Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharmacol Exp Ther ; 370(2): 219-230, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31189728

RESUMEN

Facioscapulohumeral muscular dystrophy (FSHD) is characterized by misexpression of the double homeobox 4 (DUX4) developmental transcription factor in mature skeletal muscle, where it is responsible for muscle degeneration. Preventing expression of DUX4 mRNA is a disease-modifying therapeutic strategy with the potential to halt or reverse the course of disease. We previously reported that agonists of the ß-2 adrenergic receptor suppress DUX4 expression by activating adenylate cyclase to increase cAMP levels. Efforts to further explore this signaling pathway led to the identification of p38 mitogen-activated protein kinase as a major regulator of DUX4 expression. In vitro experiments demonstrate that clinically advanced p38 inhibitors suppress DUX4 expression in FSHD type 1 and 2 myoblasts and differentiating myocytes in vitro with exquisite potency. Individual small interfering RNA-mediated knockdown of either p38α or p38ß suppresses DUX4 expression, demonstrating that each kinase isoform plays a distinct requisite role in activating DUX4 Finally, p38 inhibitors effectively suppress DUX4 expression in a mouse xenograft model of human FSHD gene regulation. These data support the repurposing of existing clinical p38 inhibitors as potential therapeutics for FSHD. The surprise finding that p38α and p38ß isoforms each independently contribute to DUX4 expression offers a unique opportunity to explore the utility of p38 isoform-selective inhibitors to balance efficacy and safety in skeletal muscle. We propose p38 inhibition as a disease-modifying therapeutic strategy for FSHD. SIGNIFICANCE STATEMENT: Facioscapulohumeral muscular dystrophy (FSHD) currently has no treatment options. This work provides evidence that repurposing a clinically advanced p38 inhibitor may provide the first disease-modifying drug for FSHD by suppressing toxic DUX4 expression, the root cause of muscle degeneration in this disease.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Animales , Línea Celular , Modelos Animales de Enfermedad , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Distrofia Muscular Facioescapulohumeral/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico
2.
Skelet Muscle ; 7(1): 16, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28870238

RESUMEN

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is a progressive muscle disease caused by mutations that lead to epigenetic derepression and inappropriate transcription of the double homeobox 4 (DUX4) gene in skeletal muscle. Drugs that enhance the repression of DUX4 and prevent its expression in skeletal muscle cells therefore represent candidate therapies for FSHD. METHODS: We screened an aggregated chemical library enriched for compounds with epigenetic activities and the Pharmakon 1600 library composed of compounds that have reached clinical testing to identify molecules that decrease DUX4 expression as monitored by the levels of DUX4 target genes in FSHD patient-derived skeletal muscle cell cultures. RESULTS: Our screens identified several classes of molecules that include inhibitors of the bromodomain and extra-terminal (BET) family of proteins and agonists of the beta-2 adrenergic receptor. Further studies showed that compounds from these two classes suppress the expression of DUX4 messenger RNA (mRNA) by blocking the activity of bromodomain-containing protein 4 (BRD4) or by increasing cyclic adenosine monophosphate (cAMP) levels, respectively. CONCLUSIONS: These data uncover pathways involved in the regulation of DUX4 expression in somatic cells, provide potential candidate classes of compounds for FSHD therapeutic development, and create an important opportunity for mechanistic studies that may uncover additional therapeutic targets.


Asunto(s)
Agonistas de Receptores Adrenérgicos beta 2/farmacología , Proteínas de Homeodominio/metabolismo , Distrofia Muscular Facioescapulohumeral/metabolismo , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , AMP Cíclico/metabolismo , Ensayos Analíticos de Alto Rendimiento , Proteínas de Homeodominio/genética , Humanos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo
3.
Nat Genet ; 49(6): 935-940, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28459454

