Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Chembiochem ; 25(11): e202400118, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526556

RESUMEN

Hydroxynitrile lyase (HNL) from the cyanogenic millipede Oxidus gracillis (OgraHNL) is a crucial enzyme in the cyanogenesis pathway. Here, the crystal structures of OgraHNL complexed with sulfate, benzaldehyde (BA), (R)-mandelonitrile ((R)-Man), (R)-2-chloromandelonitrile ((R)-2-Cl-Man), and acetone cyanohydrin (ACN) were solved at 1.6, 1.7, 2.3, 2.1, and 2.0 Šresolutions, respectively. The structure of OgraHNL revealed that it belonged to the lipocalin superfamily. Based on this structure, positive variants were designed to further improve the catalytic activity and enantioselectivity of the enzyme for asymmetric hydrocyanation and Henry reactions.


Asunto(s)
Aldehído-Liasas , Mutagénesis Sitio-Dirigida , Aldehído-Liasas/metabolismo , Aldehído-Liasas/química , Aldehído-Liasas/genética , Animales , Benzaldehídos/metabolismo , Benzaldehídos/química , Acetonitrilos/química , Acetonitrilos/metabolismo , Modelos Moleculares , Cristalografía por Rayos X , Nitrilos/metabolismo , Nitrilos/química , Estereoisomerismo
2.
J Biotechnol ; 384: 20-28, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38395363

RESUMEN

Nitriles (R-CN) comprise a broad group of chemicals industrially produced and used in fine chemicals, pharmaceuticals, and bulk applications, polymer chemistry, solvents, etc. Nitriles are important starting materials for producing carboxylic acids, amides, amines, and several other compounds. In addition, some volatile nitriles have been evaluated for their potential as ingredients in fragrance and flavor formulations. However, many nitrile synthesis methods have drawbacks, such as drastic reaction conditions, limited substrate scope, lack of readily available reagents, poor yields, and long reaction times. In contrast to chemical synthesis, biocatalytic approaches using enzymes can produce nitriles without harsh conditions, such as high temperatures and pressures, or toxic compounds. In this review, we summarize the nitrile-synthesizing enzymes from microorganisms, plants, and animals. Furthermore, we introduce several examples of biocatalytic synthesis of volatile nitrile compounds, particularly those using aldoxime dehydratase.


Asunto(s)
Hidroliasas , Nitrilos , Nitrilos/química , Hidroliasas/metabolismo , Biocatálisis , Amidas
3.
Fish Shellfish Immunol ; 146: 109421, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38325591

RESUMEN

In jawed vertebrates, the T cell receptor alpha (TRA) and delta (TRD) genes, which encode the TRα and TRδ chains, respectively, are located as a nested structure on a single chromosome. To date, no animal has been reported to harbor multiple TRA/TRD loci on different chromosomes. Therefore, herein, we describe the first full annotation of the TRA/TRD genomic regions of common carp, an allo-tetraploid fish species that experiences cyprinid-specific whole-genome duplication (WGD) in evolution. Fine genomic maps of TRA/TRD genomic regions 1 and 2, on LG30 and LG22, respectively, were constructed using the annotations of complete sets of TRA and TRD genes, including TRA/TRD variable (V), TRA junction (J), and constant (C), TRD diversity (D), and the J and C genes. The structure and synteny of the TRA/TRD genomic regions were highly conserved in zebrafish, indicating that these regions are on individual chromosomes. Furthermore, analysis of the variable regions of the TRA and TRD genes in a monoclonal T cell line revealed that both subgenomic regions 1 and 2 were indeed rearranged. Although carp TRAV and TRDV genes were phylogenetically divided into different lineages, they were mixed and organized into the TRA/TRD V gene clusters on the genome, similar to that in other vertebrates. Notably, 285 potential TRA/TRD V genes were detected in the TRA/TRD genomic regions, which is the most abundant number of genes in vertebrates and approximately two-fold that in zebrafish. The recombination signal sequences (RSSs) at the end of each V gene differed between TRAV and TRDV, suggesting that RSS variations might separate each V gene into a TRα or TRδ chain. This study is the first to describe subgenomic TRA/TRD loci in animals. Our findings provide fundamental insights to elucidate the impact of WGD on the evolution of immune repertoire.


