Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38894685

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis ( M. tb), remains one of the leading causes of fatal infectious diseases worldwide. The only licensed vaccine, Mycobacterium bovis Bacillus Calmette-Guérin (BCG), has variable efficacy against TB in adults. Insufficiency of immune cell function diminishes the protective effects of the BCG vaccine. It is critical to clarify the mechanism underlying the antimycobacterial immune response during BCG vaccination. Macrophage mannose receptor (MR) is important for enhancing the uptake and processing of glycoconjugated antigens from pathogens for presentation to T cells, but the roles of macrophage MR in the BCG-induced immune response against M. tb are not yet clear. Here, we discover that macrophage MR deficiency impairs the antimycobacterial immune response in BCG-vaccinated mice. Mechanistically, macrophage MR triggers JAK-STAT1 signaling, which promotes antigen presentation via upregulated MHC-II and induces IL-12 production by macrophages, contributing to CD4 + T cell activation and IFN-γ production. MR deficiency in macrophages reduces the vaccine efficacy of BCG and increases susceptibility to M. tb H37Ra challenge in mice. Our results suggest that MR is critical for macrophage antigen presentation and the antimycobacterial immune response to BCG vaccination and offer valuable guidance for the preventive strategy of BCG immunization.

2.
Comput Med Imaging Graph ; 113: 102354, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38341946

RESUMEN

Lung granuloma is a very common lung disease, and its specific diagnosis is important for determining the exact cause of the disease as well as the prognosis of the patient. And, an effective lung granuloma detection model based on computer-aided diagnostics (CAD) can help pathologists to localize granulomas, thereby improving the efficiency of the specific diagnosis. However, for lung granuloma detection models based on CAD, the significant size differences between granulomas and how to better utilize the morphological features of granulomas are both critical challenges to be addressed. In this paper, we propose an automatic method CRDet to localize granulomas in histopathological images and deal with these challenges. We first introduce the multi-scale feature extraction network with self-attention to extract features at different scales at the same time. Then, the features will be converted to circle representations of granulomas by circle representation detection heads to achieve the alignment of features and ground truth. In this way, we can also more effectively use the circular morphological features of granulomas. Finally, we propose a center point calibration method at the inference stage to further optimize the circle representation. For model evaluation, we built a lung granuloma circle representation dataset named LGCR, including 288 images from 50 subjects. Our method yielded 0.316 mAP and 0.571 mAR, outperforming the state-of-the-art object detection methods on our proposed LGCR.


Asunto(s)
Granuloma , Pulmón , Humanos , Calibración , Granuloma/diagnóstico por imagen , Granuloma/patología , Pulmón/diagnóstico por imagen , Pulmón/patología
3.
Nat Commun ; 15(1): 652, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253527

RESUMEN

Aberrant N-glycosylation has been implicated in viral diseases. Alpha-(1,6)-fucosyltransferase (FUT8) is the sole enzyme responsible for core fucosylation of N-glycans during glycoprotein biosynthesis. Here we find that multiple viral envelope proteins, including Hepatitis C Virus (HCV)-E2, Vesicular stomatitis virus (VSV)-G, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-Spike and human immunodeficiency virus (HIV)-gp120, enhance FUT8 expression and core fucosylation. HCV-E2 manipulates host transcription factor SNAIL to induce FUT8 expression through EGFR-AKT-SNAIL activation. The aberrant increased-FUT8 expression promotes TRIM40-mediated RIG-I K48-ubiquitination and suppresses the antiviral interferon (IFN)-I response through core fucosylated-EGFR-JAK1-STAT3-RIG-I signaling. FUT8 inhibitor 2FF, N-glycosylation site-specific mutation (Q352AT) of EGFR, and tissue-targeted Fut8 silencing significantly increase antiviral IFN-I responses and suppress RNA viral replication, suggesting that core fucosylation mediated by FUT8 is critical for antiviral innate immunity. These findings reveal an immune evasion mechanism in which virus-induced FUT8 suppresses endogenous RIG-I-mediated antiviral defenses by enhancing core fucosylated EGFR-mediated activation.


