Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Mol Metab ; 89: 102024, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236784

RESUMEN

OBJECTIVE: Glucagon has long been proposed as a component of multi-agonist obesity therapeutics due to its ability to induce energy expenditure and cause weight loss. However, chronic glucagon-receptor agonism has been associated with a reduction in circulating amino acids and loss of lean mass. Importantly, it is currently not known whether the metabolic benefits of glucagon can be maintained under contexts that allow the defence of lean mass. METHODS: We investigate the metabolic effects of the long-acting glucagon receptor agonist, G108, when administered to obese mice at low-doses, and with dietary protein supplementation. RESULTS: Dietary protein supplementation can only fully defend lean mass at a low dose of G108 that is sub-anorectic and does not reduce fat mass. However, in this context, G108 is still highly effective at improving glucose tolerance and reducing liver fat in obese mice. Mechanistically, liver RNA-Seq analysis reveals that dietary protein supplementation defends anabolic processes in low-dose G108-treated mice, and its effects on treatment-relevant glucose and lipid pathways are preserved. CONCLUSION: Glucagon-mediated energy expenditure and weight loss may be mechanistically coupled to hypoaminocidemia and lean mass loss. However, our data suggest that glucagon can treat MAFLD at doses which allow full defence of lean mass given sufficient dietary protein intake. Therefore, proportionate glucagon therapy may be safe and effective in targeting hepatocytes and improving in glycaemia and liver fat.

2.
medRxiv ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39228743

RESUMEN

Genomic epidemiology offers important insight into the transmission and evolution of respiratory viruses. We used metagenomic sequencing from negative SARS-CoV-2 antigen tests to identify a wide range of respiratory viruses and generate full genome sequences, offering a streamlined mechanism for broad respiratory virus genomic surveillance.

3.
Respir Med ; 233: 107774, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39168392

RESUMEN

BACKGROUND: To describe the nutritional status of IPF patients, report clinical associations and evaluate the prognostic value of them in IPF. METHODS: 264 IPF patients diagnosed with IPF at the Second Xiangya Hospital of Central South University between January 2011 and January 2021 were recruited. Three different scoring systems, including nutritional risk index (NRI), controlling nutritional status (CONUT) score, and prognostic nutritional index (PNI) were used to describe the nutritional status of IPF patients. RESULT: This study investigated the prevalence of malnutrition in 264 IPF patients, of which the percentage with malnutrition varied from 37.5 % with the NRI, to 47.4 % with the CONUT score, and to 6.4 % with the PNI. The moderate to severe malnutrition ranged from 10.2 % to 31.1 % across these indices, with PNI identifying only 4.9 % in this category. Worsening malnutrition status was associated with significantly higher incidence of all-cause mortality and IPF death regard of the malnutrition index as NRI (p < 0.05). When the normal nutrition of NRI was used as a reference, patients in the moderate to severe risk remained at a higher risk of all-cause death (HR = 2.06(1.25-3.41)) and IPF death(HR = 2.36(1.35-4.15)). The adjusted multivariate analysis, identified age(HR = 1.13(1.08-1.20)), DLCO <60, % predicted (HR = 3.31(1,24-9.42)) and the use of anti-fibrotic drugs (HR = 0.25(0.10-0.60)) as independent predictors of mortality. CONCLUSIONS: Malnutrition is common among patients with IPF and the baseline as diagnosis of IPF is strongly related to increased mortality.


Asunto(s)
Fibrosis Pulmonar Idiopática , Desnutrición , Evaluación Nutricional , Estado Nutricional , Humanos , Desnutrición/epidemiología , Desnutrición/diagnóstico , Fibrosis Pulmonar Idiopática/complicaciones , Fibrosis Pulmonar Idiopática/mortalidad , Fibrosis Pulmonar Idiopática/epidemiología , Pronóstico , Prevalencia , Femenino , Masculino , Anciano , Persona de Mediana Edad , Índice de Severidad de la Enfermedad
4.
Stem Cell Res ; 80: 103506, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094506

