Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-516898

RESUMEN

The BNT162b2 bivalent BA.4/5 COVID-19 vaccine has been authorized to mitigate COVID-19 due to current Omicron and potentially future variants. New sublineages of SARS-CoV-2 Omicron continue to emerge and have acquired additional mutations, particularly in the spike protein, that may lead to improved viral fitness and immune evasion. The present study characterized neutralization activities against new Omicron sublineages BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 after a 4th dose (following three doses of BNT162b2) of either the original monovalent BNT162b2 or the bivalent BA.4/5 booster in individuals >55 years of age. For all participants, the 4th dose of monovalent BNT162b2 vaccine induced a 3.0x, 2.9x, 2.3x, 2.1x, 1.8x, and 1.5x geometric mean neutralizing titer fold rise (GMFR) against USA/WA1-2020 (a strain isolated in January 2020), BA.4/5, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1, respectively; the bivalent vaccine induced 5.8x, 13.0x, 11.1x, 6.7x, 8.7x, and 4.8x GMFRs. For individuals without SARS-CoV-2 infection history, BNT162b2 monovalent induced 4.4x, 3.0x, 2.5x, 2.0x, 1.5x, and 1.3x GMFRs, respectively; the bivalent vaccine induced 9.9x, 26.4x, 22.2x, 8.4x, 12.6x, and 4.7x GMFRs. These data suggest the bivalent BA.4/5 vaccine is more immunogenic than the original BNT162b2 monovalent vaccine against circulating Omicron sublineages, including BQ.1.1 that is becoming prevalent globally.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-515725

RESUMEN

The rapid evolution of SARS-CoV-2 Omicron sublineages mandates a better understanding of viral replication and cross-neutralization among these sublineages. Here we used K18-hACE2 mice and primary human airway cultures to examine the viral fitness and antigenic relationship among Omicron sublineages. In both K18-hACE2 mice and human airway cultures, Omicron sublineages exhibited a replication order of BA.5 [≥] BA.2 [≥] BA.2.12.1 > BA.1; no difference in body weight loss was observed among different sublineage-infected mice. The BA.1-, BA.2-, BA.2.12.1-, and BA.5-infected mice developed distinguisable cross-neutralizations against Omicron sublineages, but exhibited little neutralizations against the index virus (i.e., USA-WA1/2020) or the Delta variant. Surprisingly, the BA.5-infected mice developed higher neutralization activity against heterologous BA.2 and BA.2.12.1 than that against homologous BA.5; serum neutralizing titers did not always correlate with viral replication levels in infected animals. Our results revealed a distinct antigenic cartography of Omicron sublineages and support the bivalent vaccine approach.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-514580

RESUMEN

The newly emerged SARS-CoV-2 Omicron BQ.1.1, XBB.1, and other sublineages have accumulated additional spike mutations that may affect vaccine effectiveness. Here we report neutralizing activities of three human serum panels collected from individuals 1-3 months after dose 4 of parental mRNA vaccine (post-dose-4), 1 month after a BA.5-bivalent-booster (BA.5-bivalent-booster), or 1 month after a BA.5-bivalent-booster with previous SARS-CoV-2 infection (BA.5-bivalent-booster-infection). Post-dose-4 sera neutralized USA-WA1/2020, BA.5, BF.7, BA.4.6, BA.2.75.2, BQ.1.1, and XBB.1 SARS-CoV-2 with geometric mean titers (GMTs) of 1533, 95, 69, 62, 26, 22, and 15, respectively; BA.5-bivalent-booster sera improved the GMTs to 3620, 298, 305, 183, 98, 73, and 35; BA.5-bivalent-booster-infection sera further increased the GMTs to 5776, 1558,1223, 744, 367, 267, and 103. Thus, although BA.5-bivalent-booster elicits better neutralization than parental vaccine, it does not produce robust neutralization against the newly emerged Omicron BA.2.75.2, BQ.1.1, and XBB.1. Previous infection enhances the magnitude and breadth of BA.5-bivalent-booster-elicited neutralization.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-512322

