Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Int J Biol Macromol ; 274(Pt 2): 133431, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38936573

RESUMEN

High internal phase Pickering emulsions (HIPEs) constitute a significant research domain within colloid interface chemistry, addressing the demand for robust emulsion systems across various applications. An innovative nanoparticle, synthesized from a cyclodextrin metal-organic framework encapsulated with a composite of resveratrol and soy isolate protein (RCS), was employed to fortify a high internal phase emulsion. The emulsion's three-dimensional printing capabilities, alongside the encapsulated delivery efficacy for ß-carotene, were thoroughly examined. Cyclodextrin metal-organic frameworks (CD-MOFs), facilitated by cellulose nanofibrils, were synthesized to yield particles at the nanoscale, maintaining a remarkable 97.67 % cellular viability at an elevated concentration of 1000 µg/ml. The RCS nanoparticles demonstrated thermal stability and antioxidant capacities surpassing those of CD-MOF. The integration of soybean isolate protein augmented both the hydrophobicity (from 21.95 ± 0.64° to 59.15 ± 0.78°) and the interfacial tension (from 14.36 ± 0.46 mN/m to 5.34 ± 0.81 mN/m) of the CD-MOF encapsulated with resveratrol, thereby enhancing the RCS nanoparticles' adsorption at the oil-water interface with greater stability. The durability of the RCS-stabilized high internal phase emulsions was contingent upon the RCS concentration. Emulsions stabilized with 5 wt%-RCS exhibited optimal physical and chemical robustness, demonstrating superior performance in emulsion 3D printing and ß-carotene encapsulation delivery. This investigation furnishes a novel perspective on the amalgamation of food customization and precision nutrition.

2.
Int J Biol Macromol ; 273(Pt 1): 133070, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866292

RESUMEN

In recent years, researchers have put much attention on the improvements and upgrades of novel wet strength agent in the papermaking fields, especially in the usage of household paper. Herein, PEIM-KH560 by polyethyleneimine (PEI) and γ-glycidyl ether propyl trimethoxysilane (KH560) was synthesized with five molecular weights (Mw) of PEI at 600, 1800, 10,000, 70,000 and 750,000. Results showed that the molecular weight greatly influenced the physicochemical properties of PEI-KH560, such as the size and thermal stability. The intrinsic cationic charge of PEI-KH560 provided the bonding sites with the paper fibers, forming strengthened fiber-fiber joints. It was shown that the dry, wet strength and hydrophobicity of cellulosic paper sheets were obviously improved. When the m (PEI):m(KH560) is 1:2, the strength of papers after sizing by Mw of PEI at 600 and 1800 is the most obvious, with the dry strength increased by 227.9 % and 187.5 %, and the wet strength increased by 183.8 % and 207.8 %, respectively. The maximum hydrophobicity was found at the PEI1800-KH560 with the contact angle value of 130.6°. The resultant environmental-friendly agent (PEI-KH560) obtained in this work provides valuable significance for the preparation of household and food packaging paper.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Peso Molecular , Papel , Polietileneimina , Polietileneimina/química , Silanos/química , Propiedades de Superficie
3.
Polymers (Basel) ; 16(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38732738

RESUMEN

Plastics offer many advantages and are widely used in various fields. Nevertheless, most plastics derived from petroleum are slow to degrade due to their stable polymer structure, posing serious threats to organisms and ecosystems. Thus, developing environmentally friendly and biodegradable plastics is imperative. In this study, biodegradable cellulose/multi-walled carbon nanotube (MCNT) hybrid gels and films with improved ultraviolet-shielding properties were successfully prepared using cotton textile waste as a resource. It was proven that MCNTs can be dispersed evenly in cellulose without any chemical or physical pretreatment. It was found that the contents of MCNTs had obvious effects on the structures and properties of hybrid films. Particularly, the averaged transmittance of cellulose/MCNT composite films in the range of 320-400 nm (T320-400) and 290-320 nm (T290-320) can be as low as 19.91% and 16.09%, when the content of MCNTs was 4.0%, much lower than those of pure cellulose films (T320-400: 84.12% and T290-320: 80.03%). Meanwhile, the water contact angles of the cellulose/MCNT films were increased by increasing the content of MCNTs. Most importantly, the mechanical performance of cellulose/MCNT films could be controlled by the additives of glycerol and MCNTs. The tensile strength of the cellulose/MCNT films was able to reach as high as 20.58 MPa, while the elongation at break was about 31.35%. To summarize, transparent cellulose/MCNT composites with enhanced ultraviolet-shielding properties can be manufactured successfully from low-cost cotton textile waste, which is beneficial not only in terms of environmental protection, but also the utilization of natural resources.

