Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
J Med Chem ; 67(13): 11389-11400, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38938102

RESUMEN

Hepatic stellate cells (HSCs) activation is a key event in the development of liver fibrosis, and blockage of the activation of HSCs has been shown to alleviate liver fibrosis. Sophoridine, a bioactive alkaloid found in many Chinese herbs, exhibits a broad spectrum of pharmacological effects, but its activities are not strong. In this study, a series of structurally modified derivatives of sophoridine were designed and synthesized. Among them, sophoridine α-aryl propionamide derivative ZM600 displayed a significant inhibitory effect on the activation of HSCs. The in vivo experiment demonstrated that ZM600 markedly ameliorated carbon tetrachloride (CCl4) and bile duct ligation (BDL)-induced liver fibrosis with a significant improvement of extracellular matrix deposition. Mechanism investigations revealed that ZM600 specifically inhibited the activation of NF-κB, PI-3K/AKT, and TGF-ß/Smads signaling pathways. These results suggest that ZM600 has a protective effect on liver fibrosis, which provides a new candidate for the treatment of liver fibrosis.


Asunto(s)
Alcaloides , Células Estrelladas Hepáticas , Cirrosis Hepática , Matrinas , Quinolizinas , Animales , Quinolizinas/farmacología , Quinolizinas/síntesis química , Quinolizinas/química , Quinolizinas/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Alcaloides/farmacología , Alcaloides/química , Alcaloides/síntesis química , Alcaloides/uso terapéutico , Masculino , FN-kappa B/metabolismo , FN-kappa B/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Tetracloruro de Carbono , Ratones , Relación Estructura-Actividad , Ratas , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Descubrimiento de Drogas , Antifibróticos/farmacología , Antifibróticos/uso terapéutico , Antifibróticos/química , Antifibróticos/síntesis química , Ratas Sprague-Dawley
2.
ACS Pharmacol Transl Sci ; 7(5): 1386-1394, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38751617

RESUMEN

Advanced metastatic colorectal cancer (mCRC) and the development of drug resistance to chemotherapy pose significant challenges in clinical settings. In previous studies, we have demonstrated the potent cytotoxic activity of (E)-3-(6-fluoro-1H-indol-3-yl)-2-methyl-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (FC116) and related 30 derivatives against mCRC by targeting microtubules. In this study, we aimed to evaluate the efficacy of the 31 compounds and explore the structure-activity relationship (SAR) against oxaliplatin-resistant mCRC. We found that most of the derivatives showed high sensitivity toward the oxaliplatin-resistant HCT-116/L cells. Particularly, FC116 exhibited a better GI50 value against the resistant mCRC cell line, HCT-116/L, compared to standard therapies. We also observed a safer therapeutic window for FC116 and a synergistic effect when it was used in combination with oxaliplatin. Mechanistically, FC116 induced the G2/M phase arrest by downregulating cyclin B1 expression through its interaction with microtubules in resistant colorectal cancer cells. Furthermore, in vivo experiments demonstrated that FC116 significantly suppressed tumor growth, achieving a 78% reduction at a dose of 3 mg/kg, which was superior to the 40% reduction achieved by oxaliplatin treatment. Overall, our findings suggest that the indole-chalcone compound FC116 represents a promising lead for chemotherapy in oxaliplatin-resistant mCRC.

3.
Molecules ; 29(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38257210

RESUMEN

MASM, a structurally modified derivative of matrine, exhibits superior efficacy in reducing inflammation and liver injury in rats when compared to matrine. This study aims to investigate the pharmacokinetic profile and acute toxicity of MASM. Pharmacokinetic results revealed that MASM exhibited rapid absorption, with a Tmax ranging from 0.21 ± 0.04 h to 1.31 ± 0.53 h, and was eliminated slowly, with a t1/2 of approximately 10 h regardless of the route of administration (intravenous, intraperitoneal, or intragastric). The absolute intragastric bioavailability of MASM in rats was determined to be 44.50%, which was significantly higher than that of matrine (18.5%). MASM was detected in all rat tissues including the brain, and through the utilization of stable isotope-labeled compounds and standard references, ten metabolites of MASM, namely sophocarpine, oxysophocarpine, and oxymatrine, were tentatively identified. The LD50 of MASM in mice was determined to be 94.25 mg/kg, surpassing that of matrine (83.21 mg/kg) based on acute toxicity results. Histopathological and biochemical analysis indicated no significant alterations in the primary organs of the low- to medium-dosage groups of MASM. These findings provide valuable insights into the efficacy and toxicity profile of MASM.


