Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Total Environ ; 858(Pt 1): 159790, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36309282

RESUMEN

The Chinese Loess Plateau has been the cradle of Chinese civilization and the main human settlement in China for thousands of years, where anthropogenic activities are believed to have deeply eroded natural landscapes. After decades of minimal leopard sighting in forests of northern China, due to serious human interference, we recently discovered that the leopard population is recovering. This finding provides hope for successful biodiversity conservation in human-dominated ecosystems. To understand the mechanism of leopard return into such a highly fragmented landscape, we applied the concept of ecological networks (ENs) to identify key factors promoting leopard restoration and quantify the ecological links among habitats. We first determined the existence of a healthy leopard population in the study area based on the size of its home range and presence of breeding individuals. We then innovatively used the relationship between species richness and top predators to generate ENs, and found that the connectivity of ENs had a significant positive interaction with leopard survival. Our study validates the effectiveness of establishing ecologically connected habitats for leopard protection, and highlights the importance of applying ENs for conservation planning in highly fragmented ecosystems. This study provides a successful case for the protection of top predators in human-dominated landscapes.


Asunto(s)
Ecosistema , Panthera , Animales , Humanos , Conservación de los Recursos Naturales , Biodiversidad , Bosques
2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-476998

RESUMEN

The continual emergence of SARS-CoV-2 variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant, has rendered ineffective a number of previously EUA approved SARS-CoV-2 neutralizing antibody therapies. Furthermore, even those approved antibodies with neutralizing activity against Omicron are reportedly ineffective against the subset of Omicron variants that contain a R346K substitution, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. Following a campaign of antibody discovery based on the vaccination of Harbour H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of Spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against the Omicron and Omicron + R346K variants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for use in human clinical trials.

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-359836

RESUMEN

We have previously reported that the SARS-CoV-2 neutralizing antibody, STI-2020, potently inhibits cytopathic effects of infection by genetically diverse clinical SARS-CoV-2 pandemic isolates in vitro, and has demonstrated efficacy in a hamster model of COVID-19 when administered by the intravenous route immediately following infection. We now have extended our in vivo studies of STI-2020 to include disease treatment efficacy, profiling of biodistribution of STI-2020 in mice when antibody is delivered intranasally (IN) or intravenously (IV), as well as pharmacokinetics in mice following IN antibody administration. Importantly, SARS-CoV-2-infected hamsters were treated with STI-2020 using these routes, and treatment effects on severity and duration of COVID-19-like disease in this model were evaluated. In SARS-CoV-2 infected hamsters, treatment with STI-2020 12 hours post-infection using the IN route led to a decrease in severity of clinical disease signs and a more robust recovery during 9 days of infection as compared to animals treated with an isotype control antibody. Treatment via the IV route using the same dose and timing regimen resulted in a decrease in the average number of consecutive days that infected animals experienced weight loss, shortening the duration of disease and allowing recovery to begin more rapidly in STI-2020 treated animals. Following IN administration in mice, STI-2020 was detected within 10 minutes in both lung tissue and lung lavage. The half-life of STI-2020 in lung tissue is approximately 25 hours. We are currently investigating the minimum effective dose of IN-delivered STI-2020 in the hamster model as well as establishing the relative benefit of delivering neutralizing antibodies by both IV and IN routes.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-178616

RESUMEN

Vaccination efficacy is enhanced by targeting the antigen-presenting cell compartment. Here, we show that S1-Fc antigen delivery targeting the Fc{gamma}R+ antigen-presenting cell compartment elicits anti-SARS-CoV-2 S1-antigen specific IgG production in vivo exerting biologically functional and protective activity against live virus infection, assessed in a stringent experimental virus challenge assay in vitro. The S1-domain of the SARS-CoV-2 spike protein was genetically fused to a human immunoglobulin Fc moiety, which contributes to mediate S1-Fc cellular internalization by Fc{gamma}R+ antigen-presenting cells. Immediately upon administration intramuscularly, our novel vaccine candidate recombinant rS1-Fc homes to lymph nodes in vivo where Fc{gamma}R+ antigen-presenting cells reside. Seroconversion is achieved as early as day 7, mounting considerably increased levels of anti-S1 IgGs in vivo. Interestingly, immunization at elevated doses with non-expiring S1-Fc encoding dsDNA favors the education of a desired antigen-specific adaptive T cell response. However, low-dose immunization, safeguarding patient safety, using recombinant rS1-Fc, elicits a considerably elevated protection amplitude against live SARS-CoV-2 infection. Our promising findings on rS1-Fc protein immunization prompted us to further develop an affordable and safe product for delivery to our communities in need for COVID-19 vaccinations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...