4.
ChemSusChem ; : e202400038, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38771426

RESUMEN

Perovskite solar cells (PSCs) are usually modified and passivated to improve their performance and stability. The interface modification and bulk doping are the two basic strategies. Fluorine (F)-containing materials are highly favored because of their unique hydrophobicity and coordination ability. This review discusses the basic characteristics of F, and the basic principles of improving the photovoltaic performance and stability of PSC devices using F-containing materials. We systematically summarized the latest progress in the application of F-containing materials to achieve efficient and stable PSCs on several key interface layers. It is believed that this work will afford significant understanding and inspirations toward the future application directions of F-containing materials in PSCs, and provide profound insights for the development of efficient and stable PSCs.

5.
ChemSusChem ; 17(12): e202301497, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38446050

RESUMEN

Interface modification and bulk doping are two major strategies to improve the photovoltaic performance of perovskite solar cells (PSCs). Dipolar molecules are highly favored due to their unique dipolarity. This review discusses the basic concepts and characteristics of dipoles. In addition, the role of dipoles in PSCs and the corresponding conventional characterization methods for dipoles are introduced. Then, we systematically summarize the latest progress in achieving efficient and stable PSCs in dipole materials at several key interfaces. Finally, we look forward to the future application directions of dipole molecules in PSCs, aiming at providing deep insight and inspiration for developing efficient and stable PSCs.

6.
Int J Biol Macromol ; 264(Pt 1): 130378, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428774

RESUMEN

Polyethylene is the most commonly used plastic product, and its biodegradation is a worldwide problem. Latex clearing protein derived from Streptomyces sp. strain K30 (LcpK30) has been reported to be able to break the carbon-carbon double bond inside oxidized polyethylene and is an effective biodegradation enzyme for polyethylene. However, the binding of the substrate to the enzyme was difficult due to the hydrophobic nature of polyethylene. Therefore, to further improve the efficiency of LcpK30, the effect of different anchor peptides on the binding capacity of LcpK30 to the substrate was screened in this study. The results of fluorescence confocal microscopy showed that the anchoring peptide LCI had the most significant improvement in effect and was finally selected for further application in a UV-irradiated PE degradation system. The degradation results showed that LCI was able to improve the degradation efficiency of LcpK30 by approximately 1.15 times in the presence of equimolar amounts of protein compared with wild-type. This study further improves the application of LcpK30 in the field of polyethylene degradation by modification.


Asunto(s)
Látex , Streptomyces , Látex/química , Polietileno , Proteínas Bacterianas/química , Péptidos/metabolismo , Carbono/metabolismo , Biodegradación Ambiental
7.
Sci Rep ; 14(1): 99, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167939

RESUMEN

Identifying potential prognostic factors of CSM patients could improve doctors' clinical decision-making ability. The study retrospectively collected the baseline data of population characteristics, clinical symptoms, physical examination, neurological function and quality of life scores of patients with CSM based on the clinical big data research platform. The modified Japanese Orthopedic Association (mJOA) score and SF-36 score from the short-term follow-up data were entered into the cluster analysis to characterize postoperative residual symptoms and quality of life. Four clusters were yielded representing different patterns of residual symptoms and quality of patients' life. Patients in cluster 2 (mJOA RR 55.8%) and cluster 4 (mJOA RR 55.8%) were substantially improved and had better quality of life. The influencing factors for the better prognosis of patients in cluster 2 were young age (50.1 ± 11.8), low incidence of disabling claudication (5.0%) and pathological signs (63.0%), and good preoperative SF36-physiological function score (73.1 ± 24.0) and mJOA socre (13.7 ± 2.8); and in cluster 4 the main influencing factor was low incidence of neck and shoulder pain (11.7%). We preliminarily verified the reliability of the clustering results with the long-term follow-up data and identified the preoperative features that were helpful to predict the prognosis of the patients. This study provided reference and research basis for further study with a larger sample data, extracting more patient features, selecting more follow-up nodes, and improving clustering algorithm.


