEN

Carbonate-bound uranium (U) is critical in controlling the migration of U in circumneutral to alkaline conditions. The potential release risk of carbonate-bound U should be concerned due to the contribution of mineral replacement. Herein, we explored the fate of U during the conversion process from microbial-induced calcite to hydroxylapatite (HAP) and investigated the phase and morphology evolution of minerals and the immobilization efficiency, distribution, and stability of U. The results showed that most calcite could convert to HAP during the conversion process. The aqueous residual U was below 1.0 mg/L after U-HAP formation, and the U removal efficiencies were enhanced by 20.0-74.4% compared to the calcite precipitation process. XRD and TEM results showed that the products were a mixture of HAP and uramphite. The elemental mapping results showed that most U concentrated on uramphite while a handful of U distributed homogeneously in calcite and HAP matrixes. The stability test verified that U-bearing HAP decreased the U solubility by 98-100% relative to calcite due to the uramphite formation and U incorporation into HAP. Our findings demonstrated that the combinations of microbial-induced calcite precipitation and calcite-HAP conversion could facilitate the U immobilization in treating radioactive wastewater and soil.


Asunto(s)
Uranio , Carbonato de Calcio , Carbonatos , Durapatita , Aguas Residuales
14.
Nanomaterials (Basel) ; 12(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35407288

RESUMEN

Novel Pt/Bi3.4Gd0.6Ti3O12 heterojunction was synthesized by a decoration of Pt nanoparticles (PtNPs) on the surface of piezoelectric Bi3.4Gd0.6Ti3O12 (BGTO) through an impregnation process. The photocatalytic, piezo-catalytic, and piezo-photocatalytic activities of the Pt/BGTO heterojunction for methyl orange (MO) degradation were investigated under ultrasonic excitation and whole spectrum light irradiation. The internal piezoelectric field of BGTO and a plasmonic effect have been proven important for the photocatalytic activity of the heterojunctions. Pt/BGTO exhibited an optimum photocatalytic degradation performance of 92% for MO in 70 min under irradiation of whole light spectrum and ultrasonic coexcitation, and this value was about 1.41 times higher than the degradation rate under whole spectrum light irradiation alone. The PtNPs in Pt/BGTO heterojunction can absorb the incident light intensively, and induce the collective oscillation of surface electrons due to the surface plasmon resonance (SPR) effect, thus generating "hot" electron-hole pairs. The internal piezoelectric field produced in BGTO by ultrasonic can promote the separation of SPR-induced "hot" charge carriers and facilitate the production of highly reactive oxidation radicals, thus enhancing Pt/BGTO heterojunction's photocatalytic activity for oxidizing organic dyes.

15.
Biochem Biophys Res Commun ; 590: 177-183, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-34990892

RESUMEN

Gram-negative bacteria usually use acyl-homoserine lactones (AHLs)-mediated LuxI/LuxR-type quorum sensing (QS) systems for cell-cell cooperation and/or bacteria-environment communication. LuxI and LuxR are AHLs synthase and receptor, respectively. These two parts could form a positive regulatory feedback loop, controlling various types of group behaviors. However, the autoregulation mechanisms between them are fragmented and could be highly differentiated in different bacteria. Here, we clarified the autoregulation mechanism between LuxI and LuxR in Pseudoalteromonas sp. R3. YasI (LuxI in strain R3) synthesizes two types of AHLs, C8-HSL and 3-OH-C8-HSL. It is worth noting that YasR (LuxR in strain R3) only responds to C8-HSL rather than 3-OH-C8-HSL. YasR-C8HSL can activate the yasI transcription by recognizing "lux box" at yasI upstream. Interestingly, YasR can directly promote the yasR expression with AHL-independent manner, but AHL absence caused by the yasI-deficiency led to the significant decrease in the yasR expression. Further study demonstrated that the yasI-deficiency can result in the decrease in the yasR mRNA stability. Notably, both yasI-deficiency and yasR-deficiency led to the significant decrease in the expression of hfq encoding RNA chaperone. Therefore, it was speculated that not only YasR itself can directly regulate the yasR transcription, but YasR-C8HSL complex indirectly affects the yasR mRNA stability by regulating Hfq.