RESUMEN

The rapid spread and strong immune evasion of the SARS-CoV-2 Omicron subvariants has raised serious concerns for the global COVID-19 pandemic. These new variants exhibit reduced fusogenicity and increased endosomal entry pathway utilization compared to the ancestral D614G variant, the underlying mechanisms of which remain elusive. Here we show that the C-terminal S1 mutations of the BA.1.1 subvariant, H655Y and T547K, critically govern the low fusogenicity of Omicron. Notably, H655Y also dictates the enhanced endosome entry pathway utilization. Mechanistically, T547K and H655Y likely stabilize the spike trimer conformation, as shown by increased molecular interactions in structural modeling as well as reduced S1 shedding. Importantly, the H655Y mutation also determines the low fusogenicity and high dependence on the endosomal entry pathway of other Omicron subvariants, including BA.2, BA.2.12.1, BA.4/5 and BA.2.75. These results uncover mechanisms governing Omicron subvariant entry and provide insights into altered Omicron tissue tropism and pathogenesis.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-503531

RESUMEN

The SARS-CoV-2 virus is the causal agent of the ongoing pandemic of coronavirus disease 2019 (COVID-19). There is an urgent need for potent, specific antiviral compounds against SARS-CoV-2. The 3C-like protease (3CLpro) is an essential enzyme for the replication of SARS-CoV-2 and other coronaviruses, and thus is a target for coronavirus drug discovery. Nearly all inhibitors of coronavirus 3CLpro reported so far are covalent inhibitors. Here, we report the development of specific, non-covalent inhibitors of 3CLpro. The most potent one, WU-04, effectively blocks SARS-CoV-2 replications in human cells with EC50 values in the 10-nM range. WU-04 also inhibits the 3CLpro of SARS-CoV and MERS-CoV with high potency, indicating that it is a pan-inhibitor of coronavirus 3CLpro. WU-04 showed anti-SARS-CoV-2 activity similar to that of PF-07321332 (Nirmatrelvir) in K18-hACE2 mice when the same dose was administered orally. Thus, WU-04 is a promising drug candidate for coronavirus treatment. One-Sentence SummaryA oral non-covalent inhibitor of 3C-like protease effectively inhibits SARS-CoV-2 replication.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-502055

RESUMEN

Since the initial emergence of SARS-CoV-2 Omicron BA.1, several Omicron sublineages have emerged, leading to BA.5 as the current dominant sublineage. Here we report the neutralization of different Omicron sublineages by human sera collected from individuals who had distinct mRNA vaccination and/or BA.1 infection. Four-dose-vaccine sera neutralize the original USA-WA1/2020, Omicron BA.1, BA.2, BA.212.1, BA.3, and BA.4/5 viruses with geometric mean titers (GMTs) of 1554, 357, 236, 236, 165, and 95, respectively; 2-dose-vaccine-plus-BA.1-infection sera exhibit GMTs of 2114, 1705, 730, 961, 813, and 274, respectively; and 3-dose-vaccine-plus-BA.1-infection sera show GMTs of 2962, 2038, 983, 1190, 1019, and 297, respectively. Thus, 4-dose-vaccine elicits the lowest neutralization against BA.5; 2-dose-vaccine-plus-BA.1-infection elicits significantly higher GMTs against Omicron sublineages than 4-dose-vaccine; and 3-dose-vaccine-plus-BA.1-infection elicits slightly higher GMTs (statistically insignificant) than the 2-dose-vaccine-plus-BA.1-infection. Finally, compared with BA.5, the newly emerged BA.2.75 is equally evasive of 4-dose-vaccine-elicited neutralization, but more susceptible to 3-dose-vaccine-plus-BA.1-infection-elicited neutralization.

7.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-494889

RESUMEN

Distinct SARS-CoV-2 Omicron sublineages have evolved showing increased fitness and immune evasion than the original Omicron variant BA.1. Here we report the neutralization activity of sera from BNT162b2 vaccinated individuals or unimmunized Omicron BA.1-infected individuals against Omicron sublineages and "Deltacron" variant (XD). BNT162b2 post-dose 3 immune sera neutralized USA-WA1/2020, Omicron BA.1-, BA.2-, BA.2.12.1-, BA.3-, BA.4/5-, and XD-spike SARS-CoV-2s with geometric mean titers (GMTs) of 1335, 393, 298, 315, 216, 103, and 301, respectively; thus, BA.4/5 SARS-CoV-2 spike variant showed the highest propensity to evade vaccine neutralization compared to the original Omicron variants BA.1. BA.1-convalescent sera neutralized USA-WA1/2020, BA.1-, BA.2-, BA.2.12.1-, BA.3-, BA.4/5-, and Deltacron-spike SARS-CoV-2s with GMTs of 15, 430, 110, 109, 102, 25, and 284, respectively. The low neutralization titers of vaccinated sera or convalescent sera from BA. 1 infected individuals against the emerging and rapidly spreading Omicron BA.4/5 variants provide important results for consideration in the selection of an updated vaccine in the current Omicron wave.