Asunto(s)
Carpas , Pez Cebra , Animales , Pez Cebra/genética , Genes Codificadores de la Cadena delta de los Receptores de Linfocito T , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Carpas/genética
4.
Biosci Biotechnol Biochem ; 88(2): 138-146, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38017623

RESUMEN

Aldoxime (R1R2C=NOH) and nitrile (R-C≡N) are nitrogen-containing compounds that are found in species representing all kingdoms of life. The enzymes discovered from the microbial "aldoxime-nitrile" pathway (aldoxime dehydratase, nitrile hydratase, amidase, and nitrilase) have been thoroughly studied because of their industrial importance. Although plants utilize cytochrome P450 monooxygenases to produce aldoxime and nitrile, many biosynthetic pathways are yet to be studied. Cyanogenic millipedes accumulate various nitrile compounds, such as mandelonitrile. However, no such aldoxime- and nitrile-metabolizing enzymes have been identified in millipedes. Here, I review the exploration of novel enzymes from plants and millipedes with characteristics distinct from those of microbial enzymes, the catalysis of industrially useful reactions, and applications of these enzymes for nitrile compound production.


Asunto(s)
Artrópodos , Animales , Artrópodos/metabolismo , Nitrilos/metabolismo , Hidroliasas , Oximas , Catálisis
5.
J Vet Med Sci ; 85(12): 1301-1309, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37821377

RESUMEN

Transient receptor potential ankyrin 1 (TRPA1) is a nonselective cation channel that is activated by a variety of stimuli and acts as a nociceptor. Mouse and human TRPA1 exhibit different reactivity to some stimuli, including chemicals such as menthol as well as cold stimuli. The cold sensitivity of TRPA1 in mammalian species is controversial. Here, we analyzed the reactivity of heterologously expressed canine TRPA1 as well as the mouse and human orthologs to menthol or cold stimulation in Ca2+-imaging experiments. Canine and human TRPA1 exhibited a similar response to menthol, that is, activation in a concentration-dependent manner, even at the high concentration range in contrast to the mouse ortholog, which did not respond to high concentration of menthol. In addition, the response during the removal of menthol was different; mouse TRPA1-expressing cells exhibited a typical response with a rapid and clear increase in [Ca2+]i ("off-response"), whereas [Ca2+]i in human TRPA1-expressing cells was dramatically decreased by the washout of menthol and [Ca2+]i in canine TRPA1-expressing cells was slightly decreased. Finally, canine TRPA1 as well as mouse and human TRPA1 were activated by cold stimulation (below 19-20°C). The sensitivity to cold stimulation differed between these species, that is, human TRPA1 activated at higher temperatures compared with the canine and mouse orthologs. All of the above responses were suppressed by the selective TRPA1 inhibitor HC-030031. Because the concentration-dependency and "off-response" of menthol as well as the cold sensitivity were not uniform among these species, studies of canine TRPA1 might be useful for understanding the species-specific functional properties of mammalian TRPA1.


Asunto(s)
Canal Catiónico TRPA1 , Canales de Potencial de Receptor Transitorio , Animales , Perros , Humanos , Ratones , Frío , Mamíferos , Mentol/farmacología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM
6.
Front Neurosci ; 17: 1217430, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37841682

RESUMEN

The mechanisms underlying bimanual coordination have not yet been fully elucidated. Here, we evaluated the clinical features of bimanual movement impairment in a patient following surgery for a frontal lobe tumor. The patient was an 80-year-old man who had undergone subtotal tumor resection for a tumor in the right superior frontal gyrus. Histological examination of the resected specimen led to the diagnosis of malignant lymphoma of the diffuse large B-cell type, and the patient subsequently received high-dose methotrexate-based chemotherapy. Postoperatively, the patient had difficulty with bimanual movement, and on the 5th postoperative day we found that the impairment could not be attributed to weakness. Temporal changes in the characteristics of manual movements were analyzed. Bimanual diadochokinesis (opening/closing of the hands, pronation/supination of the forearms, and sequential finger movements) was more disturbed than unilateral movements; in-phase movements were more severely impaired than anti-phase movements. Bimanual movement performance was better when cued using an auditory metronome. On the 15th postoperative day, movements improved. The present observations show that in addition to the disturbance of anti-phase bimanual movements, resection of the frontal lobe involving the supplementary motor area (SMA) and premotor cortex (PMC) can cause transient impairment of in-phase bimanual diadochokinesis, which can be more severe than the impairment of anti-phase movements. The effect of auditory cueing on bimanual skills may be useful in the diagnosis of anatomical localization of the superior frontal gyrus and functional localization of the SMA and PMC and in rehabilitation of patients with brain tumors, as in the case of degenerative movement disorders.