Asunto(s)
Enfermedades de la Médula Espinal , Espondilosis , Humanos , Pronóstico , Calidad de Vida , Estudios Retrospectivos , Reproducibilidad de los Resultados , Resultado del Tratamiento , Estudios Prospectivos , Análisis por Conglomerados , Vértebras Cervicales/patología , Espondilosis/diagnóstico
8.
Int J Biol Macromol ; 260(Pt 1): 129473, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38242405

RESUMEN

A guanidine-based Deep Eutectic Solvent (DES) consisting of 1,3-diaminoguanidine monohydrochloride and glycerol was utilized to prepare C-CNC from dissolving pulp. The pulp fibers were oxidized to dialdehyde cellulose by periodate, then fibrillated through the hydrogen bonds shear of DES and aminocationized through Schiff base effect of the amino groups in the DES solvent to obtain C-CNC. The results revealed that the characterization of the DES (such as viscosity, polarity, and pH) was related to the molar ratio of glycerol/guanidine-salts. The hydrogen bond network structure of DES solvent with optimal system was simulated by DFT and its damage to fiber hydrogen bond network was predicted. The C-CNC produced under the optimal reaction conditions (molar ratio of 1:2, 90 °C for 2 h) was highly dispersible with an average length and diameter of 85 ± 35 nm and 5.0 ± 1.2 nm, a charge density of 2.916 mol/g. C-CNC exhibited excellent flocculation when added to fine fiber suspensions of chemomechanical slurries, achieving rapid flocculation and settling onto fibers in <1 min. The DES solvent maintained its reactivity after 5 cycles. This study lays the foundation for the batch preparation of nanocellulose in an environmentally friendly manner and its application as a green additive in paper industry.


Asunto(s)
Disolventes Eutécticos Profundos , Glicerol , Guanidina , Guanidinas , Bioensayo , Solventes
9.
J Sci Food Agric ; 104(5): 2718-2727, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37997286

RESUMEN

BACKGROUND: Cherry tomatoes are nutritious and favored by consumers. Processing them into dried cherry tomatoes can prolong their storage life and improve their flavor. The pretreatment of tomato pericarp is crucial for the subsequent processing. However, the traditional physical and chemical treatments of tomato pericarp generally cause nutrient loss and environmental pollution. RESULTS: In this study, a novel enzymatic method for cherry tomatoes was performed using mixed enzymes containing cutinase, cellulase and pectinase. Results showed that the pericarp permeability of cherry tomatoes was effectively improved due to enzymatic treatment. Changes in the microscopic structure and composition of the cuticle were revealed. After treatment with different concentrations of enzymes, cherry tomatoes exhibited higher pericarp permeability and sensory quality to varying degrees. The lycopene content and total polyphenol content significantly increased 2.4- and 1.45-fold, respectively. In addition, the satisfactory effect of the six-time reuse of enzymes on cherry tomatoes could still reach the same level as the initial effect, which effectively reduced the cost of production. CONCLUSIONS: This study revealed for the first time that a mixed enzymatic treatment consisting of cutinase, pectinase and cellulase could effectively degrade the cuticle, enhance the pericarp permeability and improve the quality of cherry tomatoes, with the advantages of being mildly controllable and environmentally friendly, providing a new strategy for the processing of dried cherry tomatoes. © 2023 Society of Chemical Industry.


