Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(22): e2404007121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768347

RESUMEN

Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.


Asunto(s)
Tacto , Realidad Virtual , Tecnología Inalámbrica , Humanos , Tecnología Inalámbrica/instrumentación , Tacto/fisiología , Piel , Robótica/instrumentación , Robótica/métodos
2.
Biosens Bioelectron ; 253: 116166, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428069

RESUMEN

Eccrine sweat can serve as a source of biomarkers for assessing physiological health and nutritional balance, for tracking loss of essential species from the body and for evaluating exposure to hazardous substances. The growing interest in this relatively underexplored class of biofluid arises in part from its non-invasive ability for capture and analysis. The simplest devices, and the only ones that are commercially available, exploit soft microfluidic constructs and colorimetric assays with purely passive modes of operation. The most sophisticated platforms exploit batteries, electronic components and radio hardware for inducing sweat, for electrochemical evaluation of its content and for wireless transmission of this information. The work reported here introduces a technology that combines the advantages of these two different approaches, in the form of a cost-effective, easy-to-use device that supports on-demand evaluation of multiple biomarkers in sweat. This flexible, skin-interfaced, miniaturized system incorporates a hydrogel that contains an approved drug to activate eccrine sweat glands, electrodes and a simple circuit and battery to delivery this drug by iontophoresis through the surface of the skin, microfluidic channels and microreservoirs to capture the induced sweat, and multiple colorimetric assays to evaluate the concentrations of chloride, zinc, and iron. As demonstrated in healthy human participants monitored before and after a meal, such devices yield results that match those of traditional laboratory analysis techniques. Clinical studies that involve cystic fibrosis pediatric patients illustrate the use of this technology as a simple, painless, and reliable alternative to traditional hospital systems for measurements of sweat chloride.


Asunto(s)
Técnicas Biosensibles , Sudor , Humanos , Niño , Cloruros , Colorimetría , Biomarcadores
3.
Mater Horiz ; 10(11): 4992-5003, 2023 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-37641877

RESUMEN

Systems for capture, storage and analysis of eccrine sweat can provide insights into physiological health status, quantify losses of water, electrolytes, amino acids and/or other essential species, and identify exposures to adverse environmental species or illicit drugs. Recent advances in materials and device designs serve as the basis for skin-compatible classes of microfluidic platforms and in situ colorimetric assays for precise assessments of sweat rate, sweat loss and concentrations of wide-ranging types of biomarkers in sweat. This paper presents a set of findings that enhances the performance of these systems through the use of microfluidic networks, integrated valves and microscale optical cuvettes formed by three dimensional printing in hard/soft hybrid materials systems, for accurate spectroscopic and fluorometric assays. Field studies demonstrate the capability of these microcuvette systems to evaluate the concentrations of copper, chloride, and glucose in sweat, along with the pH of sweat, with laboratory-grade accuracy and sensitivity.


Asunto(s)
Microfluídica , Sudor , Sudor/química , Sudor/metabolismo , Microfluídica/métodos , Dispositivos Laboratorio en un Chip , Epidermis , Piel/química , Piel/metabolismo
5.
Nat Commun ; 13(1): 5576, 2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36151092

RESUMEN

Low modulus materials that can shape-morph into different three-dimensional (3D) configurations in response to external stimuli have wide-ranging applications in flexible/stretchable electronics, surgical instruments, soft machines and soft robotics. This paper reports a shape-programmable system that exploits liquid metal microfluidic networks embedded in an elastomer matrix, with electromagnetic forms of actuation, to achieve a unique set of properties. Specifically, this materials structure is capable of fast, continuous morphing into a diverse set of continuous, complex 3D surfaces starting from a two-dimensional (2D) planar configuration, with fully reversible operation. Computational, multi-physics modeling methods and advanced 3D imaging techniques enable rapid, real-time transformations between target shapes. The liquid-solid phase transition of the liquid metal allows for shape fixation and reprogramming on demand. An unusual vibration insensitive, dynamic 3D display screen serves as an application example of this type of morphable surface.