Asunto(s)
Proteínas Bacterianas/metabolismo , Homeostasis , Pseudoalteromonas/fisiología , Percepción de Quorum , Acil-Butirolactonas/metabolismo , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Pseudoalteromonas/genética , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética
16.
Children (Basel) ; 8(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34572230

RESUMEN

BACKGROUND: This study aimed to investigate the association of elementary school students' manipulative skill competency, cardiorespiratory fitness, and cognitive function with psychological wellbeing (PWB), as well as whether the association had gender differences. METHODS: Participants were 291 fourth-grade students (166 boys vs. 125 girls; mean age = 9.770 years old; SD = 0.584) at two elementary schools from the province of Henan in China. The students' soccer skills in manipulative skill competency were assessed using the PE Metric Assessment Rubric, cardiorespiratory fitness was assessed by means of the PACER 15 m test, and cognitive function and PWB were assessed using the d2 test of attention and Warwick-Edinburgh Mental Wellbeing Scale, respectively. Data were analyzed with descriptive statistics and multiple linear regression models. RESULTS: The result of linear regression models showed that soccer skills, cardiorespiratory fitness, and cognitive function were collectively associated with PWB for the total sample (F (5, 285) = 3.097, p < 0.01), boys (F (5, 160) = 1.355, p < 0.01), and girls (F (5, 119) = 2.132, p < 0.01). Furthermore, the standardized regression coefficients (ß) indicated that cardiorespiratory fitness was the only significant contributor to PWB for the total sample (ß = 0.119, t = 2.021, p < 0.05), but not for boys and girls. Soccer skills and cognitive function were not individual significant contributors to PWB for the total sample, boys, and girls. CONCLUSIONS: Cardiorespiratory fitness was significantly associated with PWB, and there were no gender differences in the relationship of manipulative skill competency, cardiorespiratory fitness, and cognitive function with PWB in elementary school students. This study provides empirical evidence that improving cardiorespiratory fitness is an important intervention strategy to promote elementary school students' PWB.

17.
Biochem Biophys Res Commun ; 571: 1-7, 2021 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-34298336

RESUMEN

Pseudoalteromonas spp. are Gram-negative bacteria which are ubiquitous in marine environments. Our previous work found that there is a classic LuxI/LuxR-type quorum sensing (QS) system which was named YasI/YasR in Pseudoalteromonas sp. R3, but the factors that control QS in strain R3 are unclear yet. Here, we found that the deficiency of hfq encoding RNA chaperon Hfq down-regulated the transcription levels of yasI encoding acyl-homoserine lactones (AHLs) synthase and yasR encoding AHLs receptor in strain R3. The assay based on fusion reporter of yasI-lacZ showed that Hfq regulates the expression of yasR at both transcriptional and translational levels. In addition, Hfq affects the expression of yasI via yasR. Further analysis indicated that the 5'UTR region of yasR is necessary for Hfq to control QS. In addition, the deletion of hfq increases the unstability of the target yasR mRNA. Based on transcriptome sequencing and bioinformatic analysis together with molecular experiments, Hfq-dependent sRNA00002 was identified to be involved in positively regulating QS in Pseudoalternas sp. R3. It was found that sRNA00002 deficiency causes the decrease in expression of yasI and yasR, and thus abolishes the production of AHLs in strain R3. It was concluded that Hfq-dependent sRNA00002 regulates yasR expression by base-pairing with target yasR mRNA at 5'UTR region and altering the stability of yasR mRNA. Our work paves the way for understanding the regulation mechanism of Hfq-dependent sRNAs on QS in Pseudoalteromonas.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Pseudoalteromonas/metabolismo , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Bacterianas/genética , Proteína de Factor 1 del Huésped/genética , Percepción de Quorum , Proteínas Represoras/genética , Transactivadores/genética , Factores de Transcripción/genética
18.
Sci Total Environ ; 778: 146266, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-33721635