Asunto(s)
Hepatitis C , Interferón Tipo I , Humanos , Hepacivirus , Glicosilación , Proteína 58 DEAD Box , Fucosiltransferasas , Proteína gp120 de Envoltorio del VIH , Antivirales/farmacología , Receptores ErbB
4.
Front Immunol ; 14: 1167562, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228621

RESUMEN

Background: The prevalence of food allergy (FA) is increasing. Decreases in the diversity of gut microbiota may contribute to the pathogenesis of FA by regulating IgE production of B cells. Intermittent fasting (IF) is a popular diet with the potential to regulate glucose metabolism, boosting immune memory and optimizing gut microbiota. The potential effect of long-term IF on the prevention and treatment of FA is still unknown. Methods: Two IF protocols (16 h fasting/8 h feeding and 24 h fasting/24 h feeding) were conducted on mice for 56 days, while the control mice were free to intake food (free diet group, FrD). To construct the FA model, all mice were sensitized and intragastrical challenged with ovalbumin (OVA) during the second half of IF (day 28 to day 56). Rectal temperature reduction and diarrhea were recorded to evaluate the symptoms of FA. Levels of serum IgE, IgG1, Th1/Th2 cytokines, mRNA expression of spleen T cell related transcriptional factors, and cytokines were examined. H&E, immunofluorescence, and toluidine blue staining were used to assess the structural changes of ileum villi. The composition and abundance of gut microbiota were analyzed by 16srRNA sequencing in cecum feces. Results: The diarrhea score and rectal temperature reduction were lower in the two fasting groups compared to the FrD groups. Fasting was associated with lower levels of serum OVA-sIgE, OVA-sIgG1, interleukin (IL)-4 and IL-5, and mRNA expression of IL-4, IL-5, and IL-10 in the spleen. While no significant association was observed in interferon (IFN)-γ, tumor necrosis factor (TNF)-α, IL-6, IL-2 levels. Less mast cell infiltration in ileum was observed in the 16h/8h fasting group compared to the FrD group. ZO-1 expression in the ileum of the two fasting groups was higher in IF mice. The 24h/24h fasting reshaped the gut microbiota, with a higher abundance of Alistipes and Rikenellaceae strains compared to the other groups. Conclusion: In an OVA-induced mice FA model, long-term IF may attenuate FA by reducing Th2 inflammation, maintaining the integrity of the intestinal epithelial barrier, and preventing gut dysbiosis.


Asunto(s)
Hipersensibilidad a los Alimentos , Microbioma Gastrointestinal , Ratones , Animales , Ayuno Intermitente , Modelos Animales de Enfermedad , Interleucina-5 , Hipersensibilidad a los Alimentos/etiología , Citocinas/metabolismo , Inmunoglobulina E , Diarrea , ARN Mensajero
5.
Adv Mater ; 35(6): e2208578, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36440662

RESUMEN

Sepsis, a widely recognized disease, is characterized by multiple pathogen infections. Therefore, it is imperative to develop methods that can efficiently identify and neutralize pathogen species. Phage cocktail therapy utilizes the host specificity of phages to adapt to infect resistant bacteria. However, its low sterilization stability efficiency and lack of imaging units seriously restrict its application. Here, a novel strategy combining the aggregation-induced emission photosensitizer (AIE-PS) TBTCP-PMB with phages through a nucleophilic substitution reaction between benzyl bromide and sulfhydryl groups to remove pathogenic bacteria for sepsis treatment is proposed. This strategy retains the phage's host specificity while possessing AIE-PS characteristics with a fluorescence imaging function and reactive oxygen species (ROS) for detecting and sterilizing bacteria. This synergetic strategy combining phage cocktail therapy and photodynamic therapy (PDT) shows a strong "1 + 1 > 2" bactericidal efficacy and superior performance in sepsis mouse models with good biocompatibility. Furthermore, the strategy can quickly diagnose blood infections of clinical blood samples. This simple and accurate strategy provides a promising therapeutic platform for rapid pathogen detection and point-of-care diagnosis. Moreover, it presents a new method for expanding the library of antibacterial drugs to develop new strain identification and improve infectious disease treatment, thereby demonstrating strong translational potential.


