Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cells ; 12(19)2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37830548

RESUMEN

(1) Background: Owing to its ready availability and ease of acquisition, developing chick corneal tissue has long been used for research purposes. Here, we seek to ascertain the three-dimensional microanatomy and spatiotemporal interrelationships of the cells (epithelial and stromal), extracellular matrix, and vasculature at the corneo-scleral limbus as the site of the corneal stem cell niche of the chicken eye. (2) Methods: The limbus of developing (i.e., embryonic days (E) 16 and 18, just prior to hatch) and mature chicken eyes was imaged using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the volume electron microscopy technique, serial-block face SEM (SBF-SEM), the latter technique allowing us to generate three-dimensional reconstructions from data sets of up to 1000 serial images; (3) Results: Data revealed that miniature limbal undulations of the embryonic basement membrane, akin to Palisades of Vogt (PoV), matured into distinct invaginations of epithelial cells that extended proximally into a vascularized limbal stroma. Basal limbal epithelial cells, moreover, occasionally exhibited a high nuclear:cytoplasmic ratio, which is a characteristic feature of stem cells. SBF-SEM identified direct cell-cell associations between corneal epithelial and stromal cells at the base of structures akin to limbal crypts (LCs), with cord-like projections of extracellular matrix extending from the basal epithelial lamina into the subjacent stroma, where they made direct contact with stomal cells in the immature limbus. (4) Conclusion: Similarities with human tissue suggest that the corneal limbus of the mature chicken eye is likely the site of a corneal stem cell niche. The ability to study embryonic corneas pre-hatch, where we see characteristic niche-like features emerge, thus provides an opportunity to chart the development of the limbal stem cell niche of the cornea.


Asunto(s)
Epitelio Corneal , Limbo de la Córnea , Humanos , Animales , Pollos , Epitelio Corneal/metabolismo , Nicho de Células Madre , Limbo de la Córnea/metabolismo , Células Madre/metabolismo
2.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768414

RESUMEN

Chondroitin sulphate (CS) proteoglycans with variable sulphation-motifs along their glycosaminoglycan (GAG) chains are closely associated with the stem cell niche of articular cartilage, where they are believed to influence the characteristics of the resident stem cells. Here, we investigated the immunohistochemical distribution of hybrid CS/dermatan sulphate (DS) GAGs in the periphery of the adult chicken cornea, which is the location of the cornea's stem cell niche in a number of species, using a monoclonal antibody, 6C3, that recognises a sulphation motif-specific CS/DS GAG epitope. This revealed positive labelling that was restricted to the subepithelial corneal stroma, as well as nearby bony structures within the sclera, called ossicles. When cultivated on cell culture dishes coated with 6C3-rich CS/DS, corneal stromal cells (keratocytes) that had been isolated from embryonic chicken corneas formed circular colonies, which took several days to reach confluency. A flow cytometric analysis of these keratocytes revealed changes in their expression levels of the indicative stem cell markers, Connexin 43 (Cx43), Paired Box 6 (PAX6), B-lymphoma Moloney murine leukemia virus insertion region-1 (Bmi-1), and C-X-C Chemokine Receptor 4 (CXCR4) suggestive of a less-differentiated phenotype compared with expression levels in cells not exposed to CS/DS. These findings support the view that CS/DS promotes the retention of a stem cell phenotype in corneal cells, much as it has been proposed to do in other connective tissues.


Asunto(s)
Sulfatos de Condroitina , Proteoglicanos , Ratones , Embrión de Pollo , Animales , Sulfatos de Condroitina/química , Proteoglicanos/metabolismo , Glicosaminoglicanos/metabolismo , Células Madre/metabolismo , Córnea/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36834965