Asunto(s)
Antracenos , Matrinas , Tionas , Ratones , Ratas , Animales , Radioisótopos de Carbono , Distribución Tisular
4.
Food Funct ; 15(1): 158-171, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38086660

RESUMEN

Smoking is the primary risk factor for developing lung cancer. Chemoprevention could be a promising strategy to reduce the incidence and mortality rates of lung cancer. Recently, we reported that A/J mice exposed to tobacco smoke carcinogens displayed the reshaping of gut microbiota. Additionally, garlic oil was found to effectively inhibit the carcinogenic effects of tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in lung tumorigenesis. Diallyl trisulfide (DATS), which is the predominant compound in garlic oil, exhibits various biological activities. To further explore the chemopreventive action and potential mechanism of DATS on lung tumorigenesis, we established a lung adenocarcinoma model in A/J mice stimulated by NNK. Subsequently, we employed multi-omics combined molecular biology technologies to clarify the mechanism. The results indicated that DATS significantly decreased the number of lung tumors in NNK induced A/J mice. Interestingly, we discovered that DATS could modulate gut microbiota, particularly increasing the abundance of F. rodentium, which has inhibitory effects on tumor growth. Mechanistically, DATS could activate the PPARγ pathway, leading to the negative regulation of the NF-κB signaling pathway and subsequent suppression of NF-κB-mediated inflammatory factors. Collectively, these findings provide support for DATS as a potential novel chemopreventive agent for tobacco carcinogen-induced lung cancer.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias Pulmonares , Nitrosaminas , Ratones , Animales , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , PPAR gamma/metabolismo , Nitrosaminas/toxicidad , Carcinógenos/farmacología , Pulmón , Ratones Endogámicos , Carcinogénesis/metabolismo
5.
J Agric Food Chem ; 71(46): 17763-17774, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37956253

RESUMEN

Chemoprevention is a potential strategy to reduce lung cancer incidence and death. Recently, we reported that garlic oil significantly inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumorigenesis. Diallyl disulfide (DADS) is a bioactive ingredient in garlic. Our goal was to examine the chemopreventive effectiveness and mechanism of DADS on NNK-triggered lung cancer in vivo and in vitro in the current investigation. The results indicated that DADS significantly reduced the number of lung nodules in the NNK-induced A/J mice. Consistent with the in vivo results, DADS markedly inhibited NNK-induced decrease of MRC-5 cells' viability. Mechanistically, DADS could promote Nrf2 dissociated from the Keap1-Nrf2 complex and accelerate Nrf2 nuclear translocation, which in turn upregulates its downstream target genes. Besides, DADS further inhibited the NF-κB signaling cascade, thus reducing the accumulation of inflammatory factors. Collectively, these discoveries supported the potential of DADS as a novel candidate for the chemoprevention of tobacco-carcinogen-induced lung cancer.


Asunto(s)
Neoplasias Pulmonares , Nitrosaminas , Productos de Tabaco , Ratones , Animales , Carcinógenos/toxicidad , FN-kappa B/genética , FN-kappa B/metabolismo , Antioxidantes/efectos adversos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Nitrosaminas/toxicidad , Pulmón/metabolismo , Carcinogénesis , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevención & control
6.
Redox Biol ; 64: 102793, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37385075

RESUMEN

The Keap1-Nrf2 pathway has been established as a therapeutic target for Alzheimer's disease (AD). Directly inhibiting the protein-protein interaction (PPI) between Keap1 and Nrf2 has been reported as an effective strategy for treating AD. Our group has validated this in an AD mouse model for the first time using the inhibitor 1,4-diaminonaphthalene NXPZ-2 with high concentrations. In the present study, we reported a new phosphodiester containing diaminonaphthalene compound, POZL, designed to target the PPI interface using a structure-based design strategy to combat oxidative stress in AD pathogenesis. Our crystallographic verification confirms that POZL shows potent Keap1-Nrf2 inhibition. Remarkably, POZL showed its high in vivo anti-AD efficacy at a much lower dosage compared to NXPZ-2 in the transgenic APP/PS1 AD mouse model. POZL treatment in the transgenic mice could effectively ameliorate learning and memory dysfunction by promoting the Nrf2 nuclear translocation. As a result, the oxidative stress and AD biomarker expression such as BACE1 and hyperphosphorylation of Tau were significantly reduced, and the synaptic function was recovered. HE and Nissl staining confirmed that POZL improved brain tissue pathological changes by enhancing neuron quantity and function. Furthermore, it was confirmed that POZL could effectively reverse Aß-caused synaptic damage by activating Nrf2 in primary cultured cortical neurons. Collectively, our findings demonstrated that the phosphodiester diaminonaphthalene Keap1-Nrf2 PPI inhibitor could be regarded as a promising preclinical candidate of AD.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Ratones Transgénicos , Estrés Oxidativo
7.
Expert Opin Ther Pat ; 33(2): 101-124, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36960668

