Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(4)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38675294

RESUMEN

MEMS accelerometers are significantly impacted by temperature and noise, leading to a considerable compromise in their accuracy. In response to this challenge, we propose a parallel denoising and temperature compensation fusion algorithm for MEMS accelerometers based on RLMD-SE-TFPF and GRU-attention. Firstly, we utilize robust local mean decomposition (RLMD) to decompose the output signal of the accelerometer into a series of product function (PF) signals and a residual signal. Secondly, we employ sample entropy (SE) to classify the decomposed signals, categorizing them into noise segments, mixed segments, and temperature drift segments. Next, we utilize the time-frequency peak filtering (TFPF) algorithm with varying window lengths to separately denoise the noise and mixed signal segments, enabling subsequent signal reconstruction and training. Considering the strong inertia of the temperature signal, we innovatively introduce the accelerometer's output time series as the model input when training the temperature compensation model. We incorporate gated recurrent unit (GRU) and attention modules, proposing a novel GRU-MLP-attention model (GMAN) architecture. Simulation experiments demonstrate the effectiveness of our proposed fusion algorithm. After processing the accelerometer output signal through the RLMD-SE-TFPF denoising algorithm and the GMAN temperature drift compensation model, the acceleration random walk is reduced by 96.11%, with values of 0.23032 g/h/Hz for the original accelerometer output signal and 0.00895695 g/h/Hz for the processed signal.

2.
Sensors (Basel) ; 23(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005594

RESUMEN

The space-air-ground integrated network (SAGIN) represents a pivotal component within the realm of next-generation mobile communication technologies, owing to its established reliability and adaptable coverage capabilities. Central to the advancement of SAGIN is propagation channel research due to its critical role in aiding network system design and resource deployment. Nevertheless, real-world propagation channel research faces challenges in data collection, deployment, and testing. Consequently, this paper designs a comprehensive simulation framework tailored to facilitate SAGIN propagation channel research. The framework integrates the open source QuaDRiGa platform and the self-developed satellite channel simulation platform to simulate communication channels across diverse scenarios, and also integrates data processing, intelligent identification, algorithm optimization modules in a modular way to process the simulated data. We also provide a case study of scenario identification, in which typical channel features are extracted based on channel impulse response (CIR) data, and recognition models based on different artificial intelligence algorithms are constructed and compared.

3.
Sensors (Basel) ; 23(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687887

RESUMEN

With the development of underwater technology and the increasing demand for ocean development, more and more intelligent equipment is being applied to underwater scientific missions. Specifically, autonomous underwater vehicle (AUV) clusters are being used for their flexibility and the advantages of carrying communication and detection units, often performing underwater tasks in formation. In order to locate AUVs with high precision, we introduce an unmanned surface vehicle (USV) with global positioning system (GPS) and propose a USV-AUV network. Furthermore, we propose an ultra-short baseline (USBL) acoustic cooperative location scheme with an orthogonal array, which is based on underwater communication with sonar. Based on the derivation of the Fisher information matrix formula under Cartesian parameters, we analyze the positioning accuracy of AUVs in different positions under the USBL positioning mode to derive the optimal array of the AUV formation. In addition, we propose a USV path planning scheme based on Dubins path planning functions to assist in locating the AUV formation. The simulation results verify that the proposed scheme can ensure the positioning accuracy of the AUV formation and help underwater research missions.

4.
Micromachines (Basel) ; 14(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37374761

RESUMEN

MEMS gyroscopes are one of the core components of inertial navigation systems. The maintenance of high reliability is critical for ensuring the stable operation of the gyroscope. Considering the production cost of gyroscopes and the inconvenience of obtaining a fault dataset, in this study, a self-feedback development framework is proposed, in which a dualmass MEMS gyroscope fault diagnosis platform is designed based on MATLAB/Simulink simulation, data feature extraction, and classification prediction algorithm and real data feedback verification. The platform integrates the dualmass MEMS gyroscope Simulink structure model and the measurement and control system, and reserves various algorithm interfaces for users to independently program, which can effectively identify and classify seven kinds of signals of the gyroscope: normal, bias, blocking, drift, multiplicity, cycle and internal fault. After feature extraction, six algorithms, ELM, SVM, KNN, NB, NN, and DTA, were respectively used for classification prediction. The ELM and SVM algorithms had the best effect, and the accuracy of the test set was up to 92.86%. Finally, the ELM algorithm is used to verify the actual drift fault dataset, and all of them are successfully identified.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...