Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Ther Med ; 27(3): 117, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38361515

RESUMEN

Liquiritin (LIQ) is a flavonoid known for its cardioprotective properties, extracted from Glycyrrhiza uralensis Fisch. The purpose of the present study was to investigate the protective mechanism of LIQ against hypoxia/reoxygenation (H/R) injury through in vitro experiments, with the goal of enhancing its pharmacological effects. Initially, network pharmacology was employed to explore the targets and mechanisms of LIQ. Subsequently, an in vitro H/R model was established using H9c2 cells. Potential targets for LIQ and myocardial ischemia-reperfusion injury (MIRI) were identified through online databases. The STRING, Cytoscape and DAVID databases were used to extract intersecting targets and mechanisms. In vitro experiments were conducted to validate these findings, assessing cardiac enzymes, oxidative stress indicators, mitochondrial fluorescence, apoptotic fluorescence, inflammation and related protein expression. The network pharmacological analysis revealed that the protective effects of LIQ on MIRI involve oxidative stress, inflammation and apoptosis. The results of in vitro experimental validation demonstrated that LIQ significantly reduced the activities of lactated dehydrogenase and creatine kinase isoenzyme-MB (P<0.05 or 0.01), as well as the level of malondialdehyde (P<0.01). It also inhibited the production of reactive oxygen species (P<0.01), the release of inflammatory factors (P<0.05 or 0.01) and apoptosis (P<0.01). By contrast, the LIQ pre-treatment group exhibited a significant increase in mitochondrial membrane potential level (P<0.05 or 0.01) and the activities of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase (P<0.05 or 0.01). Furthermore, LIQ reduced the protein expressions of TNF-α receptor type 1 (TNFR1) and MMP9, along with the level of NF-κB phosphorylation (P<0.05 or 0.01). In conclusion, LIQ mitigated H/R-induced cardiomyocyte injury through mechanisms that may involve antioxidants, anti-apoptotic effects, protection against mitochondrial damage and suppression of inflammatory levels. These effects are achieved via inhibition of the TNFR1/NF-κB/MMP9 pathway.

2.
J Ethnopharmacol ; 323: 117608, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38158098

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xianglianhuazhuo formula (XLHZ) has a potential therapeutic effect on chronic atrophic gastritis (CAG). However, the specific molecular mechanism remains unclear. AIM OF THE STUDY: To evaluate the effect of XLHZ on CAG in vitro and in vivo and its potential mechanisms. METHODS: A rat model of CAG was established using a composite modeling method, and the pathological changes and ultrastructure of gastric mucosa were observed. YY1/miR-320a/TFRC and ferroptosis-related molecules were detected. An MNNG-induced gastric epithelial cell model was established in vitro to evaluate the inhibitory effect of XLHZ on cell ferroptosis by observing cell proliferation, migration, invasion, apoptosis, and molecules related to ferroptosis. The specific mechanism of action of XLHZ in treating CAG was elucidated by silencing or overexpression of targets. RESULTS: In vivo experiments showed that XLHZ could improve the pathological status and ultrastructure of gastric mucosa and inhibit ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway. The results in vitro demonstrated that transfection of miR-320a mimics inhibited cell proliferation, migration, and invasion while promoting cell apoptosis. MiR-320a targeted TFRC and inhibited ferroptosis. Overexpression of TFRC reversed the inhibitory effect of miR-320a overexpression on cell proliferation. The effect of XLHZ was consistent with that of miR-320a. YY1 targeted miR-320a, and its overexpression promoted ferroptosis. CONCLUSION: XLHZ inhibited ferroptosis by regulating the YY1/miR-320a/TFRC signaling pathway, ultimately impeding the progression of CAG.


Asunto(s)
Ferroptosis , Gastritis Atrófica , MicroARNs , Ratas , Animales , MicroARNs/genética , MicroARNs/metabolismo , Gastritis Atrófica/tratamiento farmacológico , Gastritis Atrófica/genética , Transducción de Señal , Proliferación Celular
3.
Phytother Res ; 37(5): 1787-1805, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36437582