8.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-488614

RESUMEN

The worldwide spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the repeated emergence of variants of concern. The Omicron variant has two dominant sub-lineages, BA.1 and BA.2, each with unprecedented numbers of nonsynonymous and indel spike protein mutations: 33 and 29, respectively. Some of these mutations individually increase transmissibility and enhance immune evasion, but their interactions within the Omicron mutational background is unknown. We characterize the molecular effects of all Omicron spike mutations on expression, human ACE2 receptor affinity, and neutralizing antibody recognition. We show that key mutations enable escape from neutralizing antibodies at a variety of epitopes. Stabilizing mutations in the N-terminal and S2 domains of the spike protein compensate for destabilizing mutations in the receptor binding domain, thereby enabling the record number of mutations in Omicron sub-lineages. Taken together, our results provide a comprehensive account of the mutational effects in the Omicron spike protein and illuminate previously unknown mechanisms of how the N-terminal domain can compensate for destabilizing mutations within the more evolutionarily constrained RBD.

9.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-488092

RESUMEN

The continuous emergence of SARS-CoV-2 variants with increased transmission and immune evasion has caused breakthrough infections in vaccinated population. It is important to determine the threshold of neutralizing antibody titers that permit breakthrough infections. Here we tested the neutralization titers of vaccinated patients who contracted Delta variant. All 75 patients with Delta breakthrough infections exhibited neutralization titers (NT50) of less than 70. Among the breakthrough patients, 76%, 18.7%, and 5.3% of them had the NT50 ranges of <20, 20-50, and 50-69, respectively. These clinical laboratory results have implications in vaccine strategy and public health policy.

10.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-486409

RESUMEN

The Omicron SARS-CoV-2 has three distinct sublineages, among which sublineage BA.1 is responsible for the initial Omicron surge and is now being replaced by BA.2 world-wide, whereas BA.3 is currently at a low frequency. The ongoing BA.1-to-BA.2 replacement underscores the importance to understand the cross-neutralization among the three Omicron sublineages. Here we tested the neutralization of BA.1-infected human sera against BA.2, BA.3, and USA/WA1-2020 (a strain isolated in late January 2020). The BA.1-infected sera neutralized BA.1, BA.2, BA.3, and USA/WA1-2020 SARS-CoV-2s with geometric mean titers (GMTs) of 445, 107, 102, and 16, respectively. Thus, the neutralizing GMTs against heterologous BA.2, BA.3, and USA/WA1-2020 were 4.2-, 4.4-, and 28.4-fold lower than the GMT against homologous BA.1, respectively. These findings have implications in COVID-19 vaccine strategy.

11.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-485633

RESUMEN

The newly emerged Omicron SARS-CoV-2 has 3 distinct sublineages: BA.1, BA.2, and BA.3. BA.1 accounts for the initial surge and is being replaced by BA.2, whereas BA.3 is at a low prevalence at this time. Here we report the neutralization of BNT162b2-vaccinated sera (collected at 1 month after dose 3) against the three Omicron sublineages. To facilitate the neutralization testing, we engineered the complete BA.1, BA.2, or BA.3 spike into an mNeonGreen USA-WA1/2020 SRAS-CoV-2. All BNT162b2-vaccinated sera neutralized USA-WA1/2020, BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s with titers of >20; the neutralization geometric mean titers (GMTs) against the four viruses were 1211, 336, 300, and 190, respectively. Thus, the BA.1-, BA.2-, and BA.3-spike SARS-CoV-2s were 3.6-, 4.0-, and 6.4-fold less efficiently neutralized than the USA-WA1/2020, respectively. Our data have implications in vaccine strategy and understanding the biology of Omicron sublineages.

12.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-480460

RESUMEN

We report a live-attenuated SARS-CoV-2 vaccine candidate with (i) re-engineered viral transcriptional regulator sequences and (ii) deleted open-reading-frames (ORF) 3, 6, 7, and 8 ({Delta}3678). The {Delta}3678 virus replicates about 7,500-fold lower than wild-type SARS-CoV-2 on primary human airway cultures, but restores its replication on interferon-deficient Vero-E6 cells that are approved for vaccine production. The {Delta}3678 virus is highly attenuated in both hamster and K18-hACE2 mouse models. A single-dose immunization of the {Delta}3678 virus protects hamsters from wild-type virus challenge and transmission. Among the deleted ORFs in the {Delta}3678 virus, ORF3a accounts for the most attenuation through antagonizing STAT1 phosphorylation during type-I interferon signaling. We also developed an mNeonGreen reporter {Delta}3678 virus for high-throughput neutralization and antiviral testing. Altogether, the results suggest that {Delta}3678 SARS-CoV-2 may serve as a live-attenuated vaccine candidate and a research tool for potential biosafety level-2 use.