Asunto(s)
Celulasas , Solanum lycopersicum , Poligalacturonasa , Licopeno , Permeabilidad
10.
J Hazard Mater ; 465: 133074, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38029591

RESUMEN

Public health depends on indoor air quality (IAQ), hence soft measurement techniques must be implemented in the subway environment for more precise and reliable monitoring of indoor particulate matter concentration levels. Adaptive boosting (AdaBoost), an ensemble learning technique, is simple to code and less prone to overfitting. Compared to a single model, it is better able to take into consideration the intricate elements included in air quality data. It is suggested to use an adaptive boosting of long short-term memory (AdaBoost-LSTM) model and kernel principal component analysis (KPCA) for ensemble learning. The kernel function and PCA are first coupled to create KPCA, which is a nonlinear dimensionality reduction method for IAQ. This removes the negative impacts of noise interference. The learning performance of LSTM is then enhanced using AdaBoost as an ensemble learning technique. The KPCA-AdaBoost-LSTM model can deliver higher modeling performance, according to the results. The R2 reached 0.9007 and 0.8995 when predicting PM2.5 in the hall and platform. SHapley Additive exPlanations (SHAP) analysis was used to interpret the input contributions of the model, enhancing the interpretability and transparency of the proposed soft sensor.

11.
Int J Biol Macromol ; 254(Pt 3): 127958, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951428

RESUMEN

Flexible wearable devices are garnering significant interest, with conductive hydrogels emerging as a particularly notable category. While many of these hydrogels offer impressive conductivity, they often lack the innate ability to adhere autonomously to human skin. The ideal hydrogel should possess both superior adhesion properties and a wide responsive range. This study introduces a novel double-network conductive hydrogel, synthesized from lignosulfonate sodium and ionic liquid using a one-pot method. The gel's mechanical robustness (fracture elongation of ∼3500 % and tensile strength of ∼130 kPa) and exceptional conductivity sensing performance arise from the synergistic effects of electrostatic interactions, dynamic hydrogen bonding, and a three-dimensional network structure. Additionally, the phenolic hydroxyl and sulfonic groups from lignosulfonate sodium imbue the hydrogel with adhesive qualities, allowing it to easily bond with varied material surfaces. This hydrogel excels in human physiological signal detection and wireless monitoring, demonstrating a rapid response time (149 ms) and high sensitivity (a maximum gauge factor of 10.9 for strains between 400 and 600 %). Given these properties, the flexible, self-adhesive, and conductive hydrogel showcases immense promise for future applications in wearable devices and wireless transmission sensing.


Asunto(s)
Líquidos Iónicos , Humanos , Exactitud de los Datos , Conductividad Eléctrica , Hidrogeles
12.
Int J Biol Macromol ; 254(Pt 3): 127995, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949282

RESUMEN

Latex clearing protein from Streptomyces sp. strain K30 (LcpK30) is a natural oxidoreductase that can catalyse the cleavage of rubber through dioxygenation. It has significant potential applications in polymer degradation. However, its limited expression in engineered strains restricts its utility. This study aimed to enhance the soluble expression and enzyme activity of LcpK30 in E. coli BL21 (DE3) by optimizing fermentation conditions and making molecular modifications. The enzyme activity reached 5.05 U·mL-1 by optimizing the induction conditions, adding cofactors, and using chemical chaperones, which was 237.1 % of the initial case. Further enhancements in soluble expression were achieved through site mutations guided by the PROSS server, resulting in 8 out of 13 mutants with increased protein expression, a high positive mutation rate of 61.5 %. Subsequently, combined mutants were created by merging single mutants with enhanced protein expression and enzyme activity. The top three double mutants, G91D/S149A, G91D/A210H, and G91D/H296P, displayed expression levels at 173.3 %, 173.3 %, and 153.3 % of the wild-type LcpK30, respectively. These mutants also exhibited enhanced fermentation enzyme activity, reaching 149.5 %, 250.0 %, and 420.2 % compared to the wild-type, along with improved specific activities. This study provides insights for the efficient production of LcpK30 and a practical foundation for its application.