RESUMEN

Ischemia/hypoxia (I/H)-induced myocardial injury has a large burden worldwide. Hesperetin (HSP) has a cardioprotective effect, but the molecular mechanism underlying this is not clearly established. Here, we focused on the protective mechanisms of HSP against I/H-induced myocardium injury. H9c2 cardiomyocytes were challenged with CoCl2 for 22 h to imitate hypoxia after treatment groups received HSP for 4 h. The viability of H9c2 cardiomyocytes was evaluated, and cardiac function indices, reactive oxygen species, apoptosis, mitochondrial membrane potential (MMP), and intracellular Ca2+ concentration ([Ca2+ ]i ) were measured. L-type Ca2+ current (ICa-L ), myocardial contraction, and Ca2+ transients in isolated ventricular myocytes were also recorded. We found that HSP significantly increased the cell viability, and MMP while significantly decreasing cardiac impairment, oxidative stress, apoptosis, and [Ca2+ ]i caused by CoCl2 . Furthermore, HSP markedly attenuated ICa-L , myocardial contraction, and Ca2+ transients in a concentration-dependent manner. Our findings suggest a protective mechanism of HSP on I/H-induced myocardium injury by restoring oxidative balance, inhibiting apoptosis, improving mitochondrial function, and reducing Ca2+ influx via L-type Ca2+ channels (LTCCs). These data provide a new direction for HSP applied research as a LTCC inhibitor against I/H-induced myocardium injury.


Asunto(s)
Miocitos Cardíacos , Estrés Oxidativo , Humanos , Hipoxia , Homeostasis , Isquemia/metabolismo , Apoptosis
4.
Drug Des Devel Ther ; 16: 4111-4125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483459

RESUMEN

Purpose: Despite significant advances in interventional treatment, myocardial infarction (MI) and subsequent cardiac fibrosis remain major causes of high mortality worldwide. Liquiritin (LQ) is a flavonoid extract from licorice that possesses a variety of pharmacological properties. However, to our knowledge, the effects of LQ on myocardial fibrosis after MI have not been reported in detail. The aim of our research was to explore the potential role and mechanism of LQ in MI-induced myocardial damage. Methods: The MI models were established by ligating the left anterior descending branch of the coronary artery. Next, rats were orally administered LQ once a day for 14 days. Biochemical assays, histopathological observations, ELISA, and Western blotting analyses were then conducted. Results: LQ improved the heart appearance and ECG, decreased cardiac weight index and reduced levels of cardiac-specific markers such as CK, CK-MB, LDH, cTnI and BNP. Meanwhile, LQ reduced myocardial infarct size and improved hemodynamic parameters such as LVEDP, LVSP and ±dp/dtmax. Moreover, H&E staining showed that LQ attenuated the pathological damage caused by MI. Masson staining showed that LQ alleviated myocardial cell disorder and fibrosis while reducing collagen deposition. LQ also decreased the levels of oxidative stress and inflammation. Western blotting demonstrated that LQ significantly down-regulated the expressions of Collagen I, Collagen III, TGF-ß1, MMP-9, α-SMA, CCL5, and p-NF-κB. Conclusion: LQ protected against myocardial fibrosis following MI by improving cardiac function, and attenuating oxidative damage and inflammatory response, which may be associated with inhibition of CCL5 expression and the NF-κB pathway.


Asunto(s)
Infarto del Miocardio , FN-kappa B , Ratas , Animales , Transducción de Señal , Fibrosis , Infarto del Miocardio/tratamiento farmacológico
5.
Front Pharmacol ; 13: 1033874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313293

RESUMEN

Huazhuojiedu decoction (HZJDD), a traditional Chinese medicine prescription, has been clinically proven to be an effective treatment for ulcerative colitis (UC). However, the mechanism of HZJDD in the treatment of UC remains unclear. This study combined network pharmacology with experimental validation to explore the potential mechanism of HZJDD on UC. First, the relationship network diagrams between HZJDD and UC were established based on multiple databases. Then, the HZJDD-UC intersection genes target network was constructed and Gene Ontology-Biological processes (GO-BP) analysis was performed to discover the potential pharmacological mechanism. Finally, the results of GO-BP were verified in dextran sulfate sodium salt (DSS) induced UC rats. The network pharmacology results showed that 119 active components and 146 potential targets were screened for HZJDD, and six of the top 15 biological processes belonged to inflammatory response, cellular response to hypoxia, and cellular response to lipopolysaccharide (LPS). The GO-BP results indicated that the mechanism of HZJDD treatment of UC was related to inflammation, oxidative stress, and the regulation of LPS. Animal experiments showed that HZJDD could significantly reduce the disease activity index (DAI) score, improve colon length, and effectively repair the histomorphological and micromorphological changes in DSS-induced UC rats. Moreover, HZJDD reduced the expressions of CRP, TNF-α, IL-6, LPS, IL-1ß, and IL-18; downregulated the activity of MDA; and upregulated the activities of CAT, GSH, and SOD in DSS-induced UC rats. Furthermore, HZJDD suppressed the expression of the NLRP3/caspase-1 signaling pathway at the gene and protein levels to inhibit pyroptosis. Network pharmacology and animal experiments showed that HZJDD exerted a therapeutic effect on DSS-induced UC rats by reducing inflammation, oxidative stress, and restraining the NLRP3/caspase-1 signaling pathway to inhibit pyroptosis.