RESUMEN

The cornea forms the tough and transparent anterior part of the eye and by accurate shaping forms the major refractive element for vision. Its largest component is the stroma, a dense collagenous connective tissue positioned between the epithelium and the endothelium. In chicken embryos, the stroma initially develops as the primary stroma secreted by the epithelium, which is then invaded by migratory neural crest cells. These cells secrete an organised multi-lamellar collagenous extracellular matrix (ECM), becoming keratocytes. Within individual lamellae, collagen fibrils are parallel and orientated approximately orthogonally in adjacent lamellae. In addition to collagens and associated small proteoglycans, the ECM contains the multifunctional adhesive glycoproteins fibronectin and tenascin-C. We show in embryonic chicken corneas that fibronectin is present but is essentially unstructured in the primary stroma before cell migration and develops as strands linking migrating cells as they enter, maintaining their relative positions as they populate the stroma. Fibronectin also becomes prominent in the epithelial basement membrane, from which fibronectin strings penetrate into the stromal lamellar ECM at right angles. These are present throughout embryonic development but are absent in adults. Stromal cells associate with the strings. Since the epithelial basement membrane is the anterior stromal boundary, strings may be used by stromal cells to determine their relative anterior-posterior positions. Tenascin-C is organised differently, initially as an amorphous layer above the endothelium and subsequently extending anteriorly and organising into a 3D mesh when the stromal cells arrive, enclosing them. It continues to shift anteriorly in development, disappearing posteriorly, and finally becoming prominent in Bowman's layer beneath the epithelium. The similarity of tenascin-C and collagen organisation suggests that it may link cells to collagen, allowing cells to control and organise the developing ECM architecture. Fibronectin and tenascin-C have complementary roles in cell migration, with the former being adhesive and the latter being antiadhesive and able to displace cells from their adhesion to fibronectin. Thus, in addition to the potential for associations between cells and the ECM, the two could be involved in controlling migration and adhesion and subsequent keratocyte differentiation. Despite the similarities in structure and binding capabilities of the two glycoproteins and the fact that they occupy similar regions of the developing stroma, there is little colocalisation, demonstrating their distinctive roles.


Asunto(s)
Córnea , Fibronectinas , Tenascina , Animales , Embrión de Pollo/metabolismo , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Colágeno/metabolismo , Córnea/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/metabolismo , Morfogénesis , Tenascina/metabolismo
4.
Nature ; 605(7908): 126-131, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35444274

RESUMEN

Lacrimal glands are the main exocrine glands of the eyes. Situated within the orbit, behind the upper eyelid and towards the temporal side of each eye, they secrete lacrimal fluid as a major component of the tear film. Here we identify cells with characteristics of lacrimal gland primordia that emerge in two-dimensional eye-like organoids cultured from human pluripotent stem cells1. When isolated by cell sorting and grown under defined conditions, the cells form a three-dimensional lacrimal-gland-like tissue organoid with ducts and acini, enabled by budding and branching. Clonal colony analyses indicate that the organoids originate from multipotent ocular surface epithelial stem cells. The organoids exhibit notable similarities to native lacrimal glands on the basis of their morphology, immunolabelling characteristics and gene expression patterns, and undergo functional maturation when transplanted adjacent to the eyes of recipient rats, developing lumina and producing tear-film proteins.


Asunto(s)
Aparato Lagrimal , Células Madre Pluripotentes , Animales , Humanos , Aparato Lagrimal/metabolismo , Organoides , Ratas , Lágrimas/metabolismo
7.
Methods Protoc ; 4(3)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34449675

RESUMEN

Elastic fibres constitute an important component of the extracellular matrix and currently are the subject of intensive study in order to elucidate their assembly, function and involvement in cell-matrix interactions and disease. However, few studies to date have investigated the 3D architecture of the elastic fibre system in bulk tissue. We describe a protocol for preparation of tissue samples, including primary fixation and backscatter electron contrast-enhancement steps, through dehydration into stable resin-embedded blocks for volume electron microscopy. The use of low molecular weight tannic acid and alcoholic lead staining are critical stages in this procedure. Block preparation by ultramicrotomy and evaporative metal coating prior to microscopical examination are also described. We present images acquired from serial block face scanning electron microscopy of cornea and aorta showing target structures clearly differentiated from cells and other matrix components. The processing method imparts high contrast to fibrillin-containing elastic fibres, thus facilitating their segmentation and rendering into 3D reconstructions by image analysis software from large serial image datasets.

9.
Eur. j. anat ; 24(5): 399-406, sept. 2020. ilus, graf
Artículo en Inglés | IBECS | ID: ibc-195277

RESUMEN

In most animals, Bowman's layer is a feature of the cornea of the eye, and lies between the sur-face epithelium and the stromal extracellular matrix that makes up the bulk of the cornea. It is comprised of a condensation of disorganised collagen fibrils. However, it has been conjectured that not all species possess Bowman’s layer, and pigs are a species that has classically been stated to lack this anatomical structure, although there is disagreement in the published literature. Here, we studied the porcine cornea using transmission and scanning electron microscopy (TEM and SEM) to ascertain whether Bowman’s layer existed. TEM identified a thin band of disorganised collagen fibrils between the epithelial basement membrane and corneal stroma. SEM images of the central and peripheral corneal surfaces, following removal of the corneal epithelium by cell maceration, revealed a disorganised meshwork of collagen fibrils, with a highly aligned annulus of collagen at the limbus. In between the peripheral cornea and limbus, a "transition zone" is observed where collagenfibrils start to align. Quantification of fibril alignment demonstrates a significant increase in collagen alignment from 0.08 ± 0.04 to 0.33 ± 0.07 (p < 0.001; n = 60; 0 = no alignment, 1 = full alignment) with increasing distance from the corneal centre. These data together lead us to conclude that the porcine cornea does include Bowman's layer, though it is thin (contributing roughly 0.2% of corneal thickness), and thus, reaffirms the porcine cornea's similarity to its human counterpart and usefulness as a model system