Asunto(s)
Bacteriófagos , Fotoquimioterapia , Sepsis , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Imagen Óptica , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sepsis/tratamiento farmacológico
6.
Front Immunol ; 13: 943174, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36003390

RESUMEN

c-Myc (Myc) is a well-known transcription factor that regulates many essential cellular processes. Myc has been implicated in regulating anti-mycobacterial responses. However, its precise mechanism in modulating mycobacterial immunity remains elusive. Here, we found that a secreted Rv1579c (early secreted target with molecular weight 12 kDa, named EST12) protein, encoded by virulent Mycobacterium tuberculosis (M.tb) H37Rv region of deletion (RD)3, induces early expression and late degradation of Myc protein. Interestingly, EST12-induced Myc was further processed by K48 ubiquitin proteasome degradation in E3 ubiquitin ligase FBW7 dependent manner. EST12 protein activates JNK-AP1-Myc signaling pathway, promotes Myc binding to the promoters of IL-6, TNF-α and iNOS, then induces the expression of pro-inflammatory cytokines (IL-6 and TNF-α)/inducible nitric oxide synthase (iNOS)/nitric oxide (NO) to increase mycobacterial clearance in a RACK1 dependent manner, and these effects are impaired by both Myc and JNK inhibitors. Macrophages infected with EST12-deficiency strain (H37RvΔEST12) displayed less production of iNOS, IL-6 and TNF-α. In conclusion, EST12 regulates Myc expression and enhances anti-mycobacterial inflammatory response via RACK1-JNK-AP1-Myc immune pathway. Our finding provides new insights into M.tb-induced immunity through Myc.


Asunto(s)
Proteínas Bacterianas , Mycobacterium tuberculosis , Proteínas Proto-Oncogénicas c-myc , Tuberculosis , Humanos , Proteínas Bacterianas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , MAP Quinasa Quinasa 4/metabolismo , Mycobacterium tuberculosis/fisiología , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Receptores de Cinasa C Activada/metabolismo , Transducción de Señal , Tuberculosis/genética , Tuberculosis/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Front Immunol ; 13: 880315, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603194

RESUMEN

Mycobacterium tuberculosis (Mtb), as an important intracellular pathogen, can invade and survive in macrophages and is capable of escaping the clearance of immune system. Despite decades of research efforts, the precise mechanism of immune escape and the virulence factors encoded by Mtb involved remain to be explored. Mtb-specific genomic regions of deletion (RD)-encoded proteins and PE/PPE family proteins have been implicated in immune evasion. Here, we screened more than forty RD-encoded proteins which might be involved in facilitating bacterial survival in macrophages, and found that a Mtb PPE68/Rv3873 protein, encoded by Mtb-RD1, is essential for efficient Mtb intracellular survival in macrophages. In terms of mechanism, we found that the ubiquitin ligase (E3) Makorin Ring Finger Protein 1 (MKRN1) of macrophage interacted with PPE68 and promoted the attachment of lysine (K)-63-linked ubiquitin chains to the K166 site of PPE68. K63-ubiquitination of PPE68 further bound src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) to suppress K63-linked polyubiquitin chains of tumor necrosis factor receptor-associated factor 6 (TRAF6), and then remarkably suppressed TRAF6-driven NF-κB and AP-1 signaling and TNF-α, IL-6 and NO production. We demonstrate that the K63-linked ubiquitination of PPE68 by MKRN1 contributed to the PPE68-mediated mycobacterial immune escape. Our finding identifies a previously unrecognized mechanism by which host MKRN1-mediated-ubiquitination of mycobacterial PPE protein suppresses innate immune responses. Disturbing the interaction between host MKRN1 ubiquitin system and mycobacterial PPE protein might be a potential therapeutic target for tuberculosis.


Asunto(s)
Mycobacterium tuberculosis , Proteínas Bacterianas , Inmunidad Innata , Factor 6 Asociado a Receptor de TNF/genética , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitinación , Ubiquitinas/metabolismo
8.
Cell Mol Immunol ; 19(8): 883-897, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35637281

RESUMEN

Long noncoding RNAs (lncRNAs) have been implicated in the pathogenesis of intracellular pathogens. However, the role and mechanism of the important lncRNAs in Mycobacterium tuberculosis (M.tb) infection remain largely unexplored. Recently, we found that a secreted M.tb Rv1579c (an early secreted target with a molecular weight of 12 kDa, named EST12) protein activates NLRP3-gasdermin D (GSDMD)-mediated pyroptosis and plays a pivotal role in M.tb-induced immunity. In the present study, M.tb and the EST12 protein negatively regulated the expression of a key lncRNA (named lnc-EST12) in mouse macrophages by activating the JAK2-STAT5a signaling pathway. Lnc-EST12, with a size of 1583 bp, is mainly expressed in immune-related organs (liver, lung and spleen). Lnc-EST12 not only reduces the expression of the proinflammatory cytokines IL-1ß, IL-6, and CCL5/8 but also suppresses the NLRP3 inflammasome and GSDMD pyroptosis-IL-1ß immune pathway through its interaction with the transcription factor far upstream element-binding protein 3 (FUBP3). The KH3 and KH4 domains of FUBP3 are the critical sites for binding to lnc-EST12. Deficiency of mouse lnc-EST12 or FUBP3 in macrophages increased M.tb clearance and inflammation in mouse macrophages or mice. In conclusion, we report a new immunoregulatory mechanism in which mouse lnc-EST12 negatively regulates anti-M.tb innate immunity through FUBP3.