7.
ACS Omega ; 8(26): 23925-23935, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37426216

RESUMEN

We have developed an innovative system, AI QM Docking Net (AQDnet), which utilizes the three-dimensional structure of protein-ligand complexes to predict binding affinity. This system is novel in two respects: first, it significantly expands the training dataset by generating thousands of diverse ligand configurations for each protein-ligand complex and subsequently determining the binding energy of each configuration through quantum computation. Second, we have devised a method that incorporates the atom-centered symmetry function (ACSF), highly effective in describing molecular energies, for the prediction of protein-ligand interactions. These advancements have enabled us to effectively train a neural network to learn the protein-ligand quantum energy landscape (P-L QEL). Consequently, we have achieved a 92.6% top 1 success rate in the CASF-2016 docking power, placing first among all models assessed in the CASF-2016, thus demonstrating the exceptional docking performance of our model.

8.
Planta ; 257(6): 114, 2023 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-37166515

RESUMEN

MAIN CONCLUSION: Cytochrome P450 CYP77A59 is responsible for the biosynthesis of phenylacetonitrile in loquat flowers. Flowers of some plants emit volatile nitrile compounds, but the biosynthesis of these compounds is unclear. Loquat (Rhaphiolepis bibas) flowers emit characteristic N-containing volatiles, such as phenylacetonitrile (PAN), (E/Z)-phenylacetaldoxime (PAOx), and (2-nitroethyl)benzene (NEB). These volatiles likely play a defense role against pathogens and insects. PAN and NEB are commonly biosynthesized from L-phenylalanine via (E/Z)-PAOx. Two cytochrome P450s-CYP79D80 and "promiscuous fatty acid ω-hydroxylase" CYP94A90, which catalyze the formation of (E/Z)-PAOx from L-phenylalanine and NEB from (E/Z)-PAOx, respectively-are involved in NEB biosynthesis. However, the enzymes catalyzing the formation of PAN from (E/Z)-PAOx in loquat have not been identified. In this study, we aimed to identify candidate cytochrome P450s catalyzing PAN formation in loquat flowers. Yeast whole-cell biocatalyst assays showed that among nine candidate cytochrome P450s, CYP77A58 and CYP77A59 produced PAN from (E/Z)-PAOx. CYP77As catalyzed the dehydration of aldoximes, which is atypical of cytochrome P450; the reaction was NADPH-dependent, with an optimum temperature and pH of 40 °C and 8.0, respectively. CYP77As acted on (E/Z)-PAOx, (E/Z)-4-hydroxyphenylacetaldoxime, and (E/Z)-indole-3-acetaldoxime. Previously characterized CYP77As are known to hydroxylate fatty acids; loquat CYP77As did not act on tested fatty acids. We observed higher expression of CYP77A59 in flowers than in buds; expression of CYP77A58 was remarkably reduced in the flowers. Because the flowers, but not buds, emit PAN, CYP77A59 is likely responsible for the biosynthesis of PAN in loquat flowers. This study will help us understand the biosynthesis of floral nitrile compounds.


Asunto(s)
Eriobotrya , Nitrilos , Nitrilos/análisis , Nitrilos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Flores/metabolismo , Fenilalanina , Ácidos Grasos/análisis
9.
Plant Physiol ; 192(4): 3017-3029, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37195199

