Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(6): 066301, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37625039

RESUMEN

Though the observation of the quantum anomalous Hall effect and nonlocal transport response reveals nontrivial band topology governed by the Berry curvature in twisted bilayer graphene, some recent works reported nonlinear Hall signals in graphene superlattices that are caused by the extrinsic disorder scattering rather than the intrinsic Berry curvature dipole moment. In this Letter, we report a Berry curvature dipole induced intrinsic nonlinear Hall effect in high-quality twisted bilayer graphene devices. We also find that the application of the displacement field substantially changes the direction and amplitude of the nonlinear Hall voltages, as a result of a field-induced sliding of the Berry curvature hotspots. Our Letter not only proves that the Berry curvature dipole could play a dominant role in generating the intrinsic nonlinear Hall signal in graphene superlattices with low disorder densities, but also demonstrates twisted bilayer graphene to be a sensitive and fine-tunable platform for second harmonic generation and rectification.

2.
Natl Sci Rev ; 10(4): nwac232, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37180357

RESUMEN

The recently discovered nonlinear Hall effect (NHE) in a few non-interacting systems provides a novel mechanism for generating second-harmonic electrical Hall signals under time-reversal-symmetric conditions. Here, we introduce a new approach to engineering an NHE by using twisted moiré structures. We found that the twisted WSe2 bilayer exhibited an NHE when the Fermi level was tuned to the moiré flat bands. When the first moiré band was half-filled, the nonlinear Hall signal exhibited a sharp peak with a generation efficiency that was at least two orders of magnitude greater than those obtained in previous experiments. We discuss the possible origins of the diverging generation efficiency in twisted WSe2 based on resistivity measurements, such as moiré-interface-induced correlation effects and mass-diverging-type continuous Mott transition. This study demonstrates not only how interaction effects can combine with Berry curvature dipoles to produce novel quantum phenomena, but also the potential of NHE measurements as a new tool for studying quantum criticality.

3.
Nature ; 616(7956): 270-274, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37045919

RESUMEN

The most recognizable feature of graphene's electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity1,2 but thermal excitations can overcome the disorder at elevated temperatures and create an electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering3-5 and hydrodynamic flow6-8. However, little is known about the plasma's behaviour in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behaviour is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) scattering3-5,9-14. With the onset of Landau quantization in a magnetic field of a few tesla, where the electron-hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening15, indicating a many-body origin. Clear parallels with magnetotransport in strange metals12-14 and so-called quantum linear magnetoresistance predicted for Weyl metals16 offer an interesting opportunity to further explore relevant physics using this well defined quantum-critical two-dimensional system.

4.
Nat Commun ; 13(1): 1777, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365627

RESUMEN

Electrically interfacing atomically thin transition metal dichalcogenide semiconductors (TMDSCs) with metal leads is challenging because of undesired interface barriers, which have drastically constrained the electrical performance of TMDSC devices for exploring their unconventional physical properties and realizing potential electronic applications. Here we demonstrate a strategy to achieve nearly barrier-free electrical contacts with few-layer TMDSCs by engineering interfacial bonding distortion. The carrier-injection efficiency of such electrical junction is substantially increased with robust ohmic behaviors from room to cryogenic temperatures. The performance enhancements of TMDSC field-effect transistors are well reflected by the low contact resistance (down to 90 Ωµm in MoS2, towards the quantum limit), the high field-effect mobility (up to 358,000 cm2V-1s-1 in WSe2), and the prominent transport characteristics at cryogenic temperatures. This method also offers possibilities of the local manipulation of atomic structures and electronic properties for TMDSC device design.