Asunto(s)
Proteínas de Unión al ADN , Inmunidad Innata , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Largo no Codificante , Animales , Ratones , Proteínas de Unión al ADN/genética , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , ARN Largo no Codificante/genética
9.
Front Oncol ; 12: 855952, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35392238

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common types of cancer. Despite decades of research efforts, the search for novel biomarkers is still urgently needed for the diagnosis of HCC and the improvement of clinical outcomes. Previous studies of HCC clinical biomarkers have usually focused on serum and urine samples (e.g., serum Alpha-fetoprotein (AFP). However, cellular membrane proteins in lesion tissues are less used in HCC diagnosis. The abnormal expression of membrane glycoproteins in tumor lesions are considered as potential targets for tumor diagnosis and tumor therapies. Here, a lectin array has been employed to screen and identify abnormal glycopatterns and cellular membrane glycans in HCC lesion tissues compared with adjacent non-tumor tissues. We found that there was significantly less expression of Erythrina cristagalli (ECA) lectin binding (Galß1-3/ß1-4) glycans on the cellular membrane of HCC lesion tissues compared with those of adjacent non-tumor tissues. Immunohistochemistry analysis further showed that ECA-binding ability on the membrane proteins of HCC tissues progressively decreased in different tumor-node-metastasis (TNM) stages (stage I to stage III) as the malignancy of liver cancer increased. Receiver operating curve (ROC) analysis showed ECA-binding ability yielding a sensitivity of 85% and specificity of 75%, and a combination of ECA and AFP has better clinical diagnostic efficiency, yielding a sensitivity of 90% and specificity of 85%, than ECA or AFP assay alone. ECA pull-down followed by mass spectrometry further showed that there was significantly less expression of ECA binding membrane catalase (CAT) and prolyl 4-hydroxylase beta polypeptide (P4HB) in HCC tissues compared with the adjacent non-tumor tissues. The abnormally increased expression of total CAT and P4HB and decreased expression of galactosylated membrane CAT and P4HB in HCC cell lines were correlated with an HCC metastasis status. Our findings suggest that abnormal declined ECA-binding galatosylated membrane glycans and two galactosylated-CAT and P4HB glycoproteins in lesion tissues are potential biomarkers in the diagnosis and/or metastasis prediction for HCC.

10.
Chem Biodivers ; 19(2): e202100602, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34927353

RESUMEN

Here six novel imidazolinone derivatives have been synthesized and the compound 4b containing 5-para-methoxy-phenylidene and 2-thioalkylation terminal substitution with 3'-cyano-2',6'-dimethylphenyl showed the best anti-HCV activity and the lowest cytotoxicity. Selectivity index (SI=CC50 /IC50 ) for the 4b was determined as 36, indicating that compound 4b was highly selective towards HCV.


Asunto(s)
Antivirales , Hepacivirus , Antivirales/farmacología , Relación Estructura-Actividad
11.
J Am Chem Soc ; 143(46): 19317-19329, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34762804