RESUMEN

Broad-spectrum herbicide resistance (BSHR), often linked to weeds with metabolism-based herbicide resistance, poses a threat to food production. Past studies have revealed that overexpression of catalytically promiscuous enzymes explains BSHR in some weeds; however, the mechanism of BSHR expression remains poorly understood. Here, we investigated the molecular basis of high-level resistance to diclofop-methyl in BSHR late watergrass (Echinochloa phyllopogon) found in the United States, which cannot be solely explained by the overexpression of promiscuous cytochrome P450 monooxygenases CYP81A12/21. The BSHR late watergrass line rapidly produced 2 distinct hydroxylated diclofop acids, only 1 of which was the major metabolite produced by CYP81A12/21. RNA-seq and subsequent reverse transcription quantitative PCR (RT-qPCR)-based segregation screening identified the transcriptionally linked overexpression of a gene, CYP709C69, with CYP81A12/21 in the BSHR line. The gene conferred diclofop-methyl resistance in plants and produced another hydroxylated diclofop acid in yeast (Saccharomyces cerevisiae). Unlike CYP81A12/21, CYP709C69 showed no other herbicide-metabolizing function except for a presumed clomazone-activating function. The overexpression of the 3 herbicide-metabolizing genes was also identified in another BSHR late watergrass in Japan, suggesting a convergence of BSHR evolution at the molecular level. Synteny analysis of the P450 genes implied that they are located at mutually independent loci, which supports the idea that a single trans-element regulates the 3 genes. We propose that transcriptionally linked simultaneous overexpression of herbicide-metabolizing genes enhances and broadens the metabolic resistance in weeds. The convergence of the complex mechanism in BSHR late watergrass from 2 countries suggests that BSHR evolved through co-opting a conserved gene regulatory system in late watergrass.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Herbicidas , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Éteres Difenilos Halogenados , Saccharomyces cerevisiae/metabolismo
10.
Sci Rep ; 12(1): 15400, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36100633

RESUMEN

Severe lodging has recurrently occurred at strong typhoon's hitting in recent climate change. The identification of quantitative trait loci and their responsible genes associated with a strong culm and their pyramiding are important for developing high-yielding varieties with a superior lodging resistance. To evaluate the effects of four strong-culm genes on lodging resistance, the temperate japonica near isogenic line (NIL) with the introgressed SCM1 or SCM2 locus of the indica variety, Habataki and the other NIL with the introgeressed SCM3 or SCM4 locus of the tropical japonica variety, Chugoku 117 were developed. Then, we developed the pyramiding lines with double,triple and quadruple combinations derived from step-by-step crosses among NIL-SCM1-NIL-SCM4. Quadruple pyramiding line (NIL-SCM1 + 2 + 3 + 4) showed the largest culm diameter and the highest culm strength among the combinations and increased spikelet number due to the pleiotropic effects of these genes. Pyramiding of strong culm genes resulted in much increased culm thickness, culm strength and spikelet number due to their additive effect. SCM1 mainly contributed to enhance their pyramiding effect. These results in this study suggest the importance of identifying the combinations of superior alleles of strong culm genes among natural variation and pyramiding these genes for improving high-yielding varieties with a superior lodging resistance.


Asunto(s)
Oryza , Alelos , Femenino , Humanos , Oryza/genética , Embarazo , Embarazo Múltiple , Sitios de Carácter Cuantitativo
11.
Pest Manag Sci ; 78(10): 4207-4216, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35705850

RESUMEN

BACKGROUND: CYP81A cytochrome P450s (CYP81As) play a key role in herbicide detoxification in Poaceae plants. Crop CYP81As confer natural tolerance to multiple herbicides, whereas CYP81As in weeds disrupt herbicide action. Identifying differences in CYP81A herbicide specificity between crops and weeds could provide valuable information for controlling weeds. In this study, we quantitatively compared herbicide specificity between CYP81A6 from rice (Oryza sativa) and CYP81A12 and CYP81A21 from a weed, Echinochloa phyllopogon, using transgenic Escherichia coli and Arabidopsis. RESULTS: All three CYP81As metabolized the five tested herbicides and formed similar metabolites, with the highest relative activities of 400 to 580% toward bentazone compared to their activity on bensulfuron-methyl (defined as 100%). However, they showed differing activity toward propyrisulfuron. The relative activities of Echinochloa phyllopogon CYP81A12 (12.2%) and CYP81A21 (34.4%) toward propyrisulfuron were lower than that of rice CYP81A6 (98.5%). Additionally, rice CYP81A6 produced O-demethylated propyrisulfuron and hydroxylated products, whereas Echinochloa phyllopogon CYP81As produced only hydroxylated products. Arabidopsis expressing CYP81A12 and CYP81A21 exhibited lower levels of resistance against propyrisulfuron compared to that in Arabidopsis expressing CYP81A6. Homology modeling and in silico docking revealed that bensulfuron-methyl docked well into the active centers of all three CYP81As, whereas propyrisulfuron docked into rice CYP81A6 but not into Echinochloa phyllopogon CYP81As. CONCLUSION: The differing herbicide specificity displayed by rice CYP81A6 and Echinochloa phyllopogon CYP81A12 and CYP81A21 will help design inhibitors (synergists) of weed CYP81As, as well as develop novel herbicide ingredients that are selectively metabolized by crop CYP81As, to overcome the problem of herbicide resistance. © 2022 Society of Chemical Industry.