6.
Int Immunopharmacol ; 110: 108926, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35728306

RESUMEN

BACKGROUND AND OBJECTIVE: Nephrotoxicity induced by the chemotherapeutic drug arsenic trioxide (ATO) is often overlooked, and the underlying mechanisms remain poorly understood. Based on network pharmacology and experimental validation, this study investigates the protection of 6-gingerol (6G) against ATO-induced nephrotoxicity and the potential mechanisms. METHODS: We screened and collected 6G and disease-related targets and then imported the interaction targets into a String database to construct protein-protein interaction (PPI) networks. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Mice were injected intraperitoneally with ATO (5 mg/kg) for seven days to induce nephrotoxicity, and then the histological morphology of the kidneys, biochemical indices of serum and tissues, and associated protein expressions were observed. RESULTS: The network pharmacology results revealed that the effects of 6G against nephrotoxicity are closely related to apoptosis, and the MAPKs pathway was screened for validation. In animal experiments, 6G improved the histopathological morphology of the kidneys, reduced the levels of renal function markers, enhanced antioxidant activity, and decreased the levels of inflammation. Furthermore, 6G reduced apoptotic cells in kidney tissues, decreased the levels of Bax and c-Caspase-3, and increased the level of Bcl-2. The results of immunohistochemistry and western blotting revealed that 6G significantly inhibited the expressions of p-p38, p-ERK, and p-JNK. CONCLUSION: The results comprehensively demonstrate the protective effects of 6G against ATO-induced nephrotoxicity. The effects are related to anti-oxidant, anti-inflammatory, and anti-apoptotic properties, possibly through inhibition of the MAPKs pathway.


Asunto(s)
Arsenicales , Animales , Antiinflamatorios , Antioxidantes , Trióxido de Arsénico , Arsenicales/farmacología , Catecoles , Alcoholes Grasos , Ratones , Óxidos
7.
Front Pharmacol ; 13: 868393, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571130

RESUMEN

Background and Objective: Arsenic trioxide (As2O3) induced cardiotoxicity to limit the clinical applications of the effective anticancer agent. 6-Gingerol (6G) is the main active ingredient of ginger, a food with many health benefits. The present study aims to investigate the potential pharmacological mechanisms of 6G on As2O3-induced myocardial injury. Methods and Results: Fifty KunMing mice were divided into five groups (n = 10) receiving: 1) physiological saline; 2) 6G (20 mg/kg) alone; 3) As2O3 (5 mg/kg); 4) 6G (10 mg/kg) and As2O3 (5 mg/kg); 5) 6G (20 mg/kg) and As2O3 (5 mg/kg). 6G was given orally and As2O3 was given intraperitoneally once per day for seven consecutive days. Biochemical, histopathological, transmission electron microscopy, ELISA, and western blotting analyses were then performed. Based on the resultant data, As2O3 was found to induce cardiotoxicity in mice. 6G significantly ameliorated As2O3-induced heart injury, histopathological changes, oxidative stress, myocardial mitochondrial damage, inflammation, and cardiomyocyte apoptosis, while reversed As2O3-induced inhibition of the AMPK/SIRT1/PGC-1α pathway. Conclusion: Our experimental results reveal that 6G effectively counteracts As2O3-induced cardiotoxicity including oxidative stress, inflammation and apoptosis, which might be attributed to its activation action on AMPK/SIRT1/PGC-1α signaling pathway.

8.
J Pharm Pharmacol ; 74(8): 1133-1139, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35511715

RESUMEN

OBJECTIVES: Gingerols are bioactive compounds derived from ginger, our experiment investigates the effects of 6-, 8- and 10-Gin on the human ether-à-go-go-related gene (hERG) K+ channels by using patch clamp technology. KEY FINDINGS: hERG K+ currents were suppressed by 6-, 8- and 10-Gin in a concentration-dependent manner. The IC50 values of 6-, 8- and 10-Gin were 41.5, 16.1 and 86.5 µM for the hERG K+ currents, respectively. The maximum inhibitory effects caused by 6-, 8- and 10-Gin were 44.3% ± 2.0%, 88.6% ± 1.3% and 63.1% ± 1.1%, respectively, and the effects were almost completely reversible. CONCLUSION: These findings suggest that 8-Gin is the most potent hERG K+ channel inhibitor among gingerol components and may offer a new approach for understanding and treating cancer.


