Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Insects ; 15(5)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38786855

RESUMEN

The aphidophagous gall midge, Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae), a dominant natural enemy of aphids, has been used as a biological control agent in many countries to control aphids in greenhouses. To identify key factors that induce diapause in A. aphidimyza, we evaluated the effects of photoperiod and temperature on the incidence of diapause in A. aphidimyza under laboratory conditions. The results showed that temperature and photoperiod had significant impacts on development and diapause in A. aphidimyza. Low temperatures and a short photoperiod inhibited development, while high temperatures and a long photoperiod promoted development. Temperatures above 20 °C and a photoperiod greater than 14 h prevented diapause in A. aphidimyza. However, the highest diapause rate was recorded at under 15 °C and 10L:14D photoperiod conditions. At 15 °C, the first to third larvae were sensitive to a short photoperiod at any stage, and a short photoperiod had a cumulative effect on diapause induction. The longer the larvae received short light exposure, the higher the diapause rate appeared to be. Transcriptome sequencing analysis at different stages of diapause showed that differentially expressed genes were mainly enriched in the glucose metabolism pathway. Physiological and biochemical analyses showed that diapausing A. aphidimyza reduced water content; accumulated glycogen, trehalose, sorbitol, and triglycerides; and gradually reduced trehalose and triglyceride contents in the body with the extension of diapause time. Glycogen may be used as a source of energy, but sorbitol is usually used as a cryoprotectant. This study provided results on aspects of diapause in A. aphidimyza, providing data and theoretical support for promoting its commercial breeding and in-depth research on the molecular mechanisms underlying diapause regulation.

2.
Cancer Cell Int ; 24(1): 181, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38790057

RESUMEN

BACKGROUND: Immune checkpoint inhibitors are approved for the treatment of various tumors, but the response rate is not satisfactory in certain malignancies. Inhibitor of apoptosis proteins (IAP) ubiquitin-E3 ligase activity is involved in the regulation of immune responses. APG-1387 is a novel second mitochondria-derived activator of caspase (Smac) mimetic IAP inhibitor. The aim of this study was to explore the synergistic effect of APG-1387 when combined with anti-PD-1 antibody in a preclinical setting. METHODS: We utilized syngeneic mouse models of ovarian cancer (ID8), colon cancer (MC38), malignant melanoma (B16), and liver cancer (Hepa1-6) to assess the combination effect of APG-1387 and anti-PD-1 antibody, including immune-related factors, tumor growth, and survival. MSD V-PLEX validated assays were used to measure in vitro and in vivo cytokine release. RESULTS: In ID8 ovarian cancer and MC38 colon cancer models, APG-1387 and anti-PD1 antibody had synergistic antitumor effects. In the MC38 model, the combination of APG-1387 and anti-PD-1 antibody significantly inhibited tumor growth (P < 0.0001) and increased the survival rate of tumor-bearing animals (P < 0.001). Moreover, we found that APG-1387 upregulated tumor-infiltrating CD3 + NK1.1 + cells by nearly 2-fold, by promoting tumor cell secretion of IL-12. Blocking IL-12 secretion abrogated the synergistic effects of APG-1387 and anti-PD-1 antibody in both MC38 and ID8 models. CONCLUSIONS: APG-1387 has the potential to turn "cold tumors" into hot ones by recruiting more CD3 + NK1.1 + cells into certain tumors. Based on these and other data, the safety and therapeutic effect of this combination will be investigated in a phase 1/2 trial in patients with advanced solid tumors or hematologic malignancies (NCT03386526).