Asunto(s)
Arabidopsis , Echinochloa , Herbicidas , Oryza , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Echinochloa/genética , Resistencia a los Herbicidas , Herbicidas/metabolismo , Herbicidas/farmacología , Oryza/metabolismo , Malezas/metabolismo
12.
Methods Mol Biol ; 2469: 19-28, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35508826

RESUMEN

Microbial production of bioactive glucosides using uridine diphosphate glucosyltransferase (UGT) is an efficient glucoside production method. Here, we describe a detailed method for the construction of a UDP-glucose biosynthetic enzyme gene coexpression plasmid, that is, pCDF-PGP and the microbial production of prunasin from racemic mandelonitrile using Escherichia coli possessing UGT85A47 obtained from Japanese apricot. Furthermore, this constructed vector can find application in the production of various other glucosides that utilize other UGTs and aglycons.


Asunto(s)
Escherichia coli , Uridina Difosfato Glucosa , Escherichia coli/genética , Glucosa , Glucósidos , Nitrilos , Plásmidos/genética , Uridina Difosfato
13.
Sci Rep ; 11(1): 21087, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34702924

RESUMEN

Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer in the clinic. Further discovery of novel drugs or therapeutic protocols that enhance efficacy requires reliable animal models that recapitulate human immune responses to ICI treatment in vivo. In this study, we utilized an immunodeficient NOG mouse substrain deficient for mouse FcγR genes, NOG-FcγR-/- mice, to evaluate the anti-cancer effects of nivolumab, an anti-programmed cell death-1 (PD-1) antibody. After reconstitution of human immune systems by human hematopoietic stem cell transplantation (huNOG-FcγR-/- mice), four different programmed death-ligand 1 (PD-L1)-positive human cancer cell lines were tested. Among them, the growth of three cell lines was strongly suppressed by nivolumab in huNOG-FcγR-/- mice, but not in conventional huNOG mice. Accordingly, immunohistochemistry demonstrated the enhanced infiltration of human T cells into tumor parenchyma in only nivolumab-treated huNOG-FcγR-/- mice. Consistently, the number of human T cells was increased in the spleen in huNOG-FcγR-/- mice by nivolumab but not in huNOG mice. Furthermore, human PD-L1 expression was strongly induced in the spleen of huNOG-FcγR-/- mice. Collectively, our results suggest that the anti-cancer effects of anti-PD-1 antibodies can be detected more clearly in NOG-FcγR-/- mice than in NOG mice.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico/farmacología , Linfocitos Infiltrantes de Tumor/inmunología , Proteínas de Neoplasias , Neoplasias Experimentales , Nivolumab/farmacología , Receptor de Muerte Celular Programada 1 , Linfocitos T/inmunología , Animales , Línea Celular Tumoral , Trasplante de Células Madre Hematopoyéticas , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/inmunología , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/genética , Neoplasias Experimentales/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología
14.
Opt Express ; 29(17): 27127-27136, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615134

RESUMEN

Microwave transmission measurements were performed for a three-dimensional (3D) layer-by-layer chiral photonic crystal (PhC), whose photonic band structure contains 3D singular points, Weyl points. For the frequency and wavevector in the vicinity of a Weyl point, the transmitted intensity was found to be inversely proportional to the square of the propagation length. In addition, the transmitted wave was well-collimated in the plane parallel to the PhC layers, even for point-source incidence. When a plane wave was incident on the PhC containing metal scatters, the planar wavefront was reconstructed after the transmission, indicating a cloaking effect.

15.
Front Immunol ; 12: 671648, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34386001

RESUMEN

Despite recent advances in immunodeficient mouse models bearing human red blood cells (hRBCs), the elimination of circulating hRBCs by residual innate immune systems remains a significant challenge. In this study, we evaluated the role of mouse complement C3 in the elimination of circulating hRBCs by developing a novel NOG substrain harboring a truncated version of the murine C3 gene (NOG-C3ΔMG2-3). Genetic C3 deletion prolonged the survival of transfused hRBCs in the circulation. Chemical depletion and functional impairment of mouse macrophages, using clodronate liposomes (Clo-lip) or gadolinium chloride (GdCl3), respectively, further extended the survival of hRBCs in NOG-C3ΔMG2-3 mice. Low GdCl3 toxicity allowed the establishment of hRBC-bearing mice, in which hRBCs survived for more than 4 weeks with transfusion once a week. In addition, erythropoiesis of human hematopoietic stem cells (hHSCs) was possible in NOG-C3ΔMG2-3/human GM-CSF-IL-3 transgenic mice with Clo-lip treatment. These findings indicate that mouse models harboring hRBCs can be achieved using NOG-C3ΔMG2-3 mice, which could facilitate studies of human diseases associated with RBCs.