RESUMEN

Dissolution-precipitation processes on the surface of brushite (dicalcium phosphate dihydrate, DCPD) control the migration and transformation of potentially harmful elements (PHEs). The incorporation of impurities could affect the properties of DCPD and its interactions with PHEs. In this study, we synthesized Fe3+-bearing DCPD via coprecipitation and investigated the influence of Fe3+ incorporation on the crystal structure, hydrolysis process, and Cd removal performance. Fe-bearing DCPD had lattice expansion due to the coupled substitution of Fe3+ and NH4+ for Ca2+. Therefore, the Cd removal performance of Fe-DCPD was enhanced, with a maximum Cd uptake capacity of 431.6 mg/g, which is 1.77 times that of Fe-free DCPD (244.4 mg/g). Furthermore, Fe-DCPD also exhibited a faster hydrolysis rate, which was up to 2.67 times that of Fe-free DCPD and accelerated Cd's transfer to the stable host mineral, hydroxylapatite. Cd was first caught by the DCPD surface in a weakly crystalline form and then incorporated into the hydroxylapatite structure during crystallization. Based on the X-ray photoelectron spectroscopy and thermogravimetric analysis results, we concluded that the decrease in interstitial water due to Fe incorporation was responsible for accelerating hydrolysis and enhancing Cd immobilization. In all, the incorporation of Fe3+ into DCPD could promote its transformation and improve its Cd uptake capacity. Our results suggest that Fe-DCPD could be a promising candidate for environmental remediation.

19.
J Hazard Mater ; 412: 125261, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33550133

RESUMEN

Coprecipitation with calcium carbonate (CaCO3) could decrease the bioavailability of arsenic (As). However, in a phosphate-rich environment, some CaCO3 will be converted to hydroxylapatite (HAP). Currently, the behavior of carbonate-bound As during conversion is unclear. Therefore, we prepared bio-induced CaCO3 in an As solution and converted it to HAP. The results showed that a high concentration of arsenate promoted vaterite precipitation and the conversion of CaCO3 to HAP. The dissolution data verified the low solubility of As in HAP, though its As-bearing CaCO3 precursor released up to 88.19% As during the conversion. Furthermore, HPLC-ICP-MS data showed partial oxidation of arsenite to arsenate, suggesting that CaCO3 and HAP's structure favored the incorporation of arsenate. Our results demonstrated that the stability of heavy metal-bearing CaCO3 should be considered, and the role of HAP in the immobilization of heavy metals such as As should not be overestimated.


Asunto(s)
Arsénico , Metales Pesados , Carbonato de Calcio , Carbonatos , Durapatita
20.
Bioresour Technol ; 321: 124468, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33296774

RESUMEN

The efficient removal of ammonium nitrogen (NH4+-N) is vital to eliminating black and odorous water bodies. In this work, tidal flow constructed wetlands with gravel (TFCW-G) and with a mixture of zeolite and gravel (TFCW-Z) were set up to treat black and odorous water bodies at different hydraulic loading rates (HLRs). Results showed that zeolite significantly enhanced nitrogen removal, and the maximum NH4+-N removal efficiency of 96.69% was achieved in TFCW-Z at HLR of 3 m·d-1 with a flooding and drying cycle of 2 h. Zeolite addition changed the microbial community structure and the abundance of nitrification genes. Comammox Nitrospira was the only enriched strain accounting for NH4+-N removal in TFCW-G, while the co-occurrence of comammox Nitrospira and the canonical and potential ammonia-oxidizing bacteria were identified in TFCW-Z. Summarily, high performance, together with low footprint and low maintenance cost, are characteristics that make the TFCW-Z a promising and competitive alternative.


Asunto(s)
Compuestos de Amonio , Humedales , Desnitrificación , Nitrógeno , Eliminación de Residuos Líquidos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...