3.
Microbiome ; 12(1): 93, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778376

RESUMEN

BACKGROUND: The gut microbiota and their hosts profoundly affect each other's physiology and evolution. Identifying host-selected traits is crucial to understanding the processes that govern the evolving interactions between animals and symbiotic microbes. Current experimental approaches mainly focus on the model bacteria, like hypermutating Escherichia coli or the evolutionary changes of wild stains by host transmissions. A method called atmospheric and room temperature plasma (ARTP) may overcome the bottleneck of low spontaneous mutation rates while maintaining mild conditions for the gut bacteria. RESULTS: We established an experimental symbiotic system with gnotobiotic bee models to unravel the molecular mechanisms promoting host colonization. By in vivo serial passage, we tracked the genetic changes of ARTP-treated Snodgrassella strains from Bombus terrestris in the non-native honeybee host. We observed that passaged isolates showing genetic changes in the mutual gliding locus have a competitive advantage in the non-native host. Specifically, alleles in the orphan mglB, the GTPase activating protein, promoted colonization potentially by altering the type IV pili-dependent motility of the cells. Finally, competition assays confirmed that the mutations out-competed the ancestral strain in the non-native honeybee gut but not in the native host. CONCLUSIONS: Using the ARTP mutagenesis to generate a mutation library of gut symbionts, we explored the potential genetic mechanisms for improved gut colonization in non-native hosts. Our findings demonstrate the implication of the cell mutual-gliding motility in host association and provide an experimental system for future study on host-microbe interactions. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Mutagénesis , Simbiosis , Animales , Abejas/microbiología , Microbioma Gastrointestinal/genética , Mutación
4.
Insect Sci ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715477

RESUMEN

Behavioral division is essential for the sustainability and reproduction of honeybee populations. While accumulating evidence has documented that antibiotic exposure interferes with bee behavioral divisions, how the gut microbiome, host physiology, and genetic regulation are implicated in this process remains understudied. Here, by constructing single-cohort colonies, we validated that the gut microbiota varied in composition between age-matched nurse and forager bees. Perturbing the gut microbiota with a low dose of antibiotic retained the gut bacterial size, but the structure of the microbial community continuously diverged from the control group after antibiotic treatment. Fewer foragers were observed in the antibiotic groups in the field experiment. A combinatorial effect of decreased gut metabolic gene repertoires, reduced brain neurotransmitter titers, and downregulated brain immune genes could potentially be related to behavioral tasks transition delay. This work indicates that the disturbance to both the gut microbiome and host physiologies after antibiotic exposure may have implications on social behavior development, highlighting the need for further research focusing on antibiotic pollution threatening the honeybee population's health.

5.
J Econ Entomol ; 117(2): 448-456, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38408026

RESUMEN

Megalurothrips usitatus (Bagrall) is one of the most important pests of cowpea, Vigna unguiculata (Linn.) Walp in South China. Four Orius species, including Orius minutus (L.), Orius nagaii (Yasunaga), Orius sauteri (Poppius), and Orius strigicollis (Poppius), have been commercially produced and widely used as natural enemies of pests in China. In this study, we evaluated the control efficiency of these Orius species on M. usitatus in tropical Hainan Province, China, by recording the survival rates, developmental times, and predation effects in laboratory and semi-field conditions. Laboratory experiments showed that all these 4 Orius species preyed on M. usitatus under the experimental temperatures (25, 30, and 35 °C), and O. strigicollis exhibited the highest survival rate and predation effect. Semi-field cage experiments showed that the control effect of 4 Orius species on M. usitatus was significantly higher than that under normal chemical control, with O. strigicollis having the highest effect. Greenhouse experiments in Hainan Province, China, confirmed that O. strigicollis had a significant control effect on M. usitatus. Our study indicated that O. strigicollis has a significant potential for the control of M. usitatus in cowpea fields in southern China.