RESUMEN

Facioscapulohumeral dystrophy (FSHD; MIM158900, MIM158901) is caused by misexpression of the DUX4 transcription factor in skeletal muscle. Animal models of FSHD are hindered by incomplete knowledge regarding the conservation of the DUX4 transcriptional program in other species. Despite the divergence of their binding motifs, both mouse DUX and human DUX4 in mouse and human muscle cells, respectively, activate genes associated with cleavage-stage embryos, including MERVL and ERVL-MaLR retrotransposons. We found that human DUX4 expressed in mouse cells maintained modest activation of cleavage-stage genes driven by conventional promoters but did not activate MERVL-promoted genes. Thus, the ancestral DUX4-regulated genes are characteristic of cleavage-stage embryos and are driven by conventional promoters, whereas divergence of the DUX4 and DUX homeodomains correlates with retrotransposon specificity. These results provide insight into how species balance conservation of a core transcriptional program with innovation at retrotransposon promoters, and establish a basis for animal models recreating the FSHD transcriptome.


Asunto(s)
Redes Reguladoras de Genes , Proteínas de Homeodominio/genética , Animales , Sitios de Unión , Células Cultivadas , Perros , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Ratones Transgénicos , Distrofia Muscular Facioescapulohumeral/genética , Mioblastos/citología , Mioblastos/fisiología , Retroelementos , Sitio de Iniciación de la Transcripción
4.
PLoS Genet ; 13(3): e1006658, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28273136

RESUMEN

Facioscapulohumeral dystrophy (FSHD) is caused by the mis-expression of DUX4 in skeletal muscle cells. DUX4 is a transcription factor that activates genes normally associated with stem cell biology and its mis-expression in FSHD cells results in apoptosis. To identify genes and pathways necessary for DUX4-mediated apoptosis, we performed an siRNA screen in an RD rhabdomyosarcoma cell line with an inducible DUX4 transgene. Our screen identified components of the MYC-mediated apoptotic pathway and the double-stranded RNA (dsRNA) innate immune response pathway as mediators of DUX4-induced apoptosis. Further investigation revealed that DUX4 expression led to increased MYC mRNA, accumulation of nuclear dsRNA foci, and activation of the dsRNA response pathway in both RD cells and human myoblasts. Nuclear dsRNA foci were associated with aggregation of the exon junction complex component EIF4A3. The elevation of MYC mRNA, dsRNA accumulation, and EIF4A3 nuclear aggregates in FSHD muscle cells suggest that these processes might contribute to FSHD pathophysiology.


Asunto(s)
Apoptosis , Proteínas de Homeodominio/genética , Distrofia Muscular Facioescapulohumeral/genética , Distrofia Muscular Facioescapulohumeral/patología , Proteínas Proto-Oncogénicas c-myc/genética , ARN Bicatenario/genética , Rabdomiosarcoma/genética , Caspasas/metabolismo , Muerte Celular , Línea Celular , Supervivencia Celular , ARN Helicasas DEAD-box/genética , Factor 4A Eucariótico de Iniciación/genética , Exones , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Mutación , Mioblastos/metabolismo , ARN Bicatenario/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/genética
5.
Dev Cell ; 36(4): 375-85, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26906734

RESUMEN

Most transcription factor families contain highly related paralogs generated by gene duplication, and functional divergence is generally accomplished by activation of distinct sets of genes by each member. Here we compare the molecular functions of Myf5 and MyoD, two highly related bHLH transcription factors that regulate skeletal muscle specification and differentiation. We find that MyoD and Myf5 bind the same sites genome-wide but have distinct functions: Myf5 induces histone acetylation without Pol II recruitment or robust gene activation, whereas MyoD induces histone acetylation, recruits Pol II, and robustly activates gene transcription. Therefore, the initial specification of the muscle lineage by Myf5 occurs without significant induction of gene transcription. Transcription of the skeletal muscle program is then achieved by the subsequent expression of MyoD, which binds to the same sites as Myf5, indicating that each factor regulates distinct steps in gene initiation and transcription at a shared set of binding sites.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica/fisiología , Ratones , Proteínas Musculares/metabolismo , Activación Transcripcional/fisiología
6.
Cell Rep ; 10(12): 1937-46, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25801030