RESUMEN

INTRODUCTION: RIPK1 is a critical mediator of inflammation and cell death, which is associated with extensive neurodegenerative and inflammatory diseases. Recently, RIPK1 has aroused the interests of pharmaceutical industry and research institutions. AREAS COVERED: This review focuses on patent literature covering small-molecule inhibitors of RIPK1 since 2018. SciFinder and PubMed databases were used for patent and literature searching. EXPERT OPINION: Studies of RIPK1 inhibitors for the necroptosis pathway have increased dramatically in recent years. To date, dozens of RIPK1 inhibitors have been reported, and several have entered clinical studies. However, the development of RIPK1 inhibitors is still at a preliminary stage. An understanding of the dosage and disease indications of RIPK1 inhibitors, rational structural optimization, and the optimal clinical setting for new structures will require feedback from further clinical trials. Recently, compared with type III inhibitors, the patents on type II inhibitors have dramatically increased. Most of them contain hybrid structures of type II/III inhibitors occupying the ATP-binding pocket and the back hydrophobic pocket of RIPK1. Patents of RIPK1 degraders were also disclosed, but the role of RIPK1 kinase- independent and dependent in promoting cell death and diseases must be considered.


Asunto(s)
Apoptosis , Patentes como Asunto , Humanos , Inflamación , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores
8.
J Med Chem ; 66(7): 5261-5278, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36908007

RESUMEN

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) are serious and devastating pulmonary manifestations of acute systemic inflammation with high morbidity and mortality worldwide. Currently, there are no specific effective treatments for ALI/ARDS. RIPK1, which contributes to necroptosis and inflammation, is confirmed to be a promising strategy for the treatment of ALI. Herein, 23 benzothiazole derivatives were designed to specifically target RIPK1, and SZM-1209 showed high anti-necroptotic activity (EC50 = 22.4 nM) and kinase selectivity on RIPK1 over RIPK3 (Kd,RIPK1 = 85 nM, Kd,RIPK3 > 10,000 nM). In a mTNF-α-induced systemic inflammatory response syndrome (SIRS) model, SZM-1209 could completely reverse mouse deaths with significant anti-inflammatory effects. Furthermore, in a NNK short-term intratracheal exposure-induced ALI model, SZM-1209 significantly alleviated ALI by reducing pulmonary edema and pathological damage. Collectively, activities of SZM-1209 against RIPK1, necroptosis, SIRS, and ALI warranted further investigation of optimized benzothiazoles as promising lead structures against ALI-related diseases.


Asunto(s)
Lesión Pulmonar Aguda , Síndrome de Dificultad Respiratoria , Ratones , Animales , Necroptosis , Síndrome de Respuesta Inflamatoria Sistémica , Benzotiazoles/farmacología , Benzotiazoles/uso terapéutico , Benzotiazoles/química , Inflamación/patología , Proteínas Quinasas/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Apoptosis
9.
J Med Chem ; 66(4): 3073-3087, 2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36724216

RESUMEN

Systemic inflammatory response syndrome (SIRS), characterized by severe systemic inflammation, represents a major cause of health loss, potentially leading to multiple organ failure, shock, and death. Exploring potent RIPK1 inhibitors is an effective therapeutic strategy for SIRS. Recently, we described thio-benzoxazepinones as novel RIPK1 inhibitors and confirmed their anti-inflammatory activity. Herein, we further synthesized novel thio-benzoxazepinones by introducing substitutions on the benzene ring by an alkynyl bridge in order to extend the chemical space from the RIPK1 allosteric to ATP binding pockets. The in vitro cell and kinase assays found that compounds 2 and 29 showed highly potent activity against necroptosis (EC50 = 3.7 and 3.2 nM) and high RIPK1 inhibitory activity (Kd = 9.7 and 70 nM). Prominently, these two analogues possessed better in vivo anti-inflammatory effects than the clinical candidate GSK'772 and effectively blocked hypothermia and deaths in a TNFα-induced SIRS model.