No disponible


Asunto(s)
Animales , Córnea/efectos de la radiación , Colágeno/fisiología , Limbo de la Córnea/fisiología , Córnea/anatomía & histología , Córnea/ultraestructura , Limbo de la Córnea/anatomía & histología , Limbo de la Córnea/efectos de la radiación , Microscopía Electrónica de Rastreo , Modelos Animales de Enfermedad , Porcinos/anatomía & histología
10.
Exp Eye Res ; 197: 108112, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32561482

RESUMEN

The development of the eye requires the co-ordinated integration of optical and neural elements to create a system with requisite optics for the given animal. The eye lens has a lamellar structure with gradually varying protein concentrations that increase towards the centre, creating a gradient refractive index or GRIN. This provides enhanced image quality compared to a homogeneous refractive index lens. The development of the GRIN during ocular embryogenesis has not been investigated previously. This study presents measurements using synchrotron X-ray Talbot interferometry and scanning electron microscopy of chick eyes from embryonic day 10: midway through embryonic development to E18: a few days before hatching. The lens GRIN profile is evident from the youngest age measured and increases in magnitude of refractive index at all points as the lens grows. The profile is parabolic along the optic axis and has two distinct regions in the equatorial plane. We postulate that these may be fundamental for the independent central and peripheral processes that contribute to the optimisation of image quality and the development of an eye that is emmetropic. The spatial distributions of the distinct GRIN profile regions match with previous measurements on different fibre cell groups in chick lenses of similar developmental stages. Results suggest that tissue compaction may not be necessary for development of the GRIN in the chick eye lens.


Asunto(s)
Cristalino/embriología , Refracción Ocular/fisiología , Animales , Pollos , Interferometría , Cristalino/ultraestructura , Microscopía Electrónica de Rastreo , Modelos Animales , Tomografía de Coherencia Óptica
12.
Front Cell Dev Biol ; 8: 567358, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33511110

RESUMEN

Chondroitin sulfate (CS) is an important component of the extracellular matrix in multiple biological tissues. In cornea, the CS glycosaminoglycan (GAG) exists in hybrid form, whereby some of the repeating disaccharides are dermatan sulfate (DS). These CS/DS GAGs in cornea, through their presence on the proteoglycans, decorin and biglycan, help control collagen fibrillogenesis and organization. CS also acts as a regulatory ligand for a spectrum of signaling molecules, including morphogens, cytokines, chemokines, and enzymes during corneal growth and development. There is a growing body of evidence that precise expression of CS or CS/DS with specific sulfation motifs helps define the local extracellular compartment that contributes to maintenance of the stem cell phenotype. Indeed, recent evidence shows that CS sulfation motifs recognized by antibodies 4C3, 7D4, and 3B3 identify stem cell populations and their niches, along with activated progenitor cells and transitional areas of tissue development in the fetal human elbow. Various sulfation motifs identified by some CS antibodies are also specifically located in the limbal region at the edge of the mature cornea, which is widely accepted to represent the corneal epithelial stem cell niche. Emerging data also implicate developmental changes in the distribution of CS during corneal morphogenesis. This article will reflect upon the potential roles of CS and CS/DS in maintenance of the stem cell niche in cornea, and will contemplate the possible involvement of CS in the generation of eye-like tissues from human iPS (induced pluripotent stem) cells.

13.
Mol Vis ; 25: 517-526, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31588175

RESUMEN

Purpose: Increased resistance of aqueous humor drainage from the eye through Schlemm's canal (SC) is the basis for elevated intraocular pressure in glaucoma. Experimental evidence suggests that the bulk of outflow resistance lies in the vicinity of the inner wall endothelial lining of SC and the adjacent juxtacanalicular tissue (JCT). However, there is little understanding of how this resistance is generated, and a detailed understanding of the structure-function relationship of the outflow pathway has not been established yet. In the present study, regional variations in the ultrastructure of the JCT and the inner wall of SC were investigated in three dimensions. Methods: With the use of serial block face scanning electron microscopy (SBF-SEM), the volume occupied by the electron lucent spaces of the JCT compared to that occupied by the cellular and extracellular matrix was investigated and quantified. The distribution of giant vacuoles (GVs) and pores in the inner wall endothelium of SC was further examined. Results: With increasing distance from the inner wall of SC, the volume of the electron lucent spaces increased above 30%. In contrast, the volume of these spaces in immediate contact with the inner wall endothelium was minimal (<10%). Circumferential variability in the type and distribution of GVs was observed, and the percentage of GVs with pores varied between 3% and 27%. Conclusions: These studies provide a detailed quantitative analysis of the ultrastructure of JCT and the distribution of GVs along the circumference of SC in three dimensions, supporting the non-uniform or segmental aqueous outflow.