Asunto(s)
Heterópteros , Thysanoptera , Vigna , Animales , Conducta Predatoria , China
6.
Insects ; 15(2)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38392529

RESUMEN

This study identified and characterized the gene encoding recep tor-type guanylate cyclase-22-like (GCY-22; OnGCY) from the pirate bug Orius nagaii, an important biological control agent. The full-length cDNA of the GCY of O. nagaii was obtained by rapid amplification of cDNA ends (RACE); it had a total length of 4888 base pairs (bp), of which the open reading frame (ORF) was 3750 bp, encoding a polypeptide of 1249 amino acid residues. The physicochemical properties of OnGCY were predicted and analyzed by using relevant ExPASy software, revealing a molecular formula of C6502H10122N1698O1869S57, molecular weight of ~143,811.57 kDa, isoelectric point of 6.55, and fat index of 90.04. The resulting protein was also shown to have a signal peptide, two transmembrane regions, and a conserved tyrosine kinase (tyrkc). Silencing OnGCY by RNA interference significantly inhibited ovarian development and decreased fertility in female O. nagaii in the treated versus the control group. Additionally, OnGCY silencing significantly decreased the expression levels of other GCY and Vg genes. Thus, these results clarify the structure and biological function of OnGCY, which has an important role in insect fecundity. The results also provide a reference for agricultural pest control and future large-scale breeding of biological control agents.

7.
Insect Sci ; 31(2): 314-327, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37702319

RESUMEN

Insects show highly complicated adaptive and sophisticated behaviors, including spatial orientation skills, learning ability, and social interaction. These behaviors are controlled by the insect brain, the central part of the nervous system. The tiny insect brain consists of millions of highly differentiated and interconnected cells forming a complex network. Decades of research has gone into an understanding of which parts of the insect brain possess particular behaviors, but exactly how they modulate these functional consequences needs to be clarified. Detailed description of the brain and behavior is required to decipher the complexity of cell types, as well as their connectivity and function. Single-cell RNA-sequencing (scRNA-seq) has emerged recently as a breakthrough technology to understand the transcriptome at cellular resolution. With scRNA-seq, it is possible to uncover the cellular heterogeneity of brain cells and elucidate their specific functions and state. In this review, we first review the basic structure of insect brains and the links to insect behaviors mainly focusing on learning and memory. Then the scRNA applications on insect brains are introduced by representative studies. Single-cell RNA-seq has allowed researchers to classify cell subpopulations within different insect brain regions, pinpoint single-cell developmental trajectories, and identify gene regulatory networks. These developments empower the advances in neuroscience and shed light on the intricate problems in understanding insect brain functions and behaviors.


Asunto(s)
Encéfalo , Aprendizaje , Animales , Redes Reguladoras de Genes , Insectos , Análisis de Secuencia de ARN , Perfilación de la Expresión Génica
8.
Clin Cancer Res ; 30(3): 506-521, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971712

RESUMEN

PURPOSE: B-cell lymphoma-extra-large (BCL-xL) regulates apoptosis and is an attractive anticancer therapeutic target. However, BCL-xL inhibition also kills mature platelets, hampering clinical development. Using an innovative prodrug strategy, we have developed pelcitoclax (APG-1252), a potent, dual BCL-2 and BCL-xL inhibitor. Aims of this study were to characterize the antitumor activity and safety of pelcitoclax and explore its underlying mechanisms of action (MOA). PATIENTS AND METHODS: Cell line-derived xenograft and patient-derived xenograft (PDX) models were tested to evaluate antitumor activity and elucidate MOA. Subjects (N = 50) with metastatic small-cell lung cancer and other solid tumors received intravenous pelcitoclax once or twice weekly. Primary outcome measures were safety and tolerability; preliminary efficacy (responses every 2 cycles per RECIST version 1.1) represented a secondary endpoint. RESULTS: Pelcitoclax exhibited strong BAX/BAK‒dependent and caspase-mediated antiproliferative and apoptogenic activity in various cancer cell lines. Consistent with cell-based apoptogenic activity, pelcitoclax disrupted BCL-xL:BIM and BCL-xL:PUMA complexes in lung and gastric cancer PDX models. Levels of BCL-xL complexes correlated with tumor growth inhibition by pelcitoclax. Combined with taxanes, pelcitoclax enhanced antitumor activity by downregulating antiapoptotic protein myeloid cell leukemia-1 (MCL-1). Importantly, pelcitoclax was well tolerated and demonstrated preliminary therapeutic efficacy, with overall response and disease control rates of 6.5% and 30.4%, respectively. Most common treatment-related adverse events included transaminase elevations and reduced platelets that were less frequent with a once-weekly schedule. CONCLUSIONS: Our data demonstrate that pelcitoclax has antitumor activity and is well tolerated, supporting its further clinical development for human solid tumors, particularly combined with agents that downregulate MCL-1.