Asunto(s)
Canales de Potasio Éter-A-Go-Go , Zingiber officinale , Catecoles , Canales de Potasio Éter-A-Go-Go/genética , Éteres , Alcoholes Grasos , Células HEK293 , Humanos , Bloqueadores de los Canales de Potasio/farmacología
9.
J Nutr Biochem ; 104: 108975, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35245652

RESUMEN

Ginger, one of the most widely consumed condiment for various foods and beverages, has many pharmacological effects. 6-gingerol, a naturally occurring phenol, is one of the major pungent constituents of ginger. The purpose of this study was to characterize the effect of 6-gingerol on the p38/Nrf2/HO-1 and p38/NF-κB signaling pathway, as a possible means of combating hypoxia-related oxidative stress. H9c2 cells were chemically induced with CoCl2 to mimic hypoxia-associated cellular damage. Cardiomyocyte injury was assessed by lactate dehydrogenase and creatine kinase. Reactive oxygen species production was assessed by 2',7'-dichlorodihydrofluorescein diacetate. The antioxidative property of 6-gingerol was measured by estimating the activities of superoxide dismutase, catalase, glutathione and glutathione disulfide. Apoptosis was detected by flow cytometry after Annexin V-FITC-propidium iodide double staining. Western blotting was used to evaluate levels of p-p38, p38, cytoplasm p65, nuclear p65, total p65, nuclear Nrf2, total Nrf2, Keap1, HIF-1α, and HO-1. 6-gingerol was able to counter hypoxia-induced cardiomyocyte injury as evidenced by inhibiting the levels of oxidative stress indexes and increasing the percentage of apoptosis. Furthermore, 6-gingerol was able to down-regulate p-p38/p38, nuclear p65, total p65 and Keap1 expression induced by CoCl2 stimulation and increased cytoplasm p65, nuclear Nrf2, total Nrf2, HO-1, and HIF-1α expression. However, treatment with specific Nrf2 inhibitor blunted the activation of Nrf2 signaling and removed the protective effects of 6-gingerol. These experiments provide evidence that 6-gingerol exerts cytoprotective effects, which may be associated with the regulation of oxidative stress and apoptosis, potentially through activating the Nrf2 pathway and inhibiting the p38/NF-κB pathways.


Asunto(s)
Factor 2 Relacionado con NF-E2 , FN-kappa B , Catecoles , Alcoholes Grasos , Hemo-Oxigenasa 1/metabolismo , Humanos , Hipoxia , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
10.
UCL Open Environ ; 4: e042, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37228471

RESUMEN

Moisture in building envelopes increases the energy consumption of buildings and induces mould growth, which may be amplified within the area of thermal bridges due to their different hygrothermal properties and complex structures. In this study, we aimed to (1) reveal the moisture distribution in the typical thermal bridge (i.e., wall-to-floor thermal bridge, WFTB) and its surrounding area and (2) investigate the mould growth in a building envelope that includes both a WFTB and the main part of a wall, in a humid and hot summer/cold winter region of China (Hangzhou City). The transient numerical simulations which lasted for 5 years were performed to model the moisture distribution. Simulated results indicate that the moisture distribution presents significant seasonal and spatial differences due to the WFTB. The areas where moisture accumulates have a higher risk of mould growth. The thermal insulation layer laid on the exterior surface of a WFTB can reduce the overall humidity while uneven moisture distribution may promote mould growth and water vapour condensation.