5.
Nat Nanotechnol ; 17(4): 390-395, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35210566

RESUMEN

Twisted heterostructures of two-dimensional crystals offer almost unlimited scope for the design of new metamaterials. Here we demonstrate a room temperature ferroelectric semiconductor that is assembled using mono- or few-layer MoS2. These van der Waals heterostructures feature broken inversion symmetry, which, together with the asymmetry of atomic arrangement at the interface of two 2D crystals, enables ferroelectric domains with alternating out-of-plane polarization arranged into a twist-controlled network. The last can be moved by applying out-of-plane electrical fields, as visualized in situ using channelling contrast electron microscopy. The observed interfacial charge transfer, movement of domain walls and their bending rigidity agree well with theoretical calculations. Furthermore, we demonstrate proof-of-principle field-effect transistors, where the channel resistance exhibits a pronounced hysteresis governed by pinning of ferroelectric domain walls. Our results show a potential avenue towards room temperature electronic and optoelectronic semiconductor devices with built-in ferroelectric memory functions.

6.
ACS Nano ; 15(4): 6633-6644, 2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33819027

RESUMEN

Wrinkling two-dimensional (2D) transition metal dichalcogenides (TMDCs) provides a mechanism to adjust the physical and chemical properties as per need. Traditionally, TMDCs wrinkles achieved by transferring exfoliated materials on prestretched polymer suffer from poor control and limited sample area, which significantly hinders desirable applications. Herein, we fabricate large-area monolayer TMDCs wrinkle arrays directly on the m-quartz substrate using strained epitaxy. The uniaxial thermal expansion coefficient mismatch between the substrate and TMDCs materials enables the generation of large uniaxial thermal strain. By quenching the TMDCs after growth, this uniaxial thermal strain can be quickly released as a form of wrinkle arrays along the [0001]quartz direction. Using WS2 as a model system, the size of as-grown wrinkles can be finely modulated within sub-100 nm by changing the quenching temperature. These WS2 wrinkles can be locally folded and form various multilayer structures with odd layer numbers during the transfer process. Besides, the corrugated structures in WS2 wrinkles induce significant changes to optical properties including anisotropic Raman response, enhanced photoluminescence, and second harmonic generation emissions. Furthermore, these wrinkle arrays exhibit enhanced chemical reactivity that can be selectively engineered to ribbon arrays with improved electrocatalytic performance. The developed strategy of strained epitaxy here should enable flexibility in the design of more sophisticated 2D-based structures, offering a simple but effective way toward the modulation of properties with enhanced performances.

7.
Nanoscale Horiz ; 5(9): 1309-1316, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32696773

RESUMEN

Twisted bilayer graphene provides a new two-dimensional platform for studying electron interaction phenomena and flat band properties such as correlated insulator transition, superconductivity and ferromagnetism at certain magic angles. Here, we present experimental characterization of interaction effects and superconductivity signatures in p-type twisted double-bilayer WSe2. Enhanced interlayer interactions are observed when the twist angle decreases to a few degrees as reflected by the high-order satellites in the electron diffraction patterns taken from the reconstructed domains from a conventional moiré superlattice. In contrast to twisted bilayer graphene, there is no specific magic angle for twisted WSe2. Flat band properties are observable at twist angles ranging from 1 to 4 degrees. Our work has facilitated future study in the area of flat band related properties in twisted transition metal dichalcogenide layered structures.

8.
ACS Nano ; 14(6): 7593-7601, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32491834

RESUMEN

Though chemical vapor deposition (CVD) methods have been widely used in the growth of two-dimensional transition-metal dichalcogenides (2D TMDCs), the controllable fabrication of 2D TMDCs is yet hard to achieve because of the great challenge of concisely controlling the release of precursors vapor, one of the most critical growth kinetic factors. To solve this important issue, here we report the utilization of oxide inhibitors covering Mo source during CVD reactions to manipulate the release of Mo vapor. In contrast to the lack of capability of conventional CVD methods, 2D molybdenum dichalcogenide (MoX2, X = S, Se, Te) monolayers were successfully fabricated through the proposed CVD protocol with the oxide-inhibitor-assisted growth (OIAG) strategy. In this way, despite the fact that only separated MoTe2 flakes were prepared, both MoS2 (continuous and clean) and MoSe2 (continuous but dotted) monolayer films at the scale of centimeter were obtained. The presented OIAG method enables a comprehensive understanding and precise control of the reaction kinetics for improved growth of 2D MoX2.