Asunto(s)
Endotelio/ultraestructura , Ojo/anatomía & histología , Ojo/ultraestructura , Anciano , Femenino , Humanos , Malla Trabecular/ultraestructura , Vacuolas/ultraestructura
14.
Exp Eye Res ; 187: 107772, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31445001

RESUMEN

Mechanisms controlling the spatial configuration of the remarkably ordered collagen-rich extracellular matrix of the transparent cornea remain incompletely understood. We previously described the assembly of the emerging corneal matrix in the mid and late stages of embryogenesis and concluded that collagen fibril organisation was driven by cell-directed mechanisms. Here, the early stages of corneal morphogenesis were examined by serial block face scanning electron microscopy of embryonic chick corneas starting at embryonic day three (E3), followed by a Fourier transform analysis of three-dimensional datasets and theoretical considerations of factors that influence matrix formation. Eyes developing normally and eyes that had the lens surgically removed at E3 were studied. Uniformly thin collagen fibrils are deposited by surface ectoderm-derived corneal epithelium in the primary stroma of the developing chick cornea and form an acellular matrix with a striking micro-lamellar orthogonal arrangement. Fourier transform analysis supported this observation and indicated that adjacent micro-lamellae display a clockwise rotation of fibril orientation, depth-wise below the epithelium. We present a model which attempts to explain how, in the absence of cells in the primary stroma, collagen organisation might be influenced by cell-independent, intrinsic mechanisms, such as fibril axial charge derived from associated proteoglycans. On a supra-lamellar scale, fine cords of non-collagenous filamentous matrix were detected over large tissue volumes. These extend into the developing cornea from the epithelial basal lamina and appear to associate with the neural crest cells that migrate inwardly to form, first the corneal endothelium and then keratocytes which synthesise the mature, secondary corneal stroma. In a small number of experimental specimens, matrix cords were present even when periocular neural crest cell migration and corneal morphogenesis had been perturbed following removal of the lens at E3.


Asunto(s)
Córnea/embriología , Matriz Extracelular/ultraestructura , Animales , Embrión de Pollo , Sulfatos de Condroitina/metabolismo , Colágeno Tipo I/metabolismo , Colágeno Tipo II/metabolismo , Córnea/metabolismo , Córnea/ultraestructura , Sustancia Propia/embriología , Sustancia Propia/metabolismo , Sustancia Propia/ultraestructura , Dermatán Sulfato/metabolismo , Matriz Extracelular/metabolismo , Análisis de Fourier , Imagenología Tridimensional , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Morfogénesis/fisiología
17.
Brain Commun ; 1(1): fcz035, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31894207

RESUMEN

Glaucoma is characterized by the progressive dysfunction and loss of retinal ganglion cells. However, the earliest degenerative events that occur in human glaucoma are relatively unknown. Work in animal models has demonstrated that retinal ganglion cell dendrites remodel and atrophy prior to the loss of the cell soma. Whether this occurs in human glaucoma has yet to be elucidated. Serial block face scanning electron microscopy is well established as a method to determine neuronal connectivity at high resolution but so far has only been performed in normal retina from animal models. To assess the structure-function relationship of early human glaucomatous neurodegeneration, regions of inner retina assessed to have none-to-moderate loss of retinal ganglion cell number were processed using serial block face scanning electron microscopy (n = 4 normal retinas, n = 4 glaucoma retinas). This allowed detailed 3D reconstruction of retinal ganglion cells and their intracellular components at a nanometre scale. In our datasets, retinal ganglion cell dendrites degenerate early in human glaucoma, with remodelling and redistribution of the mitochondria. We assessed the relationship between visual sensitivity and retinal ganglion cell density and discovered that this only partially conformed to predicted models of structure-function relationships, which may be affected by these early neurodegenerative changes. In this study, human glaucomatous retinal ganglion cells demonstrate compartmentalized degenerative changes as observed in animal models. Importantly, in these models, many of these changes have been demonstrated to be reversible, increasing the likelihood of translation to viable therapies for human glaucoma.