RESUMEN

The APOE 4 allele remains the primary genetic risk factor for sporadic Alzheimer's disease, whereas the APOE 2 allele emerges as a protective factor. Therapeutic approaches in murine models with human APOE alleles, such as modulating APOE levels and converting isoforms, show efficacy. However, there is a lack of in vitro APOE2-mutant human neuronal models. Hence, in this study, we generated human induced pluripotent stem cells (hiPSCs) from the peripheral blood mononuclear blood cells (PMBC) of a 42-year-old female donor carrying the APOE-ε2/ε2 allele. The newly generated hiPSC displayed normal karyotype and could differentiate into three germ layers. Besides, they retained their original genotype and expressed pluripotency markers.


Asunto(s)
Alelos , Células Madre Pluripotentes Inducidas , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Adulto , Diferenciación Celular , Línea Celular , Apolipoproteína E2/genética , Leucocitos Mononucleares/metabolismo , Donantes de Tejidos
5.
Nanomicro Lett ; 16(1): 256, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073674

RESUMEN

Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks. Most of the current rescue robots lack the ability to interact with environments, leading to low rescue efficiency. The multimodal electronic skin (e-skin) proposed not only reproduces the pressure, temperature, and humidity sensing capabilities of natural skin but also develops sensing functions beyond it-perceiving object proximity and NO2 gas. Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin. Rescue robots integrated with multimodal e-skin and artificial intelligence (AI) algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping, laying the foundation for automated post-earthquake rescue. Besides, the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time, thereby adopting appropriate measures to protect trapped people from the toxic environment. Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities, which, as an interface for interaction with the physical world, dramatically expands intelligent robots' application scenarios.

6.
Nat Commun ; 15(1): 5521, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951553

RESUMEN

The microgeometry of the cellular microenvironment profoundly impacts cellular behaviors, yet the link between it and the ubiquitously expressed mechanosensitive ion channel PIEZO1 remains unclear. Herein, we describe a fluorescent micropipette aspiration assay that allows for simultaneous visualization of intracellular calcium dynamics and cytoskeletal architecture in real-time, under varied micropipette geometries. By integrating elastic shell finite element analysis with fluorescent lifetime imaging microscopy and employing PIEZO1-specific transgenic red blood cells and HEK cell lines, we demonstrate a direct correlation between the microscale geometry of aspiration and PIEZO1-mediated calcium signaling. We reveal that increased micropipette tip angles and physical constrictions lead to a significant reorganization of F-actin, accumulation at the aspirated cell neck, and subsequently amplify the tension stress at the dome of the cell to induce more PIEZO1's activity. Disruption of the F-actin network or inhibition of its mobility leads to a notable decline in PIEZO1 mediated calcium influx, underscoring its critical role in cellular mechanosensing amidst geometrical constraints.


Asunto(s)
Actinas , Calcio , Citoesqueleto , Canales Iónicos , Mecanotransducción Celular , Humanos , Canales Iónicos/metabolismo , Actinas/metabolismo , Células HEK293 , Citoesqueleto/metabolismo , Calcio/metabolismo , Señalización del Calcio/fisiología , Análisis de Elementos Finitos , Animales , Microscopía Fluorescente/métodos
7.
Cardiovasc Diabetol ; 23(1): 213, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902757