13.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-479840

RESUMEN

Genetic variation of SARS-CoV-2 has resulted in the emergence and rapid spread of multiple variants throughout the pandemic, of which Omicron is currently the predominant variant circulating worldwide. SARS-CoV-2 variants of concern or interest (VOC/VOI) have evidence of increased viral transmission, disease severity, or decreased effectiveness of vaccines and neutralizing antibodies. Remdesivir (RDV, VEKLURY(R)) is a nucleoside analog prodrug and the first FDA-approved antiviral treatment of COVID-19. Here we present a comprehensive antiviral activity assessment of RDV and its parent nucleoside, GS-441524, against 10 current and former SARS-CoV-2 VOC/VOI clinical isolates by nucleoprotein ELISA and plaque reduction assay. Delta and Omicron variants remained susceptible to RDV and GS-441524, with EC50 values 0.31 to 0.62-fold of those observed against the ancestral WA1 isolate. All other tested variants exhibited EC50 values ranging from 0.15 to 2.3-fold of the observed EC50 values against WA1. Analysis of nearly 6 million publicly available variant isolate sequences confirmed that Nsp12, the RNA-dependent RNA polymerase (RdRp) target of RDV and GS-441524, is highly conserved across variants with only 2 prevalent changes (P323L and G671S). Using recombinant viruses, both RDV and GS-441524 retained potency against all viruses containing frequent variant substitutions or their combination. Taken together, these results highlight the conserved nature of SARS-CoV-2 Nsp12 and provide evidence of sustained SARS-CoV-2 antiviral activity of RDV and GS-441524 across the tested variants. The observed pan-variant activity of RDV supports its continued use for the treatment of COVID-19 regardless of the SARS-CoV-2 variant.

14.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-478504

RESUMEN

One major limitation of neutralizing antibody-based COVID-19 therapy is the requirement of costly cocktails to reduce antibody resistance. We engineered two bispecific antibodies (bsAbs) using distinct designs and compared them with parental antibodies and their cocktail. Single molecules of both bsAbs block the two epitopes targeted by parental antibodies on the receptor-binding domain (RBD). However, bsAb with the IgG-(scFv)2 design (14-H-06) but not the CrossMAb design (14-crs-06) increases antigen-binding and virus-neutralizing activities and spectrum against multiple SARS-CoV-2 variants including the Omicron, than the cocktail. X-ray crystallography and computational simulations reveal distinct neutralizing mechanisms for individual cocktail antibodies and suggest higher inter-spike crosslinking potentials by 14-H-06 than 14-crs-06. In mouse models of infections by SARS-CoV-2 and the Beta, Gamma, and Delta variants, 14-H-06 exhibits higher or equivalent therapeutic efficacy than the cocktail. Rationally engineered bsAbs represent a cost-effective alternative to antibody cocktails and a promising strategy to improve potency and breadth.

15.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-476344

RESUMEN

We report the antibody neutralization against Omicron SARS-CoV-2 after 2 and 3 doses of BNT162b2 mRNA vaccine. Vaccinated individuals were serially tested for their neutralization against wild-type SARS-CoV-2 (strain USA-WA1/2020) and an engineered USA-WA1/2020 bearing the Omicron spike glycoprotein. Plaque reduction neutralization results showed that at 2 or 4 weeks post-dose-2, the neutralization geometric mean titers (GMTs) were 511 and 20 against the wild-type and Omicron-spike viruses, respectively, suggesting that two doses of BNT162b2 were not sufficient to elicit robust neutralization against Omicron; at 1 month post-dose-3, the neutralization GMTs increased to 1342 and 336, respectively, indicating that three doses of vaccine increased the magnitude and breadth of neutralization against Omicron; at 4 months post-dose-3, the neutralization GMTs decreased to 820 and 171, respectively, suggesting similar neutralization decay kinetics for both variants. The data support a three-dose vaccine strategy and provide the first glimpse of the neutralization durability against Omicron.