11.
Biomed Pharmacother ; 143: 112167, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34560535

RESUMEN

Liquiritigenin (LQ) has protective effects against various hepatotoxicities. However, its specific role on arsenic trioxide (ATO)-induced hepatotoxicity and the related biomolecular mechanisms remain unclear. The purpose of this study is to explore the protective actions of LQ on ATO-induced hepatotoxicity and its biomolecular mechanisms in mice. LQ was administered orally at 20 and 40 mg/kg per day for seven consecutive days with an intraperitoneal injection of ATO (5 mg/kg). Liver injury was induced by ATO and was alleviated by treatment with LQ as reflected by reduced histopathological damage of liver and decreased serum ALT, AST, and ALP levels. The generation of intracellular ROS induced by ATO was attenuated after LQ treatment. The levels of SOD, CAT, and GSH were elevated with LQ administration while MDA levels decreased. LQ mitigated elevated TNF-α and IL-6 levels as well as the hepatic mitochondrial damage caused by ATO. Moreover, LQ upregulated the expression of LC3-II and enhanced autophagy in the liver of ATO-induced mice. Further studies indicated that LQ significantly suppressed the expression of p-PI3K, p-AKT, and p-mTOR in ATO-induced mice. In conclusion, our findings show that LQ protects against ATO-induced hepatotoxicity due to its antioxidant and anti-inflammatory activities and enhancement of autophagy mediated by the PI3K/AKT/mTOR signaling pathway in mice.


Asunto(s)
Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Flavanonas/farmacología , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Trióxido de Arsénico , Enfermedad Hepática Inducida por Sustancias y Drogas/enzimología , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
12.
Front Pharmacol ; 12: 711701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34393792

RESUMEN

8-gingerol (8-Gin) is the series of phenolic substance that is extracted from ginger. Although many studies have revealed that 8-Gin has multiple pharmacological properties, the possible underlying mechanisms of 8-Gin against myocardial fibrosis (MF) remains unclear. The study examined the exact role and potential mechanisms of 8-Gin against isoproterenol (ISO)-induced MF. Male mice were intraperitoneally injected with 8-Gin (10 and 20 mg/kg/d) and concurrently subcutaneously injected with ISO (10 mg/kg/d) for 2 weeks. Electrocardiography, pathological heart morphology, myocardial enzymes, reactive oxygen species (ROS) generation, degree of apoptosis, and autophagy pathway-related proteins were measured. Our study observed 8-Gin significantly reduced J-point elevation and heart rate. Besides, 8-Gin caused a marked decrease in cardiac weight index and left ventricle weight index, serum levels of creatine kinase and lactate dehydrogenase (CK and LDH, respectively), ROS generation, and attenuated ISO-induced pathological heart damage. Moreover, treatment with 8-Gin resulted in a marked decrease in the levels of collagen types I and III and TGF-ß in the heart tissue. Our results showed 8-Gin exposure significantly suppressed ISO-induced autophagosome formation. 8-Gin also could lead to down-regulation of the activities of matrix metalloproteinases-9 (MMP-9), Caspase-9, and Bax protein, up-regulation of the activity of Bcl-2 protein, and alleviation of cardiomyocyte apoptosis. Furthermore, 8-Gin produced an obvious increase in the expressions of the PI3K/Akt/mTOR signaling pathway-related proteins. Our data showed that 8-Gin exerted cardioprotective effects on ISO-induced MF, which possibly occurred in connection with inhibition of ROS generation, apoptosis, and autophagy via modulation of the PI3K/Akt/mTOR signaling pathway.

13.
Pharmacol Res Perspect ; 9(5): e00852, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34390539

RESUMEN

Myocardial ischemia (MI) remains the leading cause of mortality worldwide. Therefore, it is urgent to seek the treatment to protect the heart. [8]-Gingerol (8-Gin), one of the most active ingredients in ginger, has antioxidant, cardiotonic, and cardiovascular protective properties. The present study elucidated the cardioprotection effects and underlying mechanisms of 8-Gin in isoproterenol (ISO)-induced MI. ISO (85 mg/kg/d) was subcutaneously injected for 2 consecutive days to induce acute MI model in rats. Electrocardiography, oxidative stress levels, calcium concentrations, and apoptosis degree were observed. The effects of 8-Gin on L-type Ca2+ current (ICa-L ), contraction, and Ca2+ transients were monitored in rat myocytes via patch-clamp and IonOptix detection systems. 8-Gin decreased J-point elevation and heart rate and improved pathological heart damage. Moreover, 8-Gin reduced the levels of CK, LDH, and MDA, ROS production, and calcium concentrations in myocardial tissue, while increased the activities of SOD, CAT, and GSH. In addition, 8-Gin down-regulated Caspase-3 and Bax expressions, while up-regulated Bcl-2 expression. 8-Gin produced a marked decrease in the expression of p38, JNK, and ERK1/2 proteins. 8-Gin inhibited ICa-L , cell contraction, and Ca2+ transients in isolated rat myocytes. The results indicate that 8-Gin could exert anti-myocardial ischemic effects, which may be associated with oxidative stress reduction, cardiomyocytes apoptosis inhibition through MAPK signaling pathway, and Ca2+ homeostasis regulation via ICa-L modulation.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Cardiotónicos/farmacología , Catecoles/farmacología , Alcoholes Grasos/farmacología , Corazón/efectos de los fármacos , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Agonistas Adrenérgicos beta/toxicidad , Animales , Canales de Calcio Tipo L/metabolismo , Electrocardiografía/efectos de los fármacos , Isoproterenol/toxicidad , Quinasas de Proteína Quinasa Activadas por Mitógenos/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Isquemia Miocárdica/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Transducción de Señal
14.
J Pharmacol Sci ; 147(1): 72-80, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34294375