RESUMEN

BACKGROUND: The triglyceride glucose (TyG) index, TyG-body mass index (TyG-BMI), and triglyceride-density lipoprotein cholesterol ratio (TG/HDL-C) are substitute indicators for insulin resistance (IR). This study aimed to compare the predictive value of these indicators for 5-year mortality in critically ill patients with chronic heart failure (CHF). METHODS: Critically ill patients with CHF were identified from the Multiparameter Intelligent Monitoring in Intensive Care (MIMIC) III and IV databases. The primary outcome was 5-year mortality. The relationship between the three indices and mortality risk was determined using multivariate Cox proportional hazards models, Kaplan-Meier (K‒M) analysis and restricted cubic splines analysis. A receiver operating characteristic (ROC) curve was generated to compare the ability of the three indices to predict mortality. Finally, whether the IR indices would further increase the predictive ability of the basic model including baseline variables with a significance level between survivors and non-survivors was evaluated by ROC curve. RESULTS: Altogether, 1329 patients with CHF were identified from the databases. Cox proportional hazards models indicated that the TyG index was independently associated with an elevated risk of 5-year mortality (hazard ratio [HR], 1.56; 95% confidence interval [CI] 1.29-1.9), while the TyG-BMI index and TG/HDL-C level were significantly associated with 5-year mortality, with an HR (95% CI) of 1.002 (1.000-1.003) and 1.01 (1.00-1.03), respectively. The K-M analysis revealed that the cumulative incidence of all-cause 5-year death increased with increasing quartiles of the TyG index, TyG-BMI index, or TG/HDL-C ratio. According to the ROC curve, the TyG index outperformed the TyG-BMI and TG/HDL-C ratio at predicting all-cause 5-year mortality (0.608 [0.571-0.645] vs. 0.558 [0.522-0.594] vs. 0.561 [0.524-0.598]). The effect of the TyG index on all-cause mortality was consistent across subgroups, with no significant interaction with randomized factors. Furthermore, adding the TyG index to the basic model for 5-year mortality improved its predictive ability (area under the curve, 0.762 for the basic model vs. 0.769 for the basic model + TyG index); however, the difference was not statistically significant. CONCLUSION: As continuous variables, all three indices were significantly associated with 5-year mortality risk in critically ill patients with CHF. Although these IR indices did not improve the predictive power of the basic model in patients with CHF, the TyG index appears to be the most promising index (vs. TyG-BMI and TG/HDL-C ratio) for prevention and risk stratification in critically ill patients with CHF.


Asunto(s)
Biomarcadores , Glucemia , Índice de Masa Corporal , HDL-Colesterol , Enfermedad Crítica , Insuficiencia Cardíaca , Valor Predictivo de las Pruebas , Triglicéridos , Humanos , Insuficiencia Cardíaca/mortalidad , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/diagnóstico , Masculino , Femenino , Enfermedad Crítica/mortalidad , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Medición de Riesgo , Triglicéridos/sangre , Biomarcadores/sangre , Factores de Riesgo , Factores de Tiempo , HDL-Colesterol/sangre , Enfermedad Crónica , Pronóstico , Glucemia/metabolismo , Glucemia/análisis , Bases de Datos Factuales , Resistencia a la Insulina , Anciano de 80 o más Años
8.
Tob Induc Dis ; 222024.
Artículo en Inglés | MEDLINE | ID: mdl-38707515

RESUMEN

INTRODUCTION: Cigarette smoking is one of the most important causes of COPD and could induce the apoptosis of pulmonary microvascular endothelial cells (PMVECs). The conditional knockout of LRG1 from endothelial cells reduced emphysema in mice. However, the mechanism of the deletion of LRG1 from endothelial cells rescued by cigarette smoke (CS) induced emphysema remains unclear. This research aimed to demonstrate whether LRG1 promotes the apoptosis of PMVECs through KLK10 in COPD. METHODS: Nineteen patients were divided into three groups: control non-COPD (n=7), smoker non-COPD (n=7), and COPD (n=5). The emphysema mouse model defined as the CS exposure group was induced by CS exposure plus cigarette smoke extract (CSE) intraperitoneal injection for 28 days. Primary PMVECs were isolated from the mouse by magnetic bead sorting method via CD31-Dynabeads. Apoptosis was detected by western blot and flow cytometry. RESULTS: LRG1 was increased in lung tissue of COPD patients and CS exposure mice, and CSE-induced PMVECs apoptosis model. KLK10 was over-expressed in lung tissue of COPD patients and CS exposure mice, and CSE-induced PMVECs apoptosis model. LRG1 promoted apoptosis in PMVECs. LRG1 knockdown reversed CSE-induced apoptosis in PMVECs. The mRNA and protein expression of KLK10 were increased after over-expressed LRG1 in PMVECs isolated from mice. Similarly, both the mRNA and protein levels of KLK10 were decreased after LRG1 knockdown in PMVECs. The result of co-immunoprecipitation revealed a protein-protein interaction between LRG1 and KLK10 in PMVECs. KLK10 promoted apoptosis via the down-regulation of Bcl-2/Bax in PMVECs. KLK10 knockdown could reverse CSE-induced apoptosis in PMVECs. CONCLUSIONS: LRG1 promotes apoptosis via up-regulation of KLK10 in PMVECs isolated from mice. KLK10 promotes apoptosis via the down-regulation of Bcl-2/Bax in PMVECs. There was a direct protein-protein interaction between LRG1 and KLK10 in PMVECs. Our novel findings provide insights into the understanding of LRG1/KLK10 function as a potential molecule in COPD.