16.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-473584

RESUMEN

The explosive spread of the Omicron SARS-CoV-2 variant underscores the importance of analyzing the cross-protection from previous non-Omicron infection. We developed a high-throughput neutralization assay for Omicron SARS-CoV-2 by engineering the Omicron spike gene into an mNeonGreen USA-WA1/2020 SARS-CoV-2 (isolated in January 2020). Using this assay, we determined the neutralization titers of patient sera collected at 1- or 6-months after infection with non-Omicron SARS-CoV-2. From 1- to 6-month post-infection, the neutralization titers against USA-WA1/2020 decreased from 601 to 142 (a 4.2-fold reduction), while the neutralization titers against Omicron-spike SARS-CoV-2 remained low at 38 and 32, respectively. Thus, at 1- and 6-months after non-Omicron SARS-CoV-2 infection, the neutralization titers against Omicron were 15.8- and 4.4-fold lower than those against USA-WA1/2020, respectively. The low cross-neutralization against Omicron from previous non-Omicron infection supports vaccination of formerly infected individuals to mitigate the health impact of the ongoing Omicron surge.

17.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-469906

RESUMEN

IntroductoryThe evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of many new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccines. To ascertain and rank the risk of VOCs and VOIs, we analyzed their ability to escape from vaccine-induced antibodies. The variants showed differential reductions in neutralization and replication titers by post-vaccination sera. Although the Omicron variant showed the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retained moderate neutralizing activity against that variant. Therefore, vaccination remains the most effective strategy to combat the COVID-19 pandemic.

18.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-469576

RESUMEN

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM)-adjuvanted SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable SARS-CoV-2-specific systemic humoral and type 1 helper T (Th) cell-mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant infection. mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited potent systemic and lung resident memory T and B cells and SARS-CoV-2 specific IgA responses, and markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant infection. Our results suggest that mPSM can serve as potent adjuvant for SARS-CoV-2 subunit vaccine which is effective for systemic and mucosal vaccination.

19.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-468057

RESUMEN

SARS-CoV-2 emerged in China at the end of 2019 and caused the global pandemic of COVID-19, a disease with high morbidity and mortality. While our understanding of this new virus is rapidly increasing, gaps remain in our understanding of how SARS-CoV-2 can effectively suppress host cell antiviral responses. Recent work on other viruses has demonstrated a novel mechanism through which viral proteins can mimic critical regions of human histone proteins. Histone proteins are responsible for governing genome accessibility and their precise regulation is critical for a cells ability to control transcription and respond to viral threats. Here, we show that the protein encoded by ORF8 (Orf8) in SARS-CoV-2 functions as a histone mimic of the ARKS motif in histone 3. Orf8 is associated with chromatin, binds to numerous histone-associated proteins, and is itself acetylated within the histone mimic site. Orf8 expression in cells disrupts multiple critical histone post-translational modifications (PTMs) including H3K9ac, H3K9me3, and H3K27me3 and promotes chromatin compaction while Orf8 lacking the histone mimic motif does not. Further, SARS-CoV-2 infection in human cell lines and postmortem patient lung tissue cause these same disruptions to chromatin. However, deletion of the Orf8 gene from SARS-CoV-2 largely blocks its ability to disrupt host-cell chromatin indicating that Orf8 is responsible for these effects. Finally, deletion of the ORF8 gene affects the host-cell transcriptional response to SARS-CoV-2 infection in multiple cell types and decreases the replication of SARS-CoV-2 in human induced pluripotent stem cell-derived lung alveolar type 2 (iAT2) pulmonary cells. These findings demonstrate a novel function for the poorly understood ORF8-encoded protein and a mechanism through which SARS-CoV-2 disrupts host cell epigenetic regulation. Finally, this work provides a molecular basis for the finding that SARS-CoV-2 lacking ORF8 is associated with decreased severity of COVID-19.

20.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-464390

RESUMEN

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral RG motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2s continued adaptation to human infection. Author SummarySince its emergence, SARS-CoV-2 has continued to adapt for human infection resulting in the emergence of variants with unique genetic profiles. Most studies of genetic variation have focused on spike, the target of currently available vaccines, leaving the importance of variation elsewhere understudied. Here, we characterize a highly variable motif at residues 203-205 in nucleocapsid. Recreating the prominent nucleocapsid R203K+G204R mutation in an early pandemic background, we show that this mutation is alone sufficient to enhance SARS-CoV-2 replication and pathogenesis. We also link augmentation of SARS-CoV-2 infection by the R203K+G204R mutation to its modulation of nucleocapsid phosphorylation. Finally, we characterize an analogous alanine double substitution at positions 203-204. This mutant was found to mimic R203K+G204R, suggesting augmentation of infection occurs by disrupting the ancestral sequence. Together, our findings illustrate that mutations outside of spike are key components of SARS-CoV-2s adaptation to human infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...