RESUMEN

Ferulic acid (FA) is a natural polyphenol compound existing in many plants. The purpose of this study was to investigate the effect of FA on non-alcoholic steatohepatitis (NASH) induced by high-cholesterol and high-fat diet (HCHF) and its possible mechanism. Rats were fed HCHF for 12 weeks to establish NASH model. FA improved liver coefficients and had no effect on body weight changes. FA could reduce serum alanine transferase (ALT) and aspartate transferase (AST) activities. FA attenuated the increase of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein (LDL) levels caused by NASH, improved the liver pathological damage induced by NASH, and inhibited the progression of liver fibrosis. FA prevented the production of reactive oxygen species (ROS) and the increase of malondialdehyde (MDA) levels, and attenuated the decrease in superoxide dismutase (SOD) activity. Meanwhile, FA significantly restored the levels of interleukin (IL)-1ß, IL-6 and tumor necrosis factor-α (TNF-α). In addition, we also found that FA inhibited the activity of ROCK and the activation of NF-κB signaling pathway in the liver of NASH rats. Overall, FA has a hepatoprotective anti-oxidative stress and anti-inflammatory effects in NASH rats, and its mechanism may be related to the inhibition of ROCK/NF-κB signaling pathway.


Asunto(s)
Ácidos Cumáricos/farmacología , FN-kappa B/genética , FN-kappa B/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Animales , Ácidos Cumáricos/uso terapéutico , Modelos Animales de Enfermedad , Inflamación , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas Sprague-Dawley
15.
Food Sci Nutr ; 9(7): 3917-3931, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34262748

RESUMEN

10-Gingerol (10-Gin), an active ingredient extracted from ginger, has been reported to have beneficial effects on the cardiovascular system. However, 10-Gin has not been proved to offer protection against cardiomyocyte injury induced by hypoxia/reoxygenation (H/R). This study aimed to investigate the protective effects of 10-Gin against H/R-induced injury and its potential mechanisms in cardiomyocytes. A H/R injury model of H9c2 cardiomyocytes was established using 600 µmol/L CoCl2 to induce hypoxia in the cells for 24 hr and then reoxygenated for 3 hr. 10-Gin was pretreated with H9c2 cardiomyocytes for 24 hr to assess its cardiomyocyte protection. Our results showed that 10-Gin improved the viability of H9c2 cardiomyocytes in the H/R model and decreased the activities of creatine kinase, lactate dehydrogenase, and the generation of reactive oxygen species. By intracellular Ca2+ ([Ca2+]i) fluorescence, we found that 10-Gin could significantly reduce the [Ca2+]i concentration. 10-Gin administration increased the activities of antioxidase and reduced malondialdehyde content and inflammatory cytokine levels. 10-Gin also reduced the apoptosis levels. Importantly, 10-Gin administration decreased the gene and protein expressions of Wnt5a and Frizzled-2. In conclusion, 10-Gin alleviates H/R-induced cardiomyocyte injury, which is associated with the antioxidation, anti-inflammation, antiapoptosis action, and reduction of [Ca2+]i overload by suppressing the Wnt5a/Frizzled-2 pathway.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34135983

RESUMEN

Previous studies have found that Salvia miltiorrhiza (SM) injection have a protective effect on the iron overloaded (IO) heart. However, the mechanisms are not completely known. In the present study, we investigated the underlying mechanisms based on the iron transport-related proteins. The rats were randomly divided into five groups: control, IO group, low-dose SM group, high-dose SM group, and deferoxamine control group. Iron dextran was injected to establish the IO model. After 14 days of treatment, cardiac histological changes were observed by hematoxylin and eosin (H&E) staining. Iron uptake-related proteins divalent metal transporter-1 (DMT-1), transferrin receptor-1 (TfR-1), and iron export-related proteins ferroportin1 (FP1) in the heart were detected by Western blotting. The results showed that SM injection decreased cardiac iron deposition, ameliorated cardiac function, and inhibited cardiac oxidation. Most important of all, SM injection downregulated the expression of DMT-1 and TfR-1 and upregulated FP1 protein levels compared with the IO group. Our results indicated that reducing cardiac iron uptake and increasing iron excretion may be one of the important mechanisms of SM injection reducing cardiac iron deposition and improving cardiac function under the conditions of IO.