Asunto(s)
Látex , Streptomyces , Látex/química , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Proteínas Bacterianas/química
13.
Carbohydr Polym ; 326: 121621, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142077

RESUMEN

Conductive hydrogels have received increasing attention in the field of wearable electronics, but they also face many challenges such as temperature tolerance, biocompatibility, and stability of mechanical properties. In this paper, a double network hydrogel of MXene/TEMPO bacterial cellulose (TOBC) system is proposed. Through solvent replacement, the hydrogel exhibits wide temperature tolerance (-20-60 °C) and stable mechanical properties. A large number of hydrogen bonds, MXene/TOBC dynamic three-dimensional network system, and micellar interactions endow the hydrogel with excellent mechanical properties (elongation at break ~2800 %, strength at break ~420 kPa) and self-healing ability. The introduction of tannic acid prevents the oxidation of MXene and the loss of electrical properties of the hydrogel. In addition, the sensor can also quickly (74 ms) and sensitive (gauge factor = 15.65) wirelessly monitor human motion, and the biocompatibility can well avoid the stimulation when it comes into contact with the human body. This series of research work reveals the fabrication of MXene-like flexible wearable electronic devices based on self-healing, good cell compatibility, high sensitivity, wide temperature tolerance and durability, which can be used in smart wearable, wireless monitoring, human-machine Interaction and other aspects show great application potential.


Asunto(s)
Celulosa , Hidrogeles , Humanos , Conductividad Eléctrica
14.
Int J Biol Macromol ; 257(Pt 2): 128800, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38101658

RESUMEN

Electro-conductive hydrogels emerge as a stretchable conductive materials with diverse applications in the synthesis of flexible strain sensors. However, the high-water content and low cross-links density cause them to be mechanically destroyed and freeze at subzero temperatures, limiting their practical applications. Herein, we report a one-pot strategy by co-incorporating cellulose nanofiber (CNF), Poly pyrrole (PPy) and glycerol with polyvinyl alcohol (PVA) to prepare hydrogel. The addition of PPy endowed the hydrogel with good conductivity (∼0.034 S/m) compared to the no PPy@CNF group (∼0.0095 S/m), the conductivity was increased by 257.9 %. The hydrogel exhibits comparable ionic conductivity at -18 °C as it does at room temperature. It's attributed to the glycerol as a cryoprotectant and the formation of hydrated [Zn(H2O)n]2+ ions via strong interaction between Zn2+ and water molecules. Moreover, the cellulose nanofiber intrinsically assembled into unique hierarchical structures allow for strong hydrogen bonds between adjacent cellulose and PPy polymer chains, greatly improve the mechanical strength (stress∼0.65 MPa, strain∼301 %) and excellent viscoelasticity (G'max âˆ¼ 82.7 KPa). This novel PPy@CNF-PVA hydrogel exhibits extremely high Gauge factor (GF) of 2.84 and shows excellent sensitivity, repeatability and stability. Therefore, the hydrogel can serve as reliable and stable strain sensor which shows excellent responsiveness in human activities monitoration.


Asunto(s)
Nanofibras , Polímeros , Humanos , Alcohol Polivinílico , Celulosa , Pirroles , Glicerol , Conductividad Eléctrica , Hidrogeles , Poli A , Agua
15.
Int J Biol Macromol ; 259(Pt 1): 128891, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38143065

RESUMEN

The toxic volatile organic compounds (VOCs), especially formaldehyde (FA), released from decoration materials pose a great threat to human health. In this study, formaldehyde adsorption performance of the specially formulated nanocellulose/chitosan aerogel (CNFCA) was investigated in simulated atmosphere. The physicochemical property of the composite aerogel was characterized, which had a large specific surface area (153.67 m2/g), a rough surface and an ultra-thin and porous structure. The composite aerogel showed excellent adsorption capacity for the formaldehyde, its theoretical maximum adsorption capacity was as high as 83.89 mg/g, and the adsorption process was more in accordance with the pseudo-second-order kinetics. The chromogenic reaction between the 4-amino-3-benzo-5-mercapto-1,2,4-triazolium (AHMT) and CNFCA was found that the color of the composite aerogel was depended on the free formaldehyde concentration. Based on this phenomenon, a colorimetric card was proposed and built to detection the formaldehyde in the atmosphere. Moreover, the adsorption mechanism research was found that the CNFCA with a multilayer structure belonged to physicochemical complex adsorption.