9.
J Colloid Interface Sci ; 546: 11-19, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30901688

RESUMEN

HYPOTHESIS: Transfer of chemical-vapor-deposition (CVD) grown monolayer graphene from one substrate to another requires a transfer agent. The transfer agent usually needs to be removed by washing with organic solvent such as acetone or high temperature annealing, which is harmful to the structure integrity and intrinsic property of a graphene film. Here, we propose the use of camphor as a transfer agent to transfer monolayer graphene onto a target dielectric substrate, which bypasses these demanding steps and only needs the common alcohol solvent rinsing. EXPERIMENTS: To facilitate a crack-free graphene transfer, the proposed approach allows the camphor supported polycrystalline graphene to be rationally fastened with a thickened and solidified edge bead (i.e. camphor oil-filled boundary). A layer of camphor was first deposited onto a graphene/copper surface. The backside copper substrate was then etched away, whilst the camphor/graphene bilayer was placed onto a SiO2/Si substrate. Finally, the camphor remaining on the camphor/graphene/SiO2/Si sublimed into a vapor. The graphene/SiO2 stack was then examined by microscopic, spectral and electrical characterization. FINDINGS: The results of our examination suggest that the proposed method can guarantee a clean and damage-free graphene transfer. This method is particularly attractive in the application area for nano/micro-electronics, where it provides CVD-grown graphene the ability to be used on wide varieties of substrates that are sensitive to organic solvents and high temperature.

10.
Nano Lett ; 19(3): 1736-1742, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30720286

RESUMEN

Two-dimensional transition metal dichalcogenides (TMDCs) are recently emerged electronic systems with various novel properties, such as spin-valley locking, circular dichroism, valley Hall effect, and superconductivity. The reduced dimensionality and large effective masses further produce unconventional many-body interaction effects. Here we reveal strong interaction effects in the conduction band of MoS2 by transport experiment. We study the massive Dirac electron Landau levels (LL) in high-quality MoS2 samples with field-effect mobilities of 24 000 cm2/(V·s) at 1.2 K. We identify the valley-resolved LLs and low-lying polarized LLs using the Lifshitz-Kosevitch formula. By further tracing the LL crossings in the Landau fan diagram, we unambiguously determine the density-dependent valley susceptibility and the interaction enhanced g-factor from 12.7 to 23.6. Near integer ratios of Zeeman-to-cyclotron energies, we discover LL anticrossings due to the formation of quantum Hall Ising ferromagnets, the valley polarizations of which appear to be reversible by tuning the density or an in-plane magnetic field. Our results provide evidence for many-body interaction effects in the conduction band of MoS2 and establish a fertile ground for exploring strongly correlated phenomena of massive Dirac electrons.

11.
Nat Commun ; 10(1): 611, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723283

RESUMEN

Electrons hopping in two-dimensional honeycomb lattices possess a valley degree of freedom in addition to charge and spin. In the absence of inversion symmetry, these systems were predicted to exhibit opposite Hall effects for electrons from different valleys. Such valley Hall effects have been achieved only by extrinsic means, such as substrate coupling, dual gating, and light illuminating. Here we report the first observation of intrinsic valley Hall transport without any extrinsic symmetry breaking in the non-centrosymmetric monolayer and trilayer MoS2, evidenced by considerable nonlocal resistance that scales cubically with local resistance. Such a hallmark survives even at room temperature with a valley diffusion length at micron scale. By contrast, no valley Hall signal is observed in the centrosymmetric bilayer MoS2. Our work elucidates the topological origin of valley Hall effects and marks a significant step towards the purely electrical control of valley degree of freedom in topological valleytronics.