9.
Nature ; 628(8009): 910-918, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570680

RESUMEN

OSCA/TMEM63 channels are the largest known family of mechanosensitive channels1-3, playing critical roles in plant4-7 and mammalian8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.


Asunto(s)
Canales de Calcio , Microscopía por Crioelectrón , Activación del Canal Iónico , Mecanotransducción Celular , Humanos , Anoctaminas/química , Anoctaminas/metabolismo , Canales de Calcio/química , Canales de Calcio/metabolismo , Canales de Calcio/ultraestructura , Lípidos/química , Liposomas/metabolismo , Liposomas/química , Modelos Moleculares , Nanoestructuras/química
10.
J Glob Health ; 14: 04049, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38385363

RESUMEN

Background: Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. There is no nomogram model available for mortality prediction of stable COPD. We intended to develop and validate a nomogram model to predict mortality risk in stable COPD patients for personalised prognostic assessment. Methods: A prospective observational study was made of COPD outpatients registered in the RealDTC study between December 2016 and December 2019. Patients were randomly assigned to the training cohort and validation cohort in a ratio of 7:3. We used Lasso regression to screen predicted variables. Further, we evaluated the prognostic performance using the area under the time-dependent receiver operating characteristic curve (AUC) and calibration curve. We used the AUC, concordance index, and decision curve analysis to evaluate the net benefits and utility of the nomogram compared with three earlier prediction models. Results: Of 2499 patients, the median follow-up was 38 months. The characteristics of the patients between the training cohort (n = 1743) and the validation cohort (n = 756) were similar. ABEODS nomogram model, combining age, body mass index, educational level, airflow obstruction, dyspnoea, and severe exacerbation in the first year, was constructed to predict mortality in stable COPD patients. In the integrative analysis of training and validation cohorts of the nomogram model, the three-year mortality prediction achieved AUC = 0.84; 95% confidence interval (CI) = 0.81, 0.88 and AUC = 0.80; 95% CI = 0.74, 0.86, respectively. The ABEODS nomogram model preserved excellent calibration in both the training cohort and validation cohort. The time-dependent AUC, concordance index, and net benefit of the nomogram model were higher than those of BODEx, updated ADO, and DOSE, respectively. Conclusions: We developed and validated a prognostic nomogram model that accurately predicts mortality across the COPD severity spectrum. The proposed ABEODS nomogram model performed better than earlier models, including BODEx, updated ADO, and DOSE in Chinese patients with COPD. Registration: ChiCTR-POC-17010431.


Asunto(s)
Nomogramas , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Medición de Riesgo , Estudios Prospectivos , Pulmón
11.
ESC Heart Fail ; 11(3): 1647-1656, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419382