Asunto(s)
Compuestos de Anilina , Antineoplásicos , Neoplasias Pulmonares , Linfoma de Células B , Piperidinas , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína bcl-X/metabolismo , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Proto-Oncogénicas c-bcl-2 , Antineoplásicos/efectos adversos , Apoptosis , Neoplasias Pulmonares/tratamiento farmacológico , Linfoma de Células B/tratamiento farmacológico
9.
Front Physiol ; 14: 1290732, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074325

RESUMEN

Forkhead box O (FoxO), a key transcription factor in many species, participates in numerous physiological and pathological processes of organisms through a variety of signaling pathways. In the present study, we established DsFoxO knockout (DsFoxO-KO) strain using CRISPR/Cas9, and the influence on development and fecundity of mutant strain were evaluated. To clarify the corresponding mechanism, a transcriptome analysis was conducted subsequently. The results showed that the survival rates of the DsFoxO-KO strain in larval, pupal, and adult stages were all significantly lower than those of control. The duration of the pupal stage was similar between the two strains; however, durations of egg, larva, adult preoviposition period (APOP), and total APOP (TPOP) in the DsFoxO-KO strain were all significantly longer compared to those of the control strain. The fecundity of the DsFoxO-KO strain was 20.31 eggs/female, which was significantly lower than that of the control strain (430.47 eggs/female). With the transcriptome analysis, 612 differentially expressed genes (DEGs) were identified. Following COG and GO analyses, we found that most of the DEGs were associated with the metabolic process. According to the KEGG database, the mTOR signaling, MAPK signaling, Wnt signaling, and Toll and Imd signaling pathways; insect hormone biosynthesis; autophagy; and apoptosis were altered in the DsFoxO-KO strain. These results demonstrated that knockout of DsFoxO in D. suzukii significantly influenced its development and fecundity, while transcriptome analysis provided insights to explore the corresponding molecular mechanism. These findings highlighted the critical role of FoxO in D. suzukii and might contribute to the development of novel management strategies for these flies in the future.

10.
Insect Sci ; 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37830269

RESUMEN

Bumblebees are important pollinators in agricultural ecosystems, but their abundance is declining globally. There is an urgent need to protect bumblebee health and their pollination services. Bumblebees possess specialized gut microbiota with potential to be used as probiotics to help defend at-risk bumblebee populations. However, evidence for probiotic benefits on bumblebees is lacking. Here, we evaluated how supplementation with Lactobacillus melliventris isolated from bumblebee gut affected the colony development of Bombus terrestris. This native strain colonized robustly and persisted long-term in bumblebees, leading to a significantly higher quality of offspring. Subsequently, the tyrosine pathway was upregulated in the brain and fat body, while the Wnt and mTOR pathways of the gut were downregulated. Notably, the field experiment in the greenhouse revealed the supplementation of L. melliventris led to a 2.5-fold increase in the bumblebee survival rate and a more than 10% increase in the number of flowers visited, indicating a better health condition and pollination ability in field conditions. Our study represents a first screening for the potential use of the native gut member, L. melliventris, as probiotic strains in hive supplement for bumblebee breeding, which may be a practical approach to improve immunity and hive health.