6.
Adv Sci (Weinh) ; 9(2): e2103331, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34747140

RESUMEN

Nutrients play critical roles in maintaining core physiological functions and in preventing diseases. Technologies for delivering these nutrients and for monitoring their concentrations can help to ensure proper nutritional balance. Eccrine sweat is a potentially attractive class of biofluid for monitoring purposes due to the ability to capture sweat easily and noninvasively from nearly any region of the body using skin-integrated microfluidic technologies. Here, a miniaturized system of this type is presented that allows simple, rapid colorimetric assessments of the concentrations of multiple essential nutrients in sweat, simultaneously and without any supporting electronics - vitamin C, calcium, zinc, and iron. A transdermal patch integrated directly with the microfluidics supports passive, sustained delivery of these species to the body throughout a period of wear. Comparisons of measurement results to those from traditional lab analysis methods demonstrate the accuracy and reliability of this platform. On-body tests with human subjects reveal correlations between the time dynamics of concentrations of these nutrients in sweat and those of the corresponding concentrations in blood. Studies conducted before and after consuming certain foods and beverages highlight practical capabilities in monitoring nutritional balance, with strong potential to serve as a basis for guiding personalized dietary choices.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Microfluídica/métodos , Piel/metabolismo , Sudor/química , Sudor/metabolismo , Vitaminas/administración & dosificación , Adulto , Técnicas Biosensibles/métodos , Colorimetría , Femenino , Humanos , Masculino , Nutrientes/administración & dosificación , Parche Transdérmico , Vitaminas/metabolismo , Adulto Joven
7.
ACS Sens ; 6(8): 2787-2801, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34351759

RESUMEN

Skin-interfaced wearable systems with integrated colorimetric assays, microfluidic channels, and electrochemical sensors offer powerful capabilities for noninvasive, real-time sweat analysis. This Perspective details recent progress in the development and translation of novel wearable sensors for personalized assessment of sweat dynamics and biomarkers, with precise sampling and real-time analysis. Sensor accuracy, system ruggedness, and large-scale deployment in remote environments represent key opportunity areas, enabling broad deployment in the context of field studies, clinical trials, and recent commercialization. On-body measurements in these contexts show good agreement compared to conventional laboratory-based sweat analysis approaches. These device demonstrations highlight the utility of biochemical sensing platforms for personalized assessment of performance, wellness, and health across a broad range of applications.


Asunto(s)
Sudor , Dispositivos Electrónicos Vestibles , Microfluídica , Piel
8.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33731359

RESUMEN

Three-dimensional (3D), submillimeter-scale constructs of neural cells, known as cortical spheroids, are of rapidly growing importance in biological research because these systems reproduce complex features of the brain in vitro. Despite their great potential for studies of neurodevelopment and neurological disease modeling, 3D living objects cannot be studied easily using conventional approaches to neuromodulation, sensing, and manipulation. Here, we introduce classes of microfabricated 3D frameworks as compliant, multifunctional neural interfaces to spheroids and to assembloids. Electrical, optical, chemical, and thermal interfaces to cortical spheroids demonstrate some of the capabilities. Complex architectures and high-resolution features highlight the design versatility. Detailed studies of the spreading of coordinated bursting events across the surface of an isolated cortical spheroid and of the cascade of processes associated with formation and regrowth of bridging tissues across a pair of such spheroids represent two of the many opportunities in basic neuroscience research enabled by these platforms.