RESUMEN

AIMS: The study aims to provide comprehensive evidence for the selection of agents in type 2 diabetes mellitus (T2DM) patients with cardiovascular risk and summarize the lasted evidence for the cardiovascular effects of sodium glucose cotransporter-2 inhibitor (SGLT2i) in patients with heart failure (HF). METHODS AND RESULTS: Several online databases were searched. All studies that explored the cardiovascular effects of SGLT2i or glucagon-like peptide 1 receptor agonist (GLP1-RA) were screened and reviewed. A total of 38 studies were included. Compared with GLP1-RA, the use of SGLT2i significantly reduced the risk of cardiovascular death [risk ratio (RR) = 0.59; 95% confidence interval (CI), 0.44-0.58], hospitalization of heart failure (HHF) (RR = 0.77; 95% CI, 0.74-0.80), death from any cause (RR = 0.64; 95% CI, 0.60-0.68), and myocardial infarction (MI) (RR = 0.81; 95% CI, 0.76-0.87). However, SGLT2i significantly increased the risk of stroke (RR = 1.10; 95% CI, 1.04-1.17). Compared with the control group, SGLT2i treatment reduced the risk of cardiovascular death by 14% (RR = 0.86; 95% CI, 0.79-0.94), HHF by 25%, and death from any cause by 9% in patients with HF, regardless of diabetes status. CONCLUSIONS: SGLT2i is associated with a lower risk of cardiovascular death, HHF, death from any cause, and MI in patients with T2DM compared with GLP1-RA. In addition, SGLT2i brought more benefits with respect to the effects of cardiovascular death, HHF, and death from any cause in patients with HF, regardless of diabetes status.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Hipoglucemiantes , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/prevención & control , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Salud Global , Resultado del Tratamiento
12.
Heliyon ; 10(2): e24810, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312575

RESUMEN

Background: Lung cancer, a major cause of cancer-related mortality globally, necessitates innovative therapeutic strategies. Ferroptosis, an iron-dependent, non-apoptotic cell death form, has risen as a crucial therapeutic target. This study aims to conduct a comprehensive bibliometric analysis of ferroptosis in lung cancer, highlighting principal research trends, influential publications, and prospective future directions. Methods: This study utilized bibliometric tools such as VOSviewer, CiteSpace, and the R package "bibliometrix" to thoroughly analyze 488 articles on ferroptosis in lung cancer from 2014 to October 2023. Data from the Web of Science Core Collection were analyzed to determine spatial and temporal trends, identify prominent authors and seminal works, and uncover emerging hotspots and frontiers of the field. The literature was segmented into coherent thematic groups through cluster analysis. Results: Our analysis revealed a significant exponential growth in publications from 2019 to 2023, mirroring the increasing interest in this area. Predominantly, the influential research was published in high-impact journals, with Scott J. Dixon's works being the most cited. The study identified four primary research themes: Lung Cancer Specifics; Biomarker Identification and Prognosis; Cellular Death Mechanisms and Metabolic Regulation; and Cancer Stem Cells and Therapeutic Resistance. Recent studies have increasingly focused on areas such as the immune microenvironment and mitochondrial dysfunction. Furthermore, the analysis highlighted the field's global collaborative nature, with significant contributions from China, the USA, and Germany. Conclusion: This extensive bibliometric analysis emphasizes the growing importance of ferroptosis in lung cancer research. The identified themes and emerging topics underline the field's complexity and suggest new research avenues. This study promotes a holistic research approach, advocating for the exploration of innovative ferroptosis-targeting therapies that could revolutionize lung cancer treatment.

13.
Biomed Chromatogr ; 38(4): e5829, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38351664

RESUMEN

The imbalance of steroid hormones is closely related to the occurrence and development of hepatocellular carcinoma (HCC). However, most research has focused on steroid hormone receptors, and reports about the relationship between the serum concentration of cortisol and the development of HCC are rare. The aim of this research was to establish a simple, specific, sensitive and reliable liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) method for the quantitation of cortisol in human serum and to compare the level of cortisol in serum between 221 HCC patients and 183 healthy volunteers. The results showed that the correlation coefficients of the linear regression with a weighing factor of 1/x2 ranged from 0.9933 to 0.9984 over the range of 2-1,000 ng/ml. The inter- and intra-day precision and accuracy were <10%. The matrix effect and recovery of cortisol were 94.9-102.5% and 96.3-99.8%, respectively. The concentration of cortisol in HCC patients was significantly higher than that in healthy volunteers (p < 0.05) and was not affected by sex, age, menopause or α-fetoprotein (AFP) level. The present study reveals that elevated cortisol might promote the progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Femenino , Humanos , Hidrocortisona , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida con Espectrometría de Masas , Esteroides
14.
Plant Physiol Biochem ; 206: 108254, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38056037