11.
Front Plant Sci ; 14: 1201730, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457336

RESUMEN

Salt Overly Sensitive 1 (SOS1) is one of the members of the Salt Overly Sensitive (SOS) signaling pathway and plays critical salt tolerance determinant in plants, while the characterization of the SOS1 family in potato (Solanum tuberosum) is lacking. In this study, 37 StSOS1s were identified and found to be unevenly distributed across 10 chromosomes, with most of them located on the plasma membrane. Promoter analysis revealed that the majority of these StSOS1 genes contain abundant cis-elements involved in various abiotic stress responses. Tissue specific expression showed that 21 of the 37 StSOS1s were widely expressed in various tissues or organs of the potato. Molecular interaction network analysis suggests that 25 StSOS1s may interact with other proteins involved in potassium ion transmembrane transport, response to salt stress, and cellular processes. In addition, collinearity analysis showed that 17, 8, 1 and 5 of orthologous StSOS1 genes were paired with those in tomato, pepper, tobacco, and Arabidopsis, respectively. Furthermore, RT-qPCR results revealed that the expression of StSOS1s were significant modulated by various abiotic stresses, in particular salt and abscisic acid stress. Furthermore, subcellular localization in Nicotiana benthamiana suggested that StSOS1-13 was located on the plasma membrane. These results extend the comprehensive overview of the StSOS1 gene family and set the stage for further analysis of the function of genes in SOS and hormone signaling pathways.

12.
Neoplasia ; 42: 100908, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37192591

RESUMEN

The successful treatment of patients with advanced non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of anaplastic lymphoma kinase (ALK) with ALK tyrosine kinase inhibitors (ALK-TKIs) represents a promising targeted therapy. As a result, various ALK-TKIs have been rapidly developed, some of which are approved while some are being tested in clinical trials. Death receptor 4 (DR4; also called TNFRSF10A or TRAIL-R1) is a cell surface protein, which functions as a pro-apoptotic protein that transduces TRAIL death signaling to trigger apoptosis. DR4 expression is positively regulated by MEK/ERK signaling and thus can be downregulated by MEK/ERK inhibition. This study thus focused on determining the effects of AKL-TKIs on DR4 expression and the underlying mechanisms. Three tested ALK-TKIs including APG-2449, brigatinib and alectinib effectively and preferentially inhibited Akt/mTOR as well as MEK/ERK signaling and decreased cell survival in ALK-mutant (ALKm) NSCLC cells with induction of apoptosis. This was also true for DR4 downregulation, which occurred even at 2 h post treatment. These ALK-TKIs did not affect DR4 protein stability, rather decreased DR4 mRNA expression. In parallel, they promoted degradation and reduced the levels of Fra-1 and c-Jun, two critical components of AP-1, and suppressed AP-1 (Fra-1/c-Jun)-dependent transcription/expression of DR4. Hence, it appears that ALK-TKIs downregulate DR4 expression in ALKm NSCLC cells via facilitating Fra-1 and c-Jun degradation and subsequent AP-1 suppression. Our findings thus warrant further investigation of the biological significance of DR4 downregulation in ALK-targeted cancer therapy.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Quinasa de Linfoma Anaplásico/genética , Quinasa de Linfoma Anaplásico/uso terapéutico , Factor de Transcripción AP-1/genética , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinasas de Proteína Quinasa Activadas por Mitógenos/uso terapéutico
13.
Clin Cancer Res ; 29(13): 2385-2393, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37074726