Asunto(s)
Complemento C3/deficiencia , Eritrocitos , Modelos Animales , Animales , Transfusión de Eritrocitos/métodos , Eritrocitos/inmunología , Eritropoyesis/fisiología , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/inmunología , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos
16.
New Phytol ; 231(3): 1157-1170, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33932032

RESUMEN

Nitro groups are often associated with synthetically manufactured compounds such as medicines and explosives, and rarely with natural products. Loquat emits a nitro compound, (2-nitroethyl)benzene, as a flower scent. The nitro compound exhibits fungistatic activity and is biosynthesised from l-phenylalanine via (E/Z)-phenylacetaldoxime. Although aldoxime-producing CYP79s have been intensively studied, it is unclear what enzymes form nitro groups from aldoximes either in plants or in other organisms. Here, we report the identification of two cytochrome P450s that are likely to be involved in (2-nitroethyl)benzene biosynthesis in loquat through differential gene expression analysis using RNA-seq and functional identification using yeast and tobacco. CYP79D80 and CYP94A90 catalysed the formation of (E/Z)-phenylacetaldoxime from l-phenylalanine and (2-nitroethyl)benzene from the aldoxime, respectively. Expression profiles of CYP79D80 and CYP94A90 were correlated with the emission of (2-nitroethyl)benzene from loquat flowers. CYP94A90 also functioned as a fatty acid ω-hydroxylase as do other CYP94A fatty acid ω-hydroxylases. The CYP94As tested from other plants were all found to catalyse the formation of (2-nitroethyl)benzene from (E/Z)-phenylacetaldoxime. CYP79D80 and CYP94A90 are likely to operate in concert to biosynthesise (2-nitroethyl)benzene in loquat. CYP94A90 and other CYP94As are 'promiscuous fatty acid ω-hydroxylases', catalysing the formation of nitro groups from aldoximes, and are widely distributed in dicot plants.


Asunto(s)
Eriobotrya , Citocromo P-450 CYP4A , Flores , Nitrocompuestos , Odorantes
17.
Rinsho Ketsueki ; 62(1): 51-54, 2021.
Artículo en Japonés | MEDLINE | ID: mdl-33551426

RESUMEN

An 80 year old male who had received immunosuppressive therapy for myelodysplastic syndrome presented with fever, fatigue, and elevated serum Aspergillus antigen. Computed tomography revealed infiltrative shadows in the left lower lung and subcutaneous nodules. A polymerase chain reaction assay from lung and subcutaneous nodule samples identified the presence Aspergillus udagawae. A. udagawae is a cryptic species that shares similar morphological characteristics with A. fumigatus but genetically differs from the latter in its susceptibility to antifungal drugs. When immunosuppressed patients with hematological malignancies develop disseminated aspergillosis, biopsy and fungal tests are crucial to identify the causative fungus, including cryptic species, for deciding the appropriate therapeutic intervention.


Asunto(s)
Aspergilosis , Síndromes Mielodisplásicos , Anciano de 80 o más Años , Antifúngicos/uso terapéutico , Aspergilosis/complicaciones , Aspergilosis/diagnóstico , Aspergilosis/tratamiento farmacológico , Aspergillus , Humanos , Masculino , Síndromes Mielodisplásicos/complicaciones , Síndromes Mielodisplásicos/tratamiento farmacológico
18.
Pest Manag Sci ; 77(5): 2454-2461, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33432689