12.
ACS Nano ; 12(1): 635-643, 2018 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-29253328

RESUMEN

Morphology management for tailoring the properties of monolayer transition-metal dichalcogenides (TMDCs), that is, molybdenum disulfide (MoS2), has attracted great interest for promising applications such as in electrocatalysis and optoelectronics. Nevertheless, little progress has been made in engineering the shape of MoS2. Herein, we introduce a modified chemical vapor deposition method to grow monolayer MoS2 dendrites by pretreating substrates with adhesive tapes. The as-grown MoS2 crystals are featured with hexagonal backbones with fractal shapes and tunable degrees. By characterizing the atomic structure, it is found that these morphologies are mainly initiated from the twin defect derived growth and controlled by the S:Mo vapor ratio. Due to the accumulated sulfur vacancies in the cyclic twin regions, strong enhancement of photoluminescence emission is localized, which determines the shape dependency of optical property. This work not only enriches the understanding of the twin defects derived crystal growth mechanism and extends its applications from nanomaterials to two-dimensional crystals, but also offers a robust and controllable protocol for shape-engineered monolayer TMDCs in electrochemical and optoelectronic applications.

13.
Nanotechnology ; 29(3): 035204, 2018 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-29155410

RESUMEN

Atomically-thin black phosphorus (BP) field-effect transistors show strong-weak localization transition, which is tunable through gate voltages. Hopping transports through charge impurity-induced localized states are observed at low carrier density regime. Variable-range hopping model is applied to simulate scattering behaviors of charge carriers. In the high carrier concentration regime, a negative magnetoresistance indicates weak localization effects. The extracted phase coherence length is power-law temperature-dependent [Formula: see text] and demonstrates inelastic electron-electron interactions and the 2D transport features in few-layer BP field-effect devices. The competition between localization and phase coherence lengths is investigated and analyzed based on observed gate-tunable strong-weak localization transition in few-layer BP.

14.
ACS Nano ; 11(11): 11330-11336, 2017 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-29023097

RESUMEN

This work reports an experimental study on an antiferromagnetic honeycomb lattice of MnPS3 that couples the valley degree of freedom to a macroscopic antiferromagnetic order. The crystal structure of MnPS3 is identified by high-resolution scanning transmission electron microscopy. Layer-dependent angle-resolved polarized Raman fingerprints of the MnPS3 crystal are obtained, and the Raman peak at 383 cm-1 exhibits 100% polarity. Temperature dependences of anisotropic magnetic susceptibility of the MnPS3 crystal are measured in a superconducting quantum interference device. Anisotropic behaviors of the magnetic moment are explored on the basis of the mean field approximation model. Ambipolar electronic conducting channels in MnPS3 are realized by the liquid gating technique. The conducting channel of MnPS3 offers a platform for exploring the spin/valleytronics and magnetic orders in 2D limitation.

15.
Phys Rev Lett ; 118(6): 067702, 2017 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-28234544

RESUMEN

We fabricate high-mobility p-type few-layer WSe_{2} field-effect transistors and surprisingly observe a series of quantum Hall (QH) states following an unconventional sequence predominated by odd-integer states under a moderate strength magnetic field. By tilting the magnetic field, we discover Landau level crossing effects at ultralow coincident angles, revealing that the Zeeman energy is about 3 times as large as the cyclotron energy near the valence band top at the Γ valley. This result implies the significant roles played by the exchange interactions in p-type few-layer WSe_{2}, in which itinerant or QH ferromagnetism likely occurs. Evidently, the Γ valley of few-layer WSe_{2} offers a unique platform with unusually heavy hole carriers and a substantially enhanced g factor for exploring strongly correlated phenomena.