Asunto(s)
Sistema Nervioso , Neuronas
9.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33468630

RESUMEN

Precise, quantitative measurements of the hydration status of skin can yield important insights into dermatological health and skin structure and function, with additional relevance to essential processes of thermoregulation and other features of basic physiology. Existing tools for determining skin water content exploit surrogate electrical assessments performed with bulky, rigid, and expensive instruments that are difficult to use in a repeatable manner. Recent alternatives exploit thermal measurements using soft wireless devices that adhere gently and noninvasively to the surface of the skin, but with limited operating range (∼1 cm) and high sensitivity to subtle environmental fluctuations. This paper introduces a set of ideas and technologies that overcome these drawbacks to enable high-speed, robust, long-range automated measurements of thermal transport properties via a miniaturized, multisensor module controlled by a long-range (∼10 m) Bluetooth Low Energy system on a chip, with a graphical user interface to standard smartphones. Soft contact to the surface of the skin, with almost zero user burden, yields recordings that can be quantitatively connected to hydration levels of both the epidermis and dermis, using computational modeling techniques, with high levels of repeatability and insensitivity to ambient fluctuations in temperature. Systematic studies of polymers in layered configurations similar to those of human skin, of porcine skin with known levels of hydration, and of human subjects with benchmarks against clinical devices validate the measurement approach and associated sensor hardware. The results support capabilities in characterizing skin barrier function, assessing severity of skin diseases, and evaluating cosmetic and medication efficacy, for use in the clinic or in the home.


Asunto(s)
Electrónica , Piel/patología , Agua , Tecnología Inalámbrica , Adolescente , Adulto , Preescolar , Análisis de Elementos Finitos , Humanos , Temperatura
10.
Sci Transl Med ; 12(574)2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33328330

RESUMEN

Precise form-fitting of prosthetic sockets is important for the comfort and well-being of persons with limb amputations. Capabilities for continuous monitoring of pressure and temperature at the skin-prosthesis interface can be valuable in the fitting process and in monitoring for the development of dangerous regions of increased pressure and temperature as limb volume changes during daily activities. Conventional pressure transducers and temperature sensors cannot provide comfortable, irritation-free measurements because of their relatively rigid construction and requirements for wired interfaces to external data acquisition hardware. Here, we introduce a millimeter-scale pressure sensor that adopts a soft, three-dimensional design that integrates into a thin, flexible battery-free, wireless platform with a built-in temperature sensor to allow operation in a noninvasive, imperceptible fashion directly at the skin-prosthesis interface. The sensor system mounts on the surface of the skin of the residual limb, in single or multiple locations of interest. A wireless reader module attached to the outside of the prosthetic socket wirelessly provides power to the sensor and wirelessly receives data from it, for continuous long-range transmission to a standard consumer electronic device such as a smartphone or tablet computer. Characterization of both the sensor and the system, together with theoretical analysis of the key responses, illustrates linear, accurate responses and the ability to address the entire range of relevant pressures and to capture skin temperature accurately, both in a continuous mode. Clinical application in two prosthesis users demonstrates the functionality and feasibility of this soft, wireless system.


Asunto(s)
Miembros Artificiales , Suministros de Energía Eléctrica , Diseño de Prótesis , Piel , Temperatura
11.
Sci Adv ; 6(49)2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33277263

RESUMEN

Therapeutic compression garments (TCGs) are key tools for the management of a wide range of vascular lower extremity conditions. Proper use of TCGs involves application of a minimum and consistent pressure across the lower extremities for extended periods of time. Slight changes in the characteristics of the fabric and the mechanical properties of the tissues lead to requirements for frequent measurements and corresponding adjustments of the applied pressure. Existing sensors are not sufficiently small, thin, or flexible for practical use in this context, and they also demand cumbersome, hard-wired interfaces for data acquisition. Here, we introduce a flexible, wireless monitoring system for tracking both temperature and pressure at the interface between the skin and the TCGs. Detailed studies of the materials and engineering aspects of these devices, together with clinical pilot trials on a range of patients with different pathologies, establish the technical foundations and measurement capabilities.