RESUMEN

PURPOSE: This global phase I trial investigated the safety, efficacy, pharmacokinetics, and pharmacodynamics of lisaftoclax (APG-2575), a novel, orally active, potent selective B-cell lymphoma 2 (BCL-2) inhibitor, in patients with relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma (R/R CLL/SLL) and other hematologic malignancies (HMs). PATIENTS AND METHODS: Maximum tolerated dose (MTD) and recommended phase II dose were evaluated. Outcome measures were safety and tolerability (primary) and pharmacokinetic variables and antitumor effects (secondary). Pharmacodynamics in patient tumor cells were explored. RESULTS: Among 52 patients receiving lisaftoclax, MTD was not reached. Treatment-emergent adverse events (TEAEs) included diarrhea (48.1%), fatigue (34.6%), nausea (30.8%), anemia and thrombocytopenia (28.8% each), neutropenia (26.9%), constipation (25.0%), vomiting (23.1%), headache (21.2%), peripheral edema and hypokalemia (17.3% each), and arthralgia (15.4%). Grade ≥ 3 hematologic TEAEs included neutropenia (21.2%), thrombocytopenia (13.5%), and anemia (9.6%), none resulting in treatment discontinuation. Clinical pharmacokinetic and pharmacodynamic results demonstrated that lisaftoclax had a limited plasma residence and systemic exposure and elicited rapid clearance of malignant cells. With a median treatment of 15 (range, 6-43) cycles, 14 of 22 efficacy-evaluable patients with R/R CLL/SLL experienced partial responses, for an objective response rate of 63.6% and median time to response of 2 (range, 2-8) cycles. CONCLUSIONS: Lisaftoclax was well tolerated, with no evidence of tumor lysis syndrome. Dose-limiting toxicity was not reached at the highest dose level. Lisaftoclax has a unique pharmacokinetic profile compatible with a potentially more convenient daily (vs. weekly) dose ramp-up schedule and induced rapid clinical responses in patients with CLL/SLL, warranting continued clinical investigation.


Asunto(s)
Anemia , Antineoplásicos , Neoplasias Hematológicas , Leucemia Linfocítica Crónica de Células B , Linfoma de Células B , Neutropenia , Trombocitopenia , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Antineoplásicos/efectos adversos , Linfoma de Células B/patología , Neoplasias Hematológicas/tratamiento farmacológico , Neutropenia/inducido químicamente , Anemia/inducido químicamente , Anemia/tratamiento farmacológico , Trombocitopenia/inducido químicamente , Proteínas Proto-Oncogénicas c-bcl-2
14.
Pest Manag Sci ; 79(9): 3012-3021, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36966456

RESUMEN

BACKGROUND: Drosophila suzukii (Matsumura) is considered a quarantine pest in the A2 list because it causes serious infection and huge economic losses. Cold and controlled atmosphere treatments have been used to control immature stage pests in fresh fruits. Herein, the basal tolerance response of D. suzukii egg, larva and pupa to cold and hypoxia stress were studied, and underlying transcriptome mechanisms in the larva were pinpointed. RESULTS: The third instar was more tolerant than 12-h-old egg and 8-day-old pupa when treated at 3 °C + 1% O2 for 7 days, with 34.00% ± 5.22% larval survival. Hypoxia influenced the effect of cold treatment on D. suzukii. Larval survival decreased at 3 °C + 1% O2 , but increased at 0 °C + 1% O2 . Survival increased with temperature between 0 and 5 °C + 1% O2 , but decreased significantly at 25 °C + 1% O2 . RNA-sequencing results showed that the Tweedle (Twdl) family was upregulated and uniquely enriched in larvae treated at 3 °C + 1% O2 . In addition, RNA interference-mediated silencing of a key Twdl gene reduced the survival rate after cold and hypoxia treatment. CONCLUSION: Hypoxia was able to influence the effect of cold treatment on the survival of D. suzukii positively or negatively. Structural constituents of the chitin-based cuticle, in particular Twdl genes, body morphogenesis, and ATP synthesis-coupled proton transport were involved in the tolerance to cold and hypoxia. In future, the Twdl gene could be used as a nanocarrier delivering RNA pesticides to control D. suzukii in the field and so prevent its worldwide spread. © 2023 Society of Chemical Industry.