17.
Biomed Pharmacother ; 139: 111552, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33839495

RESUMEN

Hesperetin (HSP) is a natural flavonoid that offers useful curative effects for cardiovascular diseases, but its effect on myocardial ischemia and its precise mechanism remains unclear. The aim of this study is to explore the potential cardioprotective mechanism of HSP on myocardial ischemia caused by isoproterenol (ISO). Adult male Kunming mice were randomly divided into five groups: control, ISO, low-dose HSP (L-HSP, 25 mg/kg/d), high-dose HSP (H-HSP, 50 mg/kg/d), and verapamil (VER) group. Treatment groups of mice received HSP or VER for seven days, and the groups other than the control group were injected with ISO (100 mg/kg/d) subcutaneously for two consecutive days to establish a model of myocardial ischemia. Electrocardiogram and heart-histology changes were used to assess changes in myocardial architecture. The activities and the content of oxidative stress markers and inflammatory cytokines were determined and assayed using kits respectively. The expressions of proteins associated with apoptosis and the Sirt1/Nrf2 pathway were evaluated by Western blotting. The results demonstrate that VER, L-HSP and H-HSP significantly reduced the J-point displacement, heart rate, cardiac pathomorphological changes, and the levels of creatine kinase, lactated dehydrogenase, malonaldehyde, interleukin-6, and tumor necrosis factor-α in serum while promoting the activation of superoxide dismutase, catalase, glutathione in serum in the ISO-treated animals. Furthermore, L-HSP and H-HSP also reversed the ISO-induced apoptosis and the changes in the Sirt1/Nrf2 signaling pathway, as evident from the levels of proteins Bax, Bcl-2, caspase-3, Sirt1, Nrf2, NQO-1, and HO-1. In conclusion, HSP plays a protective role in ISO-induced myocardial ischemia by modulating oxidative stress, inflammation, and apoptosis via Sirt1/Nrf2 pathway activation.


Asunto(s)
Apoptosis/efectos de los fármacos , Hesperidina/farmacología , Inflamación/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Relación Dosis-Respuesta a Droga , Electrocardiografía/efectos de los fármacos , Pruebas de Función Cardíaca , Masculino , Ratones , Miocardio/patología , Vasodilatadores/uso terapéutico , Verapamilo/uso terapéutico
18.
Artículo en Inglés | MEDLINE | ID: mdl-33281916

RESUMEN

BACKGROUND: YangXinDingJi (YXDJ) capsule is one of traditional Chinese medicines (TCMs) derived from Zhigancao decoction, which is usually used for the treatment of cardiovascular disease in China. Aim of the Study. Cardiovascular events are one of the leading causes of death worldwide. Myocardial ischemia (MI) severely reduces myocyte longevity and function. The YangXinDingJi (YXDJ) capsule has been used in the treatment of clinical cardiac disease in China. Nevertheless, the underlying cellular mechanisms for the benefits to heart function resulting from the use of this capsule are still unclear. The aim of this study was to evaluate the protective effects of the YXDJ on isoprenaline-induced MI in rats and to clarify its underlying myocardial protective mechanisms based on L-type calcium channels and myocardial contractility. MATERIALS AND METHODS: Rats were randomly divided into five groups with ten rats in each group: (1) control; (2) ISO-induced model; (3) high-dose YXDJ (2.8 g/kg/day intraperitoneally for five days), (4) low-dose YXDJ (1.4 g/kg/day for five days); and (5) verapamil (n = 10 in each group). Isoproterenol (ISO) was injected subcutaneously for two consecutive days to induce the rat model of MI. Heart and biochemical parameters were obtained. The patch-clamp technique was used to observe the regulatory effects of YXDJ on the L-type calcium current (ICa-L) in isolated cardiomyocytes. An IonOptix MyoCam detection system was used to observe the contractility of YXDJ on isolated cardiomyocytes. RESULTS: YXDJ caused a significant improvement in pathological heart morphology and alleviated oxidative stress and inflammatory responses. Exposure to YXDJ caused a decrease in blockade of ICa-L in a concentration-dependent manner. CONCLUSIONS: The results indicate that YXDJ significantly inhibited inflammatory cytokine expressions, oxidative stress, and L-type Ca2+ channels, and decreased contractility in isolated rat cardiomyocytes. These findings may be relevant to the cardioprotective efficacy of YXDJ.