RESUMEN

GFP-like fluorescent proteins and their molecular mimics have revolutionized bioimaging research, but their emissions are largely limited in the visible to far-red region, hampering the in vivo applications in intact animals. Herein, we structurally modulate GFP-like chromophores using a donor-acceptor-acceptor (D-A-A') molecular configuration to discover a set of novel fluorogenic derivatives with infrared-shifted spectra. These chromophores can be fluorescently elicited by their specific interaction with G-quadruplex (G4), a unique noncanonical nucleic acid secondary structure, via inhibition of the chromophores' twisted-intramolecular charge transfer. This feature allows us to create, for the first time, FP mimics with tunable emission in the near-infrared (NIR) region (Emmax = 664-705 nm), namely, infrared G-quadruplex mimics of FPs (igMFP). Compared with their FP counterparts, igMFPs exhibit remarkably higher quantum yields, larger Stokes shift, and better photostability. In a proof-of-concept application using pathogen-related G4s as the target, we exploited igMFPs to directly visualize native hepatitis C virus (HCV) RNA genome in living cells via their in situ formation by the chromophore-bound viral G4 structure in the HCV core gene. Furthermore, igMFPs are capable of high contrast HCV RNA imaging in living mice bearing a HCV RNA-presenting mini-organ, providing the first application of FP mimics in whole-animal imaging.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes/química , Proteínas Luminiscentes/química , Ácidos Nucleicos/química , ARN Viral/análisis , Animales , Línea Celular Tumoral , Colorantes Fluorescentes/síntesis química , Hepacivirus/genética , Humanos , Rayos Infrarrojos , Proteínas Luminiscentes/síntesis química , Ratones , ARN Viral/genética , Espectrometría de Fluorescencia
12.
Adv Exp Med Biol ; 1325: 219-237, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34495538

RESUMEN

Glycosylation plays an important role in infectious diseases. Many important interactions between pathogens and hosts involve their carbohydrate structures (glycans). Glycan interactions can mediate adhesion, recognition, invasion, and immune evasion of pathogens. To date, changes in many protein N/O-linked glycosylation have been identified as biomarkers for the development of infectious diseases and cancers. In this review, we will discuss the principal findings and the roles of glycosylation of both pathogens and host cells in the context of human important infectious diseases. Understanding the role and mechanism of glycan-lectin interaction between pathogens and hosts may create a new paradigm for discovering novel glycan-based therapies that can lead to eradication or functional cure of pathogens infection.


Asunto(s)
Enfermedades Transmisibles , Lectinas , Glicosilación , Humanos , Evasión Inmune , Polisacáridos
13.
Materials (Basel) ; 14(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209082

RESUMEN

Photodynamic therapy (PDT) has been reported as a possible pathway for the treatment of tumors. The exploration for promising PDT systems thus attracts continuous research efforts. This work focused on an ordered core-shell structure encapsulated by mesoporous SiO2 with the upconverting emission property following a surfactant-assisted sol-gel technique. The mesoporous silica shell possessed a high surface area-to-volume ratio and uniform distribution in pore size, favoring photosensitizer (rose bengal) loading. Simultaneously, upconverting nanocrystals were synthesized and used as the core. After modification via hydrophobic silica, the hydrophobic upconverting nanocrystals became hydrophilic ones. Under near-infrared (NIR) light irradiation, the nanomaterials exhibited strong green upconverting luminescence so that rose bengal could be excited to produce singlet oxygen. The photodynamic therapy (PDT) feature was evaluated using a 1O2 fluorescent indicator. It was found that this core-shell structure generates 1O2 efficiently. The novelty of this core-shell structure was the combination of upconverting nanocrystals with a mesoporous SiO2 shell so that photosensitizer rose bengal could be effectively adsorbed in the SiO2 shell and then excited by the upconverting core.

14.
Front Cell Infect Microbiol ; 11: 634915, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33791241

RESUMEN

Tuberculosis (TB) is the leading infectious cause of mortality worldwide. However, the diagnosis of TB, especially extrapulmonary TB (EPTB) diagnosis from lesion tissues, remains a challenge. Nucleic acid aptamers are analogous to antibodies and have advantages of easier modification, high specificity, and affinity. Mannose-capped lipoarabinomannan (ManLAM) is a unique surface lipoglycan component or constantly released from mycobacterium tuberculosis (M.tb) cell wall, which makes it a perfect candidate biomarker for TB diagnosis. Our present study aims to establish M.tb ManLAM aptamer-based immunohistochemistry (IHC) method for TB diagnosis. We performed TB diagnosis using 263 formalin-fixed paraffin-embedded tissue samples including 213 TB samples (pulmonary TB (PTB) and EPTB), and 8 samples from latent TB infection (LTBI) high risk subjects, and 42 samples from other non-TB patients with ManLAM aptamer-based IHC and routine laboratory TB diagnostic methods parallelly. The sensitivity and specificity of the ManLAM aptamer-based IHC were 86.38% and 92.86%, with much higher sensitivity than those of mycobacterial culture (9.66%) and acid-fast staining (AFS) (43.01%) and comparability to Interferon-gamma Release Assay (IGRA) (84.38%) and GeneXpert (79.31%). High agreement between ManLAM based-IHC and IGRA or GeneXpert for TB diagnosis were observed. Furthermore, ManLAM aptamer-based IHC combination with other routine TB laboratory diagnostic methods significantly increased the sensitivity up to 88.64%-97.92%. As our knowledge, this is the first report about aptamer-based IHC for disease diagnosis. Thus, ManLAM aptamer-based IHC has potentials for TB diagnosis, including PTB, and EPTB, and assists the diagnosis of LTBI with high effectiveness, feasibility, and easy production.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Humanos , Lipopolisacáridos , Manosa , Sensibilidad y Especificidad
15.
Cell Microbiol ; 23(3): e13290, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33217152