RESUMEN

MyoD and NeuroD2, master regulators of myogenesis and neurogenesis, bind to a "shared" E-box sequence (CAGCTG) and a "private" sequence (CAGGTG or CAGATG, respectively). To determine whether private-site recognition is sufficient to confer lineage specification, we generated a MyoD mutant with the DNA-binding specificity of NeuroD2. This chimeric mutant gained binding to NeuroD2 private sites but maintained binding to a subset of MyoD-specific sites, activating part of both the muscle and neuronal programs. Sequence analysis revealed an enrichment for PBX/MEIS motifs at the subset of MyoD-specific sites bound by the chimera, and point mutations that prevent MyoD interaction with PBX/MEIS converted the chimera to a pure neurogenic factor. Therefore, redirecting MyoD binding from MyoD private sites to NeuroD2 private sites, despite preserved binding to the MyoD/NeuroD2 shared sites, is sufficient to change MyoD from a master regulator of myogenesis to a master regulator of neurogenesis.


Asunto(s)
Diferenciación Celular/genética , Elementos E-Box/genética , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Neuronas/citología , Neuronas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Ratones , Proteína MioD/química , Proteína MioD/genética
7.
Dev Cell ; 22(4): 721-35, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22445365

RESUMEN

The regulatory networks of differentiation programs have been partly characterized; however, the molecular mechanisms of lineage-specific gene regulation by highly similar transcription factors remain largely unknown. Here we compare the genome-wide binding and transcription profiles of NEUROD2-mediated neurogenesis with MYOD-mediated myogenesis. We demonstrate that NEUROD2 and MYOD bind a shared CAGCTG E box motif and E box motifs specific for each factor: CAGGTG for MYOD and CAGATG for NEUROD2. Binding at factor-specific motifs is associated with gene transcription, whereas binding at shared sites is associated with regional epigenetic modifications but is not as strongly associated with gene transcription. Binding is largely constrained to E boxes preset in an accessible chromatin context that determines the set of target genes activated in each cell type. These findings demonstrate that the differentiation program is genetically determined by E box sequence, whereas cell lineage epigenetically determines the availability of E boxes for each differentiation program.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Epigenómica , Regulación de la Expresión Génica , Desarrollo de Músculos/fisiología , Proteína MioD/genética , Proteína MioD/metabolismo , Neurogénesis/fisiología , Neuropéptidos/genética , Neuropéptidos/metabolismo , Acetilación , Animales , Sitios de Unión , Biomarcadores/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Cromatina/genética , Inmunoprecipitación de Cromatina , Elementos E-Box , Ensayo de Cambio de Movilidad Electroforética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Histonas/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas/genética , Transactivadores , Transcripción Genética , Activación Transcripcional
8.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 9): o2220, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22058901

RESUMEN

In the title fluorinated pyrrolidine derivative, C(10)H(10)F(4)N(2), the dihedral angle between the best planes of the benzene and pyrrolidine rings is 62.6 (1)°. The crystal packing features inter-molecular N-H⋯F hydrogen bonds.

9.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 9): o2399, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22065017

RESUMEN

The asymmetric unit of the title compound, C(14)H(12)F(8)N(2), contains one tetra-fluoro-pyrrolidine system and one half-mol-ecule of benzene; the latter, together with a second heterocyclic unit, are completed by symmetry, with a twofold crystallographic axis crossing through both the middle of the bond between the C atoms bearing the heterocyclic rings and the opposite C-C bonds of the whole benzene mol-ecule. The pyrrolidine ring shows an envelope conformation with the apex at the N atom. The dihedral angle between the least-squares plane of this ring and the benzene ring is 36.9 (5)°. There are intra-molecular C-H⋯N inter-actions generating S(6) ring motifs. In the crystal structure, the mol-ecules are linked by C-H⋯F inter-actions, forming chains parallel to [010].

10.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 5): o1137, 2010 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-21579185

RESUMEN

In the title compound, C(11)H(8)F(4)O(3), the eight-membered dialk-oxy ring adopts a highly puckered conformation. In the crystal, mol-ecules are linked by weak C-H⋯O inter-actions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...