12.
J Control Release ; 321: 174-183, 2020 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-32035908

RESUMEN

High rates of restenosis and neointimal formation have driven increasing interest in the application of drug eluting balloons (DEB) as counteractive measures for intraluminal drug delivery. The use of DEBs eliminates the need for stents so that serious side effects including in-stent restenosis and stent thrombosis can be avoided and long-term medication of anti-platelet agent is not needed. Despite their benefits, DEBs have poor drug delivery efficiency due to short balloon inflation times (30-60 s) that limit the passive drug diffusion from the balloon surface to the luminal lesion. To increase drug delivery efficiency, a microneedle DEB (MNDEB) was developed by a conformal transfer molding process using a thin polydimethylsiloxane mold bearing a negative array of MNs of 200 µm in height. A MN array composed of UV curable resin was formed onto the surface of DEB, and drugs were coated onto the structure. The mechanical properties of the MN array were investigated and MN penetration into luminal vasculature was confirmed in vivo. An increase in drug delivery efficiency compared to a standard DEB was demonstrated in an in vivo test in a rabbit aorta. Finally, the superior therapeutic efficacy of MNDEBs was evaluated using an atherosclerosis rabbit model.


Asunto(s)
Angioplastia Coronaria con Balón , Fármacos Cardiovasculares , Stents Liberadores de Fármacos , Preparaciones Farmacéuticas , Animales , Materiales Biocompatibles Revestidos , Paclitaxel , Diseño de Prótesis , Conejos , Stents , Resultado del Tratamiento
13.
Proc Natl Acad Sci U S A ; 114(39): E8254-E8263, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28894005

RESUMEN

The transmembrane semaphorin Sema-1a acts as both a ligand and a receptor to regulate axon-axon repulsion during neural development. Pebble (Pbl), a Rho guanine nucleotide exchange factor, mediates Sema-1a reverse signaling through association with the N-terminal region of the Sema-1a intracellular domain (ICD), resulting in cytoskeletal reorganization. Here, we uncover two additional Sema-1a interacting proteins, varicose (Vari) and cheerio (Cher), each with neuronal functions required for motor axon pathfinding. Vari is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins, members of which can serve as scaffolds to organize signaling complexes. Cher is related to actin filament cross-linking proteins that regulate actin cytoskeleton dynamics. The PDZ domain binding motif found in the most C-terminal region of the Sema-1a ICD is necessary for interaction with Vari, but not Cher, indicative of distinct binding modalities. Pbl/Sema-1a-mediated repulsive guidance is potentiated by both vari and cher Genetic analyses further suggest that scaffolding functions of Vari and Cher play an important role in Pbl-mediated Sema-1a reverse signaling. These results define intracellular components critical for signal transduction from the Sema-1a receptor to the cytoskeleton and provide insight into mechanisms underlying semaphorin-induced localized changes in cytoskeletal organization.


Asunto(s)
Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Filaminas/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanilato Ciclasa/metabolismo , Proteínas de la Membrana/metabolismo , Semaforinas/metabolismo , Transducción de Señal/fisiología , Secuencias de Aminoácidos , Animales , Citoesqueleto/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Filaminas/genética , Factores de Intercambio de Guanina Nucleótido/genética , Guanilato Ciclasa/genética , Proteínas de la Membrana/genética , Dominios Proteicos , Semaforinas/genética
14.
Int J Dev Neurosci ; 55: 34-40, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27637927

RESUMEN

Plexins (Plexs) are a large family of phylogenetically conserved guidance receptors that bind specifically to semaphorins (Semas), another large family of guidance molecules. In the Drosophila embryonic central nervous system (CNS), the secreted semaphorins Sema-2a and Sema-2b both act as ligands for PlexB, but mediate mutually independent and opposite functions (repulsive and attractive guidance, respectively). PlexB is also known to regulate motor axon guidance in the embryonic peripheral nervous system (PNS). However, it is unclear whether the mechanisms of ligand regulation of PlexB seen in the CNS are similar or the same as those that exist in PNS motor axon guidance. Here, we find that two distinct modes of ligand regulation underlie differential roles of PlexB in PNS motor axon pathfinding during embryonic development. Epistasis analyses in the intersegmental nerve b (ISNb) pathway suggest that PlexB serves as a receptor for both Sema-2a and Sema-2b and integrates their mutually dependent but opposite guidance functions. Furthermore, we present evidence that PlexB mediates not only Sema-2a/2b-dependent guidance functions, but also Sema-2a/2b-independent target recognition in establishing the segmental nerve a (SNa) motor axon pathway. These results demonstrate that a single guidance receptor can elicit diverse effects on the establishment of neuronal connectivity via regulation of its ligands themselves.