Asunto(s)
Proteínas Quinasas , Síndrome de Respuesta Inflamatoria Sistémica , Humanos , Necrosis , Síndrome de Respuesta Inflamatoria Sistémica/tratamiento farmacológico , Proteínas Quinasas/metabolismo , Adenosina Trifosfato/farmacología , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Apoptosis , Inhibidores de Proteínas Quinasas/farmacología
10.
ACS Nano ; 17(3): 2159-2169, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36648130

RESUMEN

The study of dynamic supramolecular chirality inversion (SMCI) not only helps to deepen the understanding of chiral transfer and amplification in both living organizations and artificially chemical self-assembly systems but also is useful for the development of smart chiral nanomaterials. However, it is still challenging to achieve the dynamic SMCI of the self-aggregation of metal-organic supramolecular polymers with great potential in asymmetric synthesis, chiroptical switches, and circular polarized luminescence. Here, we successfully developed a hierarchical coassembly system based on the mPAzPCC and various metal ions with effective chirality transfer and temporal-controlled SMCI. Due to the dynamic self-assembly and hierarchical chirality transfer of the Ag+/mPAzPCC complex driven by metallophilic interaction and coordination, morphological transition with nanoribbons, helical nanoribbons, and chiral nanotubules was successively obtained. Interestingly, the SMCI of chiral nanoaggregates was precisely regulated by solvents and metal ions in the Cu2+/mPAzPCC and Mn2+/mPAzPCC system. Besides, temporal-controlled dynamic SMCI switching from helix to bundled helix was clearly revealed in the aggregation of Cu2+/mPAzPCC, Mn2+/mPAzPCC, and Bi3+/mPAzPCC systems. This work provides a metallophilic interaction-mediated helical assembly pathway to dynamically modulate the chirality of metal-organic complex-based assemblies and deepen the understanding of the hierarchically dynamic self-assembly process, which would be of great potential in metal ion-mediated supramolecular asymmetric catalysis and bioinspired chiral sensing.

11.
Bioorg Chem ; 131: 106339, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36599218

RESUMEN

Necroptosis is confirmed as a precisely programmed cell death that is activated in caspase-deficient conditions. Receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed-lineage kinase domain-like pseudokinase (MLKL) are the key regulators involved in the signaling pathway. However, accumulating evidence suggests that RIPK1 also works in apoptosis and inflammation pathways independent of necroptosis. Differently, RIPK3 signals necroptosis independent of RIPK1. Thus, identification of specific RIPK3 inhibitors is of great importance for the drug development associated with necroptosis. The benzothiazole carboxamide is a privileged scaffold as RIPK3 inhibitors developed by our group recently. In this study, we work on the phenyl group in-between of benzothiazole and carboxamide to profile the chemical space. Finally, a chlorinated derivative XY-1-127 was found to specifically inhibit necroptosis rather than apoptosis with an EC50 value of 676.8 nM and target RIPK3 with a Kd of 420 nM rather than RIPK1 (Kd = 4300 nM). It was also confirmed to block the formation of necrosome by inhibiting RIPK3 phosphorylation at 1 µM in necroptosis cells. This work discovers the chemical space insights on the phenyl group of the substituted benzothiazole RIPK3 inhibitors and provides a new lead compound for further development.


Asunto(s)
Apoptosis , Benzotiazoles , Necroptosis , Inhibidores de Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Humanos , Apoptosis/efectos de los fármacos , Benzotiazoles/química , Benzotiazoles/farmacología , Inflamación/metabolismo , Fosforilación , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Necroptosis/efectos de los fármacos
12.
Int Immunopharmacol ; 114: 109527, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36700762