Asunto(s)
Quitosano , Humanos , Adsorción , Atmósfera , Celulosa , Formaldehído
16.
Polymers (Basel) ; 15(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37836025

RESUMEN

N-doping is a very useful method to improve the electrochemical performance of porous carbon (PC) materials. In this study, the potential of furfural residue (FR), a solid waste in furfural production, as a precursor to producing PC materials for supercapacitors was highlighted. To obtain an N-doped PC with a high specific surface area (SSA) and hierarchical porous structure, the urea-KOH synergistic activation method was proposed. The obtained FRPCK-Urea showed a high SSA of 1850 m2 g-1, large pore volume of 0.9973 cm3 g-1, and interconnected micro/mesoporous structure. Besides, urea can also serve as a nitrogen source, resulting in a high N content of 5.31% in FRPCK-Urea. These properties endow FRPCK-Urea with an excellent capacitance of 222.7 F g-1 at 0.5 A g-1 in 6 mol L-1 KOH aqueous electrolyte in a three-electrode system. The prepared FRPCK-Urea possessed a well capacitance retention at current densities from 0.5 to 20 A g-1 (81.90%) and cycle durability (96.43% after 5000 cycles), leading to FRPCK-Urea to be a potential electrode material for supercapacitors. Therefore, this work develops an effective way for the high-valued utilization of FR.

17.
J Agric Food Chem ; 71(43): 16212-16220, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37851455

RESUMEN

Lacto-N-neotetraose (LNnT), an abundant human milk oligosaccharide (HMO), has been approved as a novel functional additive for infant formulas. Therefore, LNnT biosynthesis has attracted extensive attention. Here, a high LNnT-producing, low lacto-N-triose II (LNT II)-residue Escherichia coli strain was constructed. First, an initial LNnT-producing chassis strain was constructed by blocking lactose, UDP-N-acetylglucosamine, and UDP-galactose competitive consumption pathways and introducing ß-1,3-N-acetylglucosaminyltransferase LgtA and ß-1,4-galactosyltransferase LgtB. Subsequently, the supply of LNnT precursors was increased by enhancing UDP-N-acetylglucosamine and UDP-galactose synthesis, inactivating LNT II extracellular transporter SetA, and improving UTP synthesis. Then, modular engineering strategy was used to optimize LNnT biosynthetic pathway fluxes. Moreover, pathway fluxes were fine-tuned by modulating translation initiation strength of essential genes lgtB, prs, and lacY. Finally, LNnT production reached 6.70 g/L in a shake flask and 19.40 g/L in a 3 L bioreactor with 0.47 g/(L h) productivity, with 1.79 g/L LNT II residue, highest productivity level, and lowest LNT II residue thus far.


Asunto(s)
Vías Biosintéticas , Galactosa , Lactante , Humanos , Galactosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Acetilglucosamina/metabolismo , Oligosacáridos/química , Leche Humana/química , Uridina Difosfato/metabolismo
18.
Orthop Surg ; 15(10): 2709-2715, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37675762