Asunto(s)
Axones/fisiología , Sistema Nervioso Central/citología , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Sistema Nervioso Central/embriología , Drosophila , Proteínas de Drosophila/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/genética , Transducción de Señal/genética
15.
Dev Biol ; 418(2): 258-67, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27565025

RESUMEN

Plexins (Plexs) comprise a large family of cell surface receptors for semaphorins (Semas) that function as evolutionarily conserved guidance molecules. GTPase activating protein (GAP) activity for Ras family small GTPases has been implicated in plexin signaling cascades through its RasGAP domain. However, little is known about how Ras family GTPases are controlled in vivo by plexin signaling. Here, we found that Drosophila Rap1, a member of the Ras family of GTPases, plays an important role controlling intersegmental nerve b motor axon guidance during neural development. Gain-of-function studies using dominant-negative and constitutively active forms of Rap1 indicate that Rap1 contributes to axonal growth and guidance. Genetic interaction analyses demonstrate that the Sema-1a/PlexA-mediated repulsive guidance function is regulated positively by Rap1. Furthermore, neuronal expression of mutant PlexA robustly restored defasciculation defects in PlexA null mutants when the catalytic arginine fingers of the PlexA RasGAP domain critical for GAP activity were disrupted. However, deleting the RasGAP domain abolished the ability of PlexA to rescue the PlexA guidance phenotypes. These findings suggest that PlexA-mediated motor axon guidance is dependent on the presence of the PlexA RasGAP domain, but not on its GAP activity toward Ras family small GTPases.


Asunto(s)
Orientación del Axón/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores de Superficie Celular/fisiología , Proteínas de Unión a Telómeros/fisiología , Proteínas Activadoras de ras GTPasa/fisiología , Animales , Animales Modificados Genéticamente , Orientación del Axón/genética , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes de Insecto , Proteínas de Unión al GTP Monoméricas/deficiencia , Proteínas de Unión al GTP Monoméricas/genética , Neuronas Motoras/fisiología , Mutagénesis , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Receptores de Superficie Celular/deficiencia , Receptores de Superficie Celular/genética , Complejo Shelterina , Proteínas de Unión a Telómeros/deficiencia , Proteínas de Unión a Telómeros/genética , Regulación hacia Arriba , Proteínas Activadoras de ras GTPasa/deficiencia , Proteínas Activadoras de ras GTPasa/genética
16.
J Nanosci Nanotechnol ; 16(6): 6223-30, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27427694

RESUMEN

The copper ferrocyanide functionalized core-shell magnetic silica composite (mag@silica-CuFC) was prepared and was found to be easily separated from aqueous solutions by using magnetic field. The synthesized mag@silica-CuFC composite has a high sorption ability of Cs owing to its strong affinity for Cs as well as the high surface area of the supports. Cs sorption on the mag@silica-CuFC composite quickly reached the sorption equilibrium after 2 h of contact time. The effect of the presence of salts with a high concentration of up to 3.5 wt% on the efficiency of Cs sorption onto the composites was also studied. The maximum sorption ability was found to be maintained in the presence of up to 3.5 wt% of NaCl in the solution. Considering these results, the mag@silica-CuFC composite has great potential for use as an effective sorbent for the selective removal of radioactive Cs ions.


Asunto(s)
Cesio/aislamiento & purificación , Ferrocianuros/química , Imanes/química , Residuos Radiactivos/análisis , Dióxido de Silicio/química , Adsorción , Cesio/química , Cinética , Nanopartículas/química , Porosidad , Cloruro de Sodio/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...