RESUMEN

Hepatic fibrosis is a pathological change caused by chronic liver injury and self-repair, and it is the inevitable stage of the development of chronic liver disease to cirrhosis or even liver cancer. Activation of hepatic stellate cells (HSCs) is a core event in the development of liver fibrosis and blockage of the activation of HSCs has been shown to alleviate liver fibrosis. Roxarsone, an organoarsenic additive, with antibiotic effect, growth promotion and improving feed efficiency, is widely used in livestock and animal production. The purpose of this study was to evaluate the therapeutic effect of Roxarsone on liver fibrosis and explore the possible mechanism. We found that Roxarsone could inhibit transforming growth factor-ß1 (TGF-ß1) induced the activation of HSCs and weaken the migration ability. Moreover, Roxarsone administration significantly ameliorated CCl4-induced liver fibrosis in mice with improvement of liver function and decreases of deposition of extracellular matrix (ECM). Mechanism investigations revealed that Roxarsone specifically inhibited the activation of TGF-ß1/Smad signaling pathway, but had no effect on MAPK and PI3K/AKT pathways. These results suggest that Roxarsone has a protective effect on liver fibrosis which provides a new candidate for the treatment of liver fibrosis.


Asunto(s)
Roxarsona , Factor de Crecimiento Transformador beta1 , Animales , Ratones , Tetracloruro de Carbono , Células Estrelladas Hepáticas , Hígado/patología , Cirrosis Hepática/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Roxarsona/metabolismo , Roxarsona/farmacología , Roxarsona/uso terapéutico , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
13.
Hepatology ; 77(4): 1106-1121, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35344606

RESUMEN

BACKGROUND AND AIMS: Hepatocarcinogenesis goes through HCC progenitor cells (HcPCs) to fully established HCC, and the mechanisms driving the development of HcPCs are still largely unknown. APPROACH AND RESULTS: Proteomic analysis in nonaggregated hepatocytes and aggregates containing HcPCs from a diethylnitrosamine-induced HCC mouse model was screened using a quantitative mass spectrometry-based approach to elucidate the dysregulated proteins in HcPCs. The heterotrimeric G stimulating protein α subunit (GαS) protein level was significantly increased in liver cancer progenitor HcPCs, which promotes their response to oncogenic and proinflammatory cytokine IL-6 and drives premalignant HcPCs to fully established HCC. Mechanistically, GαS was located at the membrane inside of hepatocytes and acetylated at K28 by acetyltransferase lysine acetyltransferase 7 (KAT7) under IL-6 in HcPCs, causing the acyl protein thioesterase 1-mediated depalmitoylation of GαS and its cytoplasmic translocation, which were determined by GαS K28A mimicking deacetylation or K28Q mimicking acetylation mutant mice and hepatic Kat7 knockout mouse. Then, cytoplasmic acetylated GαS associated with signal transducer and activator of transcription 3 (STAT3) to impede its interaction with suppressor of cytokine signaling 3, thus promoting in a feedforward manner STAT3 phosphorylation and the response to IL-6 in HcPCs. Clinically, GαS, especially K28-acetylated GαS, was determined to be increased in human hepatic premalignant dysplastic nodules and positively correlated with the enhanced STAT3 phosphorylation, which were in accordance with the data obtained in mouse models. CONCLUSIONS: Malignant progression of HcPCs requires increased K28-acetylated and cytoplasm-translocated GαS, causing enhanced response to IL-6 and driving premalignant HcPCs to fully established HCC, which provides mechanistic insight and a potential target for preventing hepatocarcinogenesis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Lisina Acetiltransferasas , Humanos , Ratones , Animales , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/patología , Interleucina-6/metabolismo , Proteómica , Citoplasma/metabolismo , Proteínas de Unión al GTP/metabolismo , Lisina Acetiltransferasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Histona Acetiltransferasas/metabolismo
14.
RSC Adv ; 12(54): 35242-35259, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36540233

RESUMEN

Cannabinoid receptors belong to the large family of G-protein-coupled receptors, which can be divided into two receptor types, cannabinoid receptor type-1 (CB1) and cannabinoid receptor type-2 (CB2). Marinol, Cesamet and Sativex are marketed CB1 drugs which are still in use and work well, but the central nervous system side effects caused by activation CB1, which limited the development of CB1 ligands. So far, no selective CB2 ligand has been approved for marketing, but lots of its ligands in the clinical stage and pre-clinical stage have positive effects on the treatment of some disease models and have great potential for development. Most selective CB2 agonists are designed and synthesized based on non-selective CB2 agonists through the classical med-chem strategies, e.g. molecular hybridization, scaffold hopping, bioisosterism, etc. During these processes, the balance between selectivity, activity, and pharmacokinetic properties needs to be achieved. Hence, we summarized some reported ligands on the basis of the optimization strategies in recent 10 years, and the limitations and future directions.