RESUMEN

STUDY DESIGN: Single-center, retrospective study. OBJECTIVE: Hemivertebra resection is the only treatment option for congenital cervical scoliosis (CCS). However, this procedure is complex and technically demanding. It often requires a considerably long operation, and there is substantial intraoperative bleeding. Therefore, we have attempted to treat CCS with a concave side distraction comprising a three-dimensional (3D) printed titanium cage. The purpose of this study is to evaluate the safety and efficacy of this technique for the treatment of patients with CCS. METHODS: A series of 22 patients with CCS who underwent a concave side distraction technique between 2019 and 2021 were retrospectively reviewed and analyzed. Radiological measurements included the Cobb angle of the distraction segments, the kyphosis angle, the range of movement, and the distraction correction angle. Student's t-test and Spearman correlation analysis were used for statistical analysis. p < 0.05 was considered statistically significant. RESULTS: The study included 12 males and 10 females whose ages ranged from 6 to 14 years old (9.8 ± 2.1 years old). Follow-up times ranged from 15 to 30 months (25.8 ± 3.6 months). Among 22 patients, two patients developed a postoperative C5 nerve root palsy and recovered after being treated with conservative treatment for 6 months. The duration of surgery ranged from 229 to 756 min (389 ± 112 min), and the estimated volume of blood loss ranged from 100 to 600mL (235 ± 121 mL). The coronal Cobb angle (p < 0.001), kyphosis angle (p < 0.05), and range of movement (p < 0.001) between the last follow-up and preoperative period were significantly different. A total of 28 segments were distracted, and the Cobb angle of the distraction segment ranged from 2.4 to 14.1° (8.5 ± 3.0°). There were six upper cervical spines (8.9 ± 1.9°) and 22 lower cervical spines (8.4 ± 3.2°) with no significant difference between them (p = 0.130). In addition, there was no correlation between the angle of the concave side distraction and patients' age (r = 0.018, p = 0.315). The fusion was solid between the bone and the customized 3D-printed pore metal cage at the final follow-up. CONCLUSION: The concave side distraction comprising a customized 3D-printed titanium cage implantation can provide satisfactory correction results and is a safe and reliable procedure for treating CCS.

19.
Global Spine J ; : 21925682231200136, 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684040

RESUMEN

STUDY DESIGN: Prospective observational study. OBJECTIVE: To evaluate the predictive value of the preoperative Short Form-36 survey (SF-36) scale for postoperative axial neck pain (ANP) in patients with degenerative cervical myelopathy (DCM) who underwent anterior cervical decompression and fusion (ACDF) surgery. METHODS: This study enrolled patients with DCM who underwent ACDF surgery at author's Hospital between May 2010 and June 2016. RESULTS: Out of 126 eligible patients, 122 completed the 3-month follow-up and 117 completed the 1-year follow-up. The results showed that the preoperative social functioning (SF) subscale score of the SF-36 scale was significantly lower in patients with moderate-to-severe postoperative ANP than in those with no or mild postoperative ANP at both follow-up timepoints (P < .05). ACDF at C4-5 level resulted in a higher ANP rate than ACDF at C5-6 or C6-7 level, both at 3-month (P = .019) and 1-year (P = .004) follow-up. Multivariate logistic regression analysis confirmed that the preoperative social functioning subscale score was an independent risk factor for moderate-to-severe postoperative ANP at 3 months and 1 year after surgery, and preoperative NRS was an independent risk factor at 1-year follow-up. No other demographic, clinical, or radiographic factors were found to be associated with postoperative ANP severity (P < .05). CONCLUSIONS: Preoperative social functioning subscale score of SF-36 scale might be a favorable predictive tool for postoperative ANP in DCM patients who underwent ACDF surgery.

20.
Angew Chem Int Ed Engl ; 62(45): e202313133, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37735100

RESUMEN

Introducing fluorine (F) groups into a passivator plays an important role in enhancing the defect passivation effect for the perovskite film, which is usually attributed to the direct interaction of F and defect states. However, the interaction between electronegative F and electron-rich passivation groups in the same molecule, which may influence the passivation effect, is ignored. We herein report that such interactions can vary the electron cloud distribution around the passivation groups and thus changing their coordination with defect sites. By comparing two fluorinated molecules, heptafluorobutylamine (HFBM) and heptafluorobutyric acid (HFBA), we find that the F/-NH2 interaction in HFBM is stronger than the F/-COOH one in HFBA, inducing weaker passivation ability of HFBM than HFBA. Accordingly, HFBA-based perovskite solar cells (PSCs) provide an efficiency of 24.70 % with excellent long-term stability. Moreover, the efficiency of a large-area perovskite module (14.0 cm2 ) based on HFBA reaches 21.13 %. Our work offers an insight into understanding an unaware role of the F group in impacting the passivation effect for the perovskite film.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...