16.
ACS Appl Mater Interfaces ; 9(1): 763-770, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27996232

RESUMEN

Monolayer MoS2 crystals with tailored morphologies have been shown to exhibit shape-dependent properties and thus have potential applications in building nanodevices. However, a deep understanding of the relationship between the shape and defect structures in monolayer MoS2 is yet elusive. Monolayer MoS2 crystals in polygonal shapes, including triangle, tetragon, pentagon, and hexagon, are grown using the chemical vapor deposition technique. Compared with other shapes, the hexagon MoS2 crystal contains more electron-donor defects that are mainly due to sulfur vacancies. In the triangular shapes, the defects are mainly distributed at the vertices of the shapes while they are located at the center of hexagonal shapes. On the basis of the Coulomb interaction of exciton and trion, quantitative calculations demonstrate a high electron density (∼1012/cm2) and high Fermi level (EC - EF = 15 meV) for hexagonal shape at room temperature, compared to triangular shapes (∼1011/cm2, EC - EF ≈ 30 meV). These findings verify that a much higher number of donor-like sulfur vacancies are formed in hexagonal MoS2 shapes. This property allows more electrons or trions to localize in such sites through the physical/chemical adsorption of O2/H2O, which results in a strong enhancement of the light emission efficiency in the hexagonal crystal. The findings provide a better understanding of the formation of shape-dependent defect structures of monolayer MoS2 crystals and are inspiring for applications in fabricating nanoelectronic and optoelectronic devices through defect engineering.

17.
Nano Lett ; 16(12): 7768-7773, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960491

RESUMEN

We demonstrate that a field-effect transistor (FET) made of few-layer black phosphorus (BP) encapsulated in hexagonal boron nitride (h-BN) in vacuum exhibits a room-temperature hole mobility of 5200 cm2/(Vs), being limited just by the phonon scattering. At cryogenic temperatures, the FET mobility increases up to 45 000 cm2/(Vs), which is five times higher compared to the mobility obtained in earlier reports. The unprecedentedly clean h-BN-BP-h-BN heterostructure exhibits Shubnikov-de Haas oscillations and a quantum Hall effect with Landau level (LL) filling factors down to v = 2 in conventional laboratory magnetic fields. Moreover, carrier density independent effective mass of m* = 0.26 m0 is measured, and a Landé g-factor of g = 2.47 is reported. Furthermore, an indication for a distinct hole transport behavior with up- and down-spin orientations is found.

18.
Sci Rep ; 6: 33597, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27677326

RESUMEN

The superior performance of metal oxide nanocomposites has introduced them as excellent candidates for emerging energy sources, and attracted significant attention in recent years. The drawback of these materials is their inherent structural pulverization which adversely impacts their performance and makes the rational design of stable nanocomposites a great challenge. In this work, functional V2O5-C-SnO2 hybrid nanobelts (VCSNs) with a stable structure are introduced where the ultradispersed SnO2 nanocrystals are tightly linked with glucose on the V2O5 surface. The nanostructured V2O5 acts as a supporting matrix as well as an active electrode component. Compared with existing carbon-V2O5 hybrid nanobelts, these hybrid nanobelts exhibit a much higher reversible capacity and architectural stability when used as anode materials for lithium-ion batteries. The superior cyclic performance of VCSNs can be attributed to the synergistic effects of SnO2 and V2O5. However, limited data are available for V2O5-based anodes in lithium-ion battery design.

19.
Nat Commun ; 7: 12955, 2016 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-27651106

RESUMEN

In few-layer transition metal dichalcogenides (TMDCs), the conduction bands along the ΓK directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by threefold rotational symmetry and time reversal symmetry. In even layers, the extra inversion symmetry requires all states to be Kramers degenerate; whereas in odd layers, the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. Here we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations and the observation of the onset of quantum Hall plateaus for the Q-valley electrons in few-layer TMDCs. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMDC devices and a spin Zeeman effect in all even-layer TMDC devices, which provide a crucial information for understanding the unique properties of multi-valley band structures of few-layer TMDCs.

20.
Sci Rep ; 6: 22494, 2016 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-26931057

RESUMEN

Y-shaped ZnO nanobelts are fabricated by a simple thermal evaporation method. Transmission Electron Microscopy (TEM) investigation shows that these ZnO nanobelts are crystals with twinned planes {11-21}. Convergent Beam Electron Diffraction studies show that the two sides of twinned nanobelts are O-terminated towards the twinned boundary and Zn-terminated outwards. The two branches of twinned ZnO nanobelts grow along [11-26] from the trunk and then turn to the polarization direction [0001]. The featured Y-shape morphology and TEM characterizations indicate that the growth of these novel nanostructures is driven by an unusual twinned dislocation growth mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...