RESUMEN

Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is the leading infectious cause of mortality worldwide. One of the key reasons for M. tb pathogenesis is the capability of M. tb to evade immune elimination and survive in macrophage, eventually causing chronic infection. However the pathogenicity mechanism of M. tb is not unclear yet, and thus diagnosis and therapy for TB remains a challenge. The genome of M. tb, encodes a unique protein family known as the PGRS family, with largely unexplored functions. Recently, an increasing number of reports have shown that the PE_PGRS proteins play critical roles in bacterial pathogenesis and immune evasion. The PE_PGRS protein family, characterized by a special N-terminal PE (Pro (P)-Glu (E) motif) domain and a C-terminal PGRS (Polymorphic GC-rich Repetitive Sequences) domain, is restricted mainly to pathogenic mycobacteria. Here we summarize current literature on the PE_PGRS as vital proteins in promoting bacterial survival and modulating host immunity, cell death and metabolism. We also highlight the potential of PE_PGRS as novel targets of anti-mycobacterial interventions for TB control.


Asunto(s)
Antígenos Bacterianos , Proteínas Bacterianas , Proteínas de la Membrana , Mycobacterium tuberculosis/fisiología , Tuberculosis/microbiología , Animales , Presentación de Antígeno , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Autofagia , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Muerte Celular , Interacciones Huésped-Patógeno , Humanos , Evasión Inmune , Metabolismo de los Lípidos , Lisosomas/fisiología , Macrófagos/microbiología , Macrófagos/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/patogenicidad , Tuberculosis/diagnóstico , Tuberculosis/inmunología , Tuberculosis/prevención & control , Vacunas contra la Tuberculosis
16.
Sci Adv ; 6(43)2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33097533

RESUMEN

Pyroptosis, an inflammatory form of programmed cell death, has been implicated in eliminating pathogenic infections. However, macrophage pyroptosis-related proteins from Mycobacterium tuberculosis (M.tb) have largely gone unexplored. Here, we identified a cell pyroptosis-inducing protein, Rv1579c, named EST12, secreted from the M.tb H37Rv region of difference 3. EST12 binds to the receptor for activated C kinase 1 (RACK1) in macrophages, and the EST12-RACK1 complex recruits the deubiquitinase UCHL5 to promote the K48-linked deubiquitination of NLRP3, subsequently leading to an NLRP3 inflammasome caspase-1/11-pyroptosis gasdermin D-interleukin-1ß immune process. Analysis of the crystal structure of EST12 reveals that the amino acid Y80 acts as a critical binding site for RACK1. An EST12-deficient strain (H37RvΔEST12) displayed higher susceptibility to M.tb infection in vitro and in vivo. These results provide the first proof that RACK1 acts as an endogenous host sensor for pathogens and that EST12-RACK1-induced pyroptosis plays a pivotal role in M.tb-induced immunity.