19.
Mol Med Rep ; 22(6): 4663-4674, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33173965

RESUMEN

Arsenic trioxide (ATO) is a frontline chemotherapy drug used in the therapy of acute promyelocytic leukemia. However, the clinical use of ATO is hindered by its cardiotoxicity. The present study aimed to observe the potential effects and underlying mechanisms of tannic acid (TA) against ATO­induced cardiotoxicity. Male rats were intraperitoneally injected with ATO (5 mg/kg/day) to induce cardiotoxicity. TA (20 and 40 mg/kg/day) was administered to evaluate its cardioprotective efficacy against ATO­induced heart injury in rats. Administration of ATO resulted in pathological damage in the heart and increased oxidative stress as well as levels of serum cardiac biomarkers creatine kinase and lactate dehydrogenase and the inflammatory marker NF­κB (p65). Conversely, TA markedly reversed this phenomenon. Additionally, TA treatment caused a notable decrease in the expression levels of cleaved caspase­3/caspase­3, Bax, p53 and Bad, while increasing Bcl­2 expression levels. Notably, the application of TA decreased the expression levels of cytochrome c, second mitochondria­derived activator of caspases and high­temperature requirement A2, which are apoptosis mitochondrial­associated proteins. The present findings indicated that TA protected against ATO­induced cardiotoxicity, which may be associated with oxidative stress, inflammation and mitochondrial apoptosis.


Asunto(s)
Trióxido de Arsénico/toxicidad , Miocitos Cardíacos/metabolismo , Taninos/farmacología , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Proteínas Reguladoras de la Apoptosis/metabolismo , Trióxido de Arsénico/efectos adversos , Cardiotoxicidad/prevención & control , Caspasas/metabolismo , Inflamación/patología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Óxidos/farmacología , Ratas , Ratas Sprague-Dawley , Taninos/metabolismo
20.
Oncol Rep ; 44(5): 2306-2316, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33000240

RESUMEN

The present study was performed to investigate the protective effects of tannic acid (TA) on liver injury induced by arsenic trioxide (ATO) and to elucidate the mechanism involved as related to the Kelch­like ECH­associated protein 1 (Keap1)­nuclear factor erythroid 2­related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway. Adult rats were intraperitoneally injected with TA, while ATO was administered 1 h later. On the 11th day, the rats were euthanized to determine any liver histological changes, liver function, and the activities of antioxidant, antiapoptosis and proinflammatory cytokines in the liver. Furthermore, the protein expression levels of nuclear Nrf2, total Nrf2, Keap1, Heme oxygenase­1 (HO­1), NADPH quinine oxidoreductase­1 (NQO1), and γ­glutamylcysteine synthetase (γ­GCS) were determined using western blot analysis. The results showed that TA treatment ameliorated ATO­induced liver histological changes and decreased the ATO­induced increased alanine aminotransferase (ALT) and aspartate transaminase (AST) serum levels. Activities of the antioxidant enzymes significantly were increased, while the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) were attenuated following TA treatment. In addition, TA treatment inhibited ATO­induced liver apoptosis and inflammatory responses, increased Bcl­2 protein expression level and reduced the levels of Bax, caspase­3, interleukin (IL)­1ß, IL­6 and tumor necrosis factor (TNF)­α. Furthermore, TA treatment increased the protein expression levels of Nrf2 and Keap1, HO­1, NQO1 and γ­GCS. The results demonstrated that TA has a protective effect on ATO­treated hepatic toxicity and that its underlying mechanism could be due to TA activation of the Keap1­Nrf2/ARE signaling pathway, to reduce oxidative stress, apoptosis and inflammation in ATO­intoxicated rats.


Asunto(s)
Trióxido de Arsénico/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hígado/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Taninos/administración & dosificación , Animales , Elementos de Respuesta Antioxidante/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Apoptosis/inmunología , Trióxido de Arsénico/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Modelos Animales de Enfermedad , Humanos , Inflamación/inducido químicamente , Inflamación/inmunología , Inflamación/patología , Inflamación/prevención & control , Inyecciones Intraperitoneales , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Hígado/inmunología , Hígado/patología , Pruebas de Función Hepática , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo/genética , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...