Asunto(s)
Frío , Drosophila , Animales , Drosophila/genética , Larva/genética , Hipoxia , ARN
15.
Integr Zool ; 18(6): 1014-1026, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36892101

RESUMEN

There is now general concern about widespread antibiotic resistance, and growing evidence indicates that gut microbiota is critical in providing antibiotic resistance. Honeybee is an important pollinator; the incidence of antibiotic resistance genes in honeybee gut causes potential risks to not only its own health but also to public and animal health, for its potential disseminator role, thus receiving more attention from the public. Recent analysis results reveal that the gut of honeybee serves as a reservoir of antibiotic resistance genes, probably due to antibiotics application history in beekeeping and horizontal gene transfer from the highly polluted environment. These antibiotic resistance genes accumulate in the honeybee gut and could be transferred to the pathogen, even having the potential to spread during pollination, tending, social interactions, etc. Newly acquired resistance traits may cause fitness reduction in bacteria whereas facilitating adaptive evolution as well. This review outlines the current knowledge about the resistome in honeybee gut and emphasizes its role in antibiotic resistance dissemination.


Asunto(s)
Bacterias , Microbioma Gastrointestinal , Animales , Abejas/genética , Farmacorresistencia Microbiana/genética , Bacterias/genética , Antibacterianos/farmacología
16.
Insect Sci ; 30(6): 1713-1733, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36810869

RESUMEN

As an important fruit pest of global significance, Drosophila suzukii occupies a special ecological niche, with the characteristics of high sugar and low protein contents. This niche differs from those occupied by other fruit-damaging Drosophila species. Gut bacteria substantially impact the physiology and ecology of insects. However, the contribution of gut microbes to the fitness of D. suzukii in their special ecological niche remains unclear. In this study, the effect of Klebsiella oxytoca on the development of D. suzukii was examined at physiological and molecular levels. The results showed that, after the removal of gut microbiota, the survival rate and longevity of axenic D. suzukii decreased significantly. Reintroduction of K. oxytoca to the midgut of D. suzukii advanced the development level of D. suzukii. The differentially expressed genes and metabolites between axenic and K. oxytoca-reintroduced D. suzukii were enriched in the pathways of carbohydrate metabolism. This advancement was achieved through an increased glycolysis rate and the regulation of the transcript level of key genes in the glycolysis/gluconeogenesis pathway. Klebsiella oxytoca is likely to play an important role in increasing host fitness in their high-sugar ecological niche by stimulating the glycolysis/gluconeogenesis pathway. As a protein source, bacteria can also provide direct nutrition for D. suzukii, which depends on the quantity or biomass of K. oxytoca. This result may provide a new target for controlling D. suzukii by inhibiting sugar metabolism through eliminating the effect of K. oxytoca and thus disrupting the balance of gut microbial communities.


Asunto(s)
Drosophila , Microbiota , Animales , Drosophila/fisiología , Ecología , Metabolismo de los Hidratos de Carbono , Frutas , Azúcares
18.
Clin Cancer Res ; 29(1): 183-196, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36240005

RESUMEN

PURPOSE: Despite approval of B-cell lymphoma (BCL)-2 inhibitor venetoclax for certain hematologic malignancies, its broader clinical benefit is curtailed by resistance. Our study aimed to determine if treatment with novel anticancer agents targeting BCL-2 and mouse double minute 2 (MDM2) could overcome venetoclax resistance in preclinical models. EXPERIMENTAL DESIGN: Venetoclax-sensitive and venetoclax-resistant acute myeloid leukemia (AML) and acute lymphoblastic leukemia cells and xenograft models were used to evaluate antitumor effects and underlying mechanisms associated with combined BCL-2 inhibitor lisaftoclax (APG-2575) and MDM2 inhibitor alrizomadlin (APG-115). RESULTS: The combination exhibited synergistic antiproliferative and apoptogenic activities in TP53 wild-type AML cell lines in vitro. This synergy was further exemplified by deep antitumor responses and prolonged survival in AML cell line-derived and patient-derived xenograft models. Interestingly, the combination treatment resensitized (to apoptosis) venetoclax-resistant cellular and mouse models established via chronic drug exposure or genetically engineered with clinically relevant BCL-2 gene mutations. Synergistic effects in reducing cellular viability and proliferation were also demonstrated in primary samples of patients with venetoclax-resistant AML treated with lisaftoclax and alrizomadlin ex vivo. Mechanistically, alrizomadlin likely primes cancer cells to BCL-2 inhibition-induced cellular apoptosis by downregulating expression of antiapoptotic proteins myeloid cell leukemia-1 and BCL-extra-large and upregulating pro-death BCL-2-associated X protein. CONCLUSIONS: Lisaftoclax in combination with alrizomadlin overcomes venetoclax resistance mediated by various mechanisms, including BCL-2 mutations. In addition, we posit further, putative molecular mechanisms. Our data rationalize clinical development of this treatment combination in patients with diseases that are insensitive or resistant to venetoclax.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-bcl-2 , Línea Celular Tumoral , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Apoptosis , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
19.
Neuro Oncol ; 25(4): 735-747, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35977048