17.
ACS Chem Biol ; 15(6): 1554-1565, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32401486

RESUMEN

The development of a tumor-targeted immunotherapy is highly required. The most advanced application is the use of CD19 chimeric antigen receptor (CAR)T (CAR-T) cells to B cell malignancies, but there are still side effects including potential carcinogenicity of lentiviral or retroviral insertion into the host cell genome. Here, we developed a nonviral aptamer-T cell targeted strategy for tumor therapy. Tumor cells surface-specific ssDNA aptamers were conjugated to CD3+T cells (aptamer-T cells) using N-azidomannosamine (ManNAz) sugar metabolic cell labeling and click chemistry. We found that the aptamer-T cells could specifically target and bind to tumor cells (such as SGC-7901 gastric cancer cell and CT26 colon carcinoma cell) in vitro and in mice after adoptively transfer in. Aptamer-T cells led to significant regression in tumor volume due to being enriched at tumor microenvironment and producing strong cytotoxicity activities of CD3+T cells with enhanced perforin, granzyme B, CD107a, CD69, and FasL expression. Moreover, aptamer-T displayed even stronger antitumor effects than an anti-PD1 immune-checkpoint monoclonal antibody (mAb) treatment in mice and combination with anti-PD1 yielded synergic antitumor effects. This study uncovers the strong potential of the adoptive nonviral aptamer-T cell strategy as a feasible and efficacious approach for tumor-targeted immunotherapy application.


Asunto(s)
Aptámeros de Nucleótidos/química , Metabolismo de los Hidratos de Carbono , Química Clic , Neoplasias/terapia , Azúcares/química , Linfocitos T/metabolismo , Animales , Antígenos CD19/inmunología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Neoplasias/inmunología , Neoplasias/metabolismo , Linfocitos T/inmunología , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Front Microbiol ; 11: 845, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457723

RESUMEN

Mycobacterium tuberculosis (M. tb) evades the surveillance of immune responses for survival in macrophages. However, the precise mechanism and toxins/proteins encoded by M. tb involved in the bacterial escape remain elusive. The function of Rv1768 protein (also referred to as PE_PGRS31, belonging to the PE_PGRS family) encoded by the region of deletion 14 (RD-14) in the virulent M. tb H37Rv strain has not, to the best of our knowledge, been reported previously. Here, we found that Rv1768 remarkably promotes bacterial survival in macrophages. Compared to wild type (WT) H37Rv, the Rv1768 deficient strain (H37RvΔ1768) showed significantly decreased colony-forming units in the lungs, spleen, and liver of the murine M. tb infection model. The bacterial burdens of WT H37Rv in WT macrophages and C57BL/6 mice were significantly higher than those in S100A9 deficiency cells and mice, but there were no significant differences for H37RvΔRv1768. Rv1768 binds S100A9 with the proline-glutamic acid domain (PE domain) and blocks the interaction between S100A9 and Toll-like receptor 4 (TLR4), and suppresses TLR4-myeloid differentiation factor 88-nuclear factor-kappa B (NF-κB)-tumor necrosis factor α (TNF-α) signaling in macrophages. Interestingly, Rv1768 binding to S100A9 also disturbs the metabolism of arachidonic acid by activating 5-lipoxygenase, increasing lipotoxin A4, and down-regulating cyclooxygenase-2 and prostaglandin E2 expression, thus, promoting mycobacterial survival. Our results revealed that M. tb Rv1768 promotes mycobacterial survival in macrophages by regulating NF-κB-TNF-α signaling and arachidonic acid metabolism via S100A9. Disturbing the interaction between Rv1768 and S100A9 may be a potential therapeutic target for tuberculosis.

20.
Eur J Immunol ; 50(9): 1350-1361, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32339264

RESUMEN

Chronic HCV infection can lead to cirrhosis and is associated with increased mortality. Interleukin (IL)-10-producing B cells (B10 cells) are regulatory cells that suppress cellular immune responses. Here, we aimed to determine whether HCV induces B10 cells and assess the roles of the B10 cells during HCV infection. HCV-induced B10 cells were enriched in CD19hi and CD1dhi CD5+ cell populations. HCV predominantly triggered the TLR2-MyD88-NF-κB and AP-1 signaling pathways to drive IL-10 production by B cells. In a humanized murine model of persistent HCV infection, to neutralize IL-10 produced by B10 cells, mice were treated with pcCD19scFv-IL-10R, which contains the genes coding the anti-CD19 single-chain variable fragment (CD19scFv) and the extracellular domain of IL-10 receptor alpha chain (sIL-10Ra). This treatment resulted in significant reduction of B10 cells in spleen and liver, increase of cytotoxic CD8+ T-cell responses against HCV, and low viral loads in infected humanized mice. Our results indicate that targeting B10 cells via neutralization of IL-10 may offer a novel strategy to enhance anti-HCV immunotherapy.


Asunto(s)
Linfocitos B Reguladores/inmunología , Hepatitis C Crónica/inmunología , Interleucina-10/antagonistas & inhibidores , Interleucina-10/inmunología , Animales , Hepacivirus/inmunología , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...