15.
J Hematol Oncol ; 15(1): 161, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333807

RESUMEN

BACKGROUND: Hepatocarcinogenesis is driven by necroinflammation or metabolic disorders, and the underlying mechanisms remain largely elusive. We previously found that retinoic acid-inducible gene-I (RIG-I), a sensor for recognizing RNA virus in innate immune cells, is mainly expressed by parenchymal hepatocytes in the liver. However, its roles in hepatocarcinogenesis are unknown, which is intensively investigated in this study. METHODS: DEN-induced necroinflammation-driven hepatocarcinogenesis and STAM NASH-hepatocarcinogenesis were carried out in hepatocyte-specific RIG-I knockout mice. The post-translational modification of RIG-I was determined by mass spectrometry, and specific antibodies against methylated lysine sites and the RIG-I lysine mutant mice were constructed to identify the functions of RIG-I methylation. RESULTS: We interestingly found that DEN-induced hepatocarcinogenesis was enhanced, while NASH-induced hepatocarcinogenesis was suppressed by hepatocyte-specific RIG-I deficiency. Further, IL-6 decreased RIG-I expression in HCC progenitor cells (HcPCs), which then viciously promoted IL-6 effector signaling and drove HcPCs to fully established HCC. RIG-I expression was increased by HFD, which then enhanced cholesterol synthesis and steatosis, and the in-turn NASH and NASH-induced hepatocarcinogenesis. Mechanistically, RIG-I was constitutively mono-methylated at K18 and K146, and demethylase JMJD4-mediated RIG-I demethylation suppressed IL-6-STAT3 signaling. The constitutive methylated RIG-I associated with AMPKα to inhibit HMGCR phosphorylation, thus promoting HMGCR enzymatic activity and cholesterol synthesis. Clinically, RIG-I was decreased in human hepatic precancerous dysplastic nodules while increased in NAFLD livers, which were in accordance with the data in mouse models. CONCLUSIONS: Decreased RIG-I in HcPCs promotes necroinflammation-induced hepatocarcinogenesis, while increased constitutive methylated RIG-I enhances steatosis and NASH-induced hepatocarcinogenesis. JMJD4-demethylated RIG-I prevents both necroinflammation and NASH-induced hepatocarcinogenesis, which provides mechanistic insight and potential target for preventing HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Humanos , Animales , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Interleucina-6 , Lisina , Carcinogénesis , Ratones Noqueados , Colesterol/efectos adversos
16.
J Med Chem ; 65(21): 14957-14969, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36288088

RESUMEN

Receptor-interacting protein kinase 1 (RIPK1) contributes to a broad set of inflammations and necroptosis in human diseases, which also plays an important role in the pathogenesis of Alzheimer's disease (AD). The inhibition of RIPK1 could be a novel strategy to improve cognitive function. SZM679, a highly specific RIPK1 inhibitor (Kd,RIPK1 = 8.6 nM, Kd,RIPK3 > 5000 nM), was developed by our group with superior high antinecroptotic activity (EC50 = 2 nM), and investigated to completely reverse the tumor necrosis factor-induced systemic inflammatory response syndrome. In a streptozocin-induced AD-like mouse model, behavioral tests showed that SZM679 apparently ameliorated learning and memory dysfunction. Nissl staining revealed that SZM679 improved neuronal loss. Moreover, the Tau hyperphosphorylation, neuroinflammation, and the RIPK1 phosphorylation level in the hippocampus and cortex were significantly decreased in the SZM679-treated group. Collectively, SZM679 represents a promising lead structure for the discovery of novel RIPK1 inhibitory anti-AD agents.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Necroptosis , Ciclopentanos , Benzotiazoles/farmacología , Apoptosis
17.
Langmuir ; 38(37): 11492-11501, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36089744