RESUMEN

BACKGROUND: Pilocytic astrocytoma (PA) is the most common pediatric brain tumor and a mitogen-activated protein kinase (MAPK)-driven disease. Oncogenic MAPK-signaling drives the majority of cells into oncogene-induced senescence (OIS). While OIS induces resistance to antiproliferative therapies, it represents a potential vulnerability exploitable by senolytic agents. METHODS: We established new patient-derived PA cell lines that preserve molecular features of the primary tumors and can be studied in OIS and proliferation depending on expression or repression of the SV40 large T antigen. We determined expression of anti-apoptotic BCL-2 members in these models and primary PA. Dependence of senescent PA cells on anti-apoptotic BCL-2 members was investigated using a comprehensive set of BH3 mimetics. RESULTS: Senescent PA cells upregulate BCL-XL upon senescence induction and show dependency on BCL-XL for survival. BH3 mimetics with high affinity for BCL-XL (BCL-XLi) reduce metabolic activity and induce mitochondrial apoptosis in senescent PA cells at nano-molar concentrations. In contrast, BH3 mimetics without BCL-XLi activity, conventional chemotherapy, and MEK inhibitors show no effect. CONCLUSIONS: Our data demonstrate that BCL-XL is critical for survival of senescent PA tumor cells and provides proof-of-principle for the use of clinically available BCL-XL-dependent senolytics.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Niño , Humanos , Proteínas Proto-Oncogénicas c-bcl-2 , Apoptosis , Astrocitoma/patología , Neoplasias Encefálicas/patología , Proteínas Quinasas Activadas por Mitógenos , Línea Celular Tumoral
20.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38203496

RESUMEN

Diapause, an adaptative strategy for survival under harsh conditions, is a dynamic multi-stage process. Bombus terrestris, an important agricultural pollinator, is declining in the wild, but artificial breeding is possible by imitating natural conditions. Mated queen bees enter reproductive diapause in winter and recover in spring, but the regulatory mechanisms remain unclear. Herein, we conducted a comparative 4D label-free proteomic analysis of queen bees during artificial breeding at seven timepoints, including pre-diapause, diapause, and post-diapause stages. Through bioinformatics analysis of proteomic and detection of substance content changes, our results found that, during pre-diapause stages, queen bees had active mitochondria with high levels of oxidative phosphorylation, high body weight, and glycogen and TAG content, all of which support energy consumption during subsequent diapause. During diapause stages, body weight and water content were decreased but glycerol increased, contributing to cold resistance. Dopamine content, immune defense, and protein phosphorylation were elevated, while fat metabolism, protein export, cell communication, signal transduction, and hydrolase activity decreased. Following diapause termination, JH titer, water, fatty acid, and pyruvate levels increased, catabolism, synaptic transmission, and insulin signaling were stimulated, ribosome and cell cycle proteins were upregulated, and cell proliferation was accelerated. Meanwhile, TAG and glycogen content decreased, and ovaries gradually developed. These findings illuminate changes occurring in queen bees at different diapause stages during commercial production.


Asunto(s)
Diapausa , Proteómica , Abejas , Animales , Peso Corporal , Glucógeno , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...