RESUMEN

BACKGROUND: Clomazone is a potent herbicide for controlling weeds that have evolved resistance to other herbicides due to its unique mode of action. Clomazone is used in rice cultivation, but is limited to long-grain cultivars because other cultivars are highly sensitive to it. In this study, we investigated the mechanism of clomazone tolerance in a long-grain cultivar. RESULTS: The long-grain cultivar Kasalath tolerated approximately five-fold higher doses of clomazone compared to two short-grain cultivars, Nipponbare and Koshihikari. While Arabidopsis thaliana transformed with a rice cytochrome P450, CYP81A6, showed resistance to clomazone, the cyp81a6 knockout Kasalath was unchanged in its clomazone sensitivity. The inheritance of clomazone sensitivity in the F1 and F2 of Kasalath and Nipponbare indicated the involvement of multiple loci for clomazone tolerance. Four chromosome segment substitution lines of Nipponbare/Kasalath and Koshihikari/Kasalath exhibited partial tolerance to clomazone. The overlapping DNA region among the four lines is on chromosome 5 within 11.5 Mb. CONCLUSION: Multiple loci are involved in clomazone tolerance in Kasalath, one of which is located on chromosome 5. This information will help develop short-grain cultivars tolerant to clomazone. © 2021 Society of Chemical Industry.


Asunto(s)
Oryza , Oxazolidinonas , Cromosomas de las Plantas , Isoxazoles/farmacología , Oryza/genética
19.
Asian J Endosc Surg ; 14(1): 90-93, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32346994

RESUMEN

A 58-year-old man had rectal cancer directly invading the urinary bladder and small intestine, without distant metastasis. We successfully performed complete resection using a hybrid approach, including laparoscopic surgery and transanal total pelvic exenteration (TaTPE) with the patient in the prone jackknife (PJK) position. In the PJK position, gravity and pelvic morphology lead to a clear and wide surgical field. This case demonstrates that total pelvic exenteration using laparoscopic surgery and TaTPE in the PJK position provides a better surgical field than either TaTPE or laparoscopic surgery in the supine position. TaTPE in the PJK position may also be useful for curative surgery in locally advanced rectal cancer.


Asunto(s)
Intestino Delgado/cirugía , Exenteración Pélvica , Neoplasias del Recto , Vesículas Seminales/cirugía , Vejiga Urinaria/cirugía , Canal Anal/cirugía , Humanos , Intestino Delgado/patología , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Posicionamiento del Paciente , Exenteración Pélvica/métodos , Neoplasias del Recto/patología , Neoplasias del Recto/cirugía , Vesículas Seminales/patología , Vejiga Urinaria/patología
20.
FEBS J ; 288(5): 1679-1695, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32679618

RESUMEN

Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrin into cyanide and the corresponding aldehyde or ketone. Moreover, they catalyze the synthesis of cyanohydrin in the reverse reaction, utilized in industry for preparation of enantiomeric pure pharmaceutical ingredients and fine chemicals. We discovered a new HNL from the cyanogenic millipede, Chamberlinius hualienensis. The enzyme displays several features including a new primary structure, high stability, and the highest specific activity in (R)-mandelonitrile ((R)-MAN) synthesis (7420 U·mg-1 ) among the reported HNLs. In this study, we elucidated the crystal structure and reaction mechanism of natural ChuaHNL in ligand-free form and its complexes with acetate, cyanide ion, and inhibitors (thiocyanate or iodoacetate) at 1.6, 1.5, 2.1, 1.55, and 1.55 Å resolutions, respectively. The structure of ChuaHNL revealed that it belongs to the lipocalin superfamily, despite low amino acid sequence identity. The docking model of (R)-MAN with ChuaHNL suggested that the hydroxyl group forms hydrogen bonds with R38 and K117, and the nitrile group forms hydrogen bonds with R38 and Y103. The mutational analysis showed the importance of these residues in the enzymatic reaction. From these results, we propose that K117 acts as a base to abstract a proton from the hydroxyl group of cyanohydrins and R38 acts as an acid to donate a proton to the cyanide ion during the cleavage reaction of cyanohydrins. The reverse mechanism would occur during the cyanohydrin synthesis. (Photo: Dr. Yuko Ishida) DATABASES: Structural data are available in PDB database under the accession numbers 6JHC, 6KFA, 6KFB, 6KFC, and 6KFD.


Asunto(s)
Acetonitrilos/química , Aldehído-Liasas/química , Proteínas de Artrópodos/química , Artrópodos/química , Lipocalinas/química , Acetonitrilos/metabolismo , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Artrópodos/enzimología , Sitios de Unión , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Ácido Yodoacético/química , Ácido Yodoacético/metabolismo , Cinética , Lipocalinas/genética , Lipocalinas/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tiocianatos/química , Tiocianatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...