RESUMEN

(S)-2-((1-(Hexadecylamino)-4-(methylthio)-1-oxobutan-2-yl)carbamoyl)benzoic acid (HMTA) was efficiently synthesized and successfully applied as an additive to several types of blank lubricant oils. Initially, HMTA self-assembles to fibrous structures and traps blank lubricant oils to form gel lubricants. The prepared gel lubricants show thermo-reversible properties and enhanced lubricating performance by 3∼5-fold. X-ray photoelectron spectrometry of the metal surface and the quartz crystal microbalance illustrated that there are no obvious interactions between HMTA and the metal surface. The results of Fourier transform infrared spectroscopy and X-ray diffraction further confirm that inter/intro-molecular H-bonding interactions are the main driving force for the self-healing of HMTA. Finally, molecular dynamics (MD) simulations show that the number of noncovalent H-bonding interactions fluctuates with time, and this highly dynamic H-bonding network could regulate the self-assembly process and result in the self-healing property of the HMTA organogel, which is consistent with the results of the step-strain tests. Especially, the Hirshfeld independent gradient model method at the quantum level demonstrated that C8/C9 aromatics of 500SN have strong π-π stacking interactions with the aromatic heads of HMTA and van der Waals interactions with the hydrophobic tails of HMTA, which disrupt the self-assembly behavior of the 500SN model. Therefore, the calculation studies offer a rational explanation for the superior lubricant property of the PAO10 gel as compared to that for 500SN.

18.
ACS Chem Neurosci ; 13(12): 1697-1713, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35607807

RESUMEN

Alzheimer's disease (AD) is an irreversible and progressive neurodegenerative disorder featured by memory loss and cognitive default. However, there has been no effective therapeutic approach to prevent the development of AD and the available therapies are only to alleviate some symptoms with limited efficacy and severe side effects. Necroptosis is a new kind of cell death, being regarded as a genetically programmed and regulated pattern of necrosis. Increasing evidence reveals that necroptosis is tightly related to the occurrence and development of AD. This review aims to summarize the potential role of necroptosis in AD progression and the therapeutic capacity of targeting necroptosis for AD patients.


Asunto(s)
Enfermedad de Alzheimer , Necroptosis , Enfermedad de Alzheimer/tratamiento farmacológico , Apoptosis , Humanos , Necrosis , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
19.
Eur J Med Chem ; 236: 114345, 2022 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398729

RESUMEN

As a key upstream kinase involved in the activation of necroptosis, receptor-interacting protein kinase 1 (RIPK1) plays a vital role in the treatment of relevant inflammatory diseases. Recently, we described the thio-benzoxazepinones as RIPK1 necroptosis inhibitors. On this basis, we further explored the chemical space of the thio-benzoxazepinones by introducing substitutions on the triazole group and evaluated their anti-necroptotic activity. The structure-activity relationship (SAR) was extended for this series of new derivatives. The best compound 2 with methyl and compound 10 with fluoroethyl were obtained and both specifically inhibited necroptosis rather than apoptosis with EC50 values of 2.5 and 8.9 nM, respectively. They blocked the downstream necroptotic pathway to prevent cell lysis and prevent in vivo inflammation in a dose-dependent manner. This work provides that substituted thio-benzoxazepines can better occupy the hydrophobic cavity and enhance the hydrophobic interaction as promising lead compounds to enhance the in vivo activity of this class of compounds.


Asunto(s)
Proteína Serina-Treonina Quinasas de Interacción con Receptores , Triazoles , Apoptosis , Muerte Celular , Necroptosis , Triazoles/farmacología
20.
Front Immunol ; 13: 856327, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35296098

RESUMEN

Coronavirus Disease 2019 (COVID-19) infected by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been declared a public health emergency of international concerns. Cytokine storm syndrome (CSS) is a critical clinical symptom of severe COVID-19 patients, and the macrophage is recognized as the direct host cell of SARS-CoV-2 and potential drivers of CSS. In the present study, peramivir was identified to reduce TNF-α by partly intervention of NF-κB activity in LPS-induced macrophage model. In vivo, peramivir reduced the multi-cytokines in serum and bronchoalveolar lavage fluid (BALF), alleviated the acute lung injury and prolonged the survival time in mice. In human peripheral blood mononuclear cells (hPBMCs), peramivir could also inhibit the release of TNF-α. Collectively, we proposed that peramivir might be a candidate for the treatment of COVID-19 and other infections related CSS.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Síndrome de Liberación de Citoquinas , Ácidos Carbocíclicos , Animales , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Guanidinas , Humanos , Leucocitos Mononucleares , Ratones , SARS-CoV-2 , Factor de Necrosis Tumoral alfa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...