18.
Acta Biomater ; 79: 96-112, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30170195

RESUMEN

While tissue form and function is highly dependent upon tissue-specific collagen composition and organization, little is known of the mechanisms controlling the bundling of collagen fibrils into fibers and larger structural designs that lead to the formation of bones, tendons and other tissues. Using the cornea as a model system, our previous 3 dimensional mapping of collagen fiber organization has demonstrated that macrostructural organization of collagen fibers involving interweaving, branching and anastomosing plays a critical role in controlling mechanical stiffness, corneal shape and refractive power. In this work, the cellular and mechanical mechanisms regulating critical events in the assembly of collagen macrostructure are analysed in the developing chicken cornea. We elucidated the temporal events leading to adult corneal structure and determined the effects of intraocular pressure (IOP) on the organization of the collagen macrostructure. Our findings indicate that the complex adult collagen organization begins to appear on embryonic day 10 (E10) after deposition of the primary stroma and full invasion of keratocytes. Importantly, organizational changes in keratocytes appearing at E9 preceded and predicted later changes in collagen organization. Corneal collagen organization remained unaffected when the development of IOP was blocked at E4. These findings support a primary role for keratocytes in controlling stromal organization, mechanical stiffness and corneal shape that are not regulated by the IOP. Our findings also suggest that the avian cornea represents an excellent experimental model for elucidating key regulatory steps and mechanisms controlling the collagen fiber organization that is critical to determining tissue form and function. STATEMENT OF SIGNIFICANCE: This work by using an ex ovo model system, begins to investigate the potential mechanisms controlling collagen fibril macrostructure. In particular, this work highlights a convergent role for the corneal keratocytes in organizing the complex collagen macrostructure, necessary to support high visual acuity. Our data supports that the intraocular pressure does not influence collagen fibril macrostructure and suggest that the avian cornea represents an excellent experimental model for elucidating key regulatory steps and mechanisms controlling the collagen fiber organization that is critical to determining tissue form and function. Clearly understanding the cellular and molecular mechanisms that underlie collagen fibril macrostructure will be highly beneficial for future tissue engineering and regenerative medicine applications.


Asunto(s)
Córnea/crecimiento & desarrollo , Colágenos Fibrilares/química , Morfogénesis , Animales , Fenómenos Biomecánicos , Embrión de Pollo , Córnea/citología , Sustancia Propia/embriología , Presión Intraocular
19.
Invest Ophthalmol Vis Sci ; 59(3): 1641-1651, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29625490

RESUMEN

Purpose: Synthesis of keratan sulfate (KS) relies on coordinated action of multiple enzymes, including the N-acetylglucosamine-transferring enzyme, ß-1,3-N-acetylglucosaminyltransferase-7 (ß3GnT7). A mouse model deficient in ß3GnT7 was developed to explore structural changes in KS and the extracellular matrix (ECM; i.e., the corneal stroma), elucidate the KS biosynthesis mechanism, and understand its role in corneal organization. Methods: A knockout vector for the ß3GnT7-encoding gene, B3gnt7, was created to develop heterozygous- (htz) and homozygous-null (null) knockouts. Epithelial, stromal, and whole cornea thicknesses were measured from each group. Proteoglycans were stained with cupromeronic blue for visualization by electron microscopy, and Western blot analyses were conducted on the KS core protein, lumican. Corneal sections were labelled fluorescently for KS and chondroitin sulfate/dermatan sulfate (CS/DS) using monoclonal antibodies 1B4 or 2B6, respectively. Results: Wild-type (WT) and htz corneas were of similar stromal thickness, whereas null specimens measured relatively thin. Electron micrographs revealed that WT and htz samples contained comparable levels of KS- and CS/DS-PGs. Null corneas, however, lacked detectable KS and featured uncharacteristically elongated electron dense PG filaments, which were susceptible to chondroitinase ABC digestion. Western blotting revealed lumican in the null corneas was substituted with low-molecular-weight KS, relative to WT or htz tissue. KS was not immunohistochemically detectable in the null cornea, whereas CS/DS content appeared increased. Conclusions: Addition of N-acetylglucosamine via ß3GnT7 to KS glycosaminoglycans is necessary for their biosynthesis. Without ß3GnT7, murine corneal stromas lack KS and appear to compensate for this loss with upregulation of chondroitinase ABC-sensitive PGs.


Asunto(s)
Sustancia Propia/metabolismo , Sulfato de Queratano , N-Acetilglucosaminiltransferasas/deficiencia , Animales , Modelos Animales de Enfermedad , Sulfato de Queratano/biosíntesis , Sulfato de Queratano/fisiología , Ratones , Ratones Noqueados , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...