RESUMEN

Gibberellins (GAs) play a crucial role in regulating secondary growth in angiosperms, but their effects on the secondary growth of gymnosperms are rarely reported. In this study, we administered exogenous GA3 to two-year-old P. massoniana seedlings, and examined its effects on anatomical structure, physiological and biochemical changes, and gene expression in stems. The results showed that exogenous GA3 could enhance xylem development in P. massoniana by promoting cell division. The content of endogenous hormone (including auxins, brassinosteroids, and gibberellins) were changed and the genes related to phytohormone biosynthesis and signaling pathway, such as GID1, DELLA, TIR1, ARF, SAUR, CPD, BR6ox1, and CYCD3, were differentially expressed under GA3 treatment. Furthermore, GA3 and BR (brassinosteroid) might act synergistically in promoting secondary growth in P. massoniana. Additionally, lignin content was significantly increased after GA3 treatment accompanied by the express of lignin biosynthesis related genes. PmCAD (TRINITY_DN142116_c0_g1), a crucial gene involved in the lignin biosynthesis, was cloned and overexpressed in Nicotiana benthamiana, significantly promoting the xylem development and enhancing stem lignification. It was regarded as a key candidate gene for improving stem growth of P. massoniana. The findings of this study have demonstrated the impact of GA3 treatment on secondary growth of stems in P. massoniana, providing a foundation for understanding the molecular regulatory mechanism of stem secondary growth in Pinaceae seedlings and offering theoretical guidance for cultivating new germplasm with enhanced growth and yield.


Asunto(s)
Giberelinas , Pinus , Giberelinas/farmacología , Giberelinas/metabolismo , Plantones/metabolismo , Lignina/metabolismo , Pinus/genética , Pinus/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Brasinoesteroides/farmacología , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Mol Neurobiol ; 61(7): 4732-4749, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38127186

RESUMEN

C9orf72 genetic mutation is the most common genetic cause of ALS/FTD accompanied by abnormal protein insufficiency. Induced pluripotent stem cell (iPSC)-derived two-dimensional (2D) and three-dimensional (3D) cultures are providing new approaches. Therefore, this study established neuronal cell types and generated spinal cord organoids (SCOs) derived from C9orf72 knockdown human iPSCs to model ALS disease and screen the unrevealed phenotype. Wild-type (WT) iPSC lines from three healthy donor fibroblasts were established, and pluripotency and differentiation ability were identified by RT-PCR, immunofluorescence and flow cytometry. After infection by the lentivirus with C9orf72-targeting shRNA, stable C9-knockdown iPSC colonies were selected and differentiated into astrocytes, motor neurons and SCOs. Finally, we analyzed the extracted RNA-seq data of human C9 mutant/knockout iPSC-derived motor neurons and astrocytes from the GEO database and the inflammatory regulation-related genes in function and pathways. The expression of inflammatory factors was measured by qRT-PCR. The results showed that both WT-iPSCs and edited C9-iPSCs maintained a similar ability to differentiate into the three germ layers, astrocytes and motor neurons, forming SCOs in a 3D culture system. The constructed C9-SCOs have features of spinal cord development and multiple neuronal cell types, including sensory neurons, motor neurons, and other neurons. Based on the bioinformatics analysis, proinflammatory factors were confirmed to be upregulated in C9-iPSC-derived 2D cells and 3D cultured SCOs. The above differentiated models exhibited low C9orf72 expression and the pathological characteristics of ALS, especially neuroinflammation.


Asunto(s)
Esclerosis Amiotrófica Lateral , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Neuronas Motoras , Organoides , Médula Espinal , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Organoides/metabolismo , Organoides/patología , Médula Espinal/patología , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Astrocitos/metabolismo , Astrocitos/patología , Inflamación/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Modelos Biológicos , Neuronas/metabolismo , Neuronas/patología
16.
Tob Induc Dis ; 21: 170, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38111802

RESUMEN

INTRODUCTION: Cigarette smoking may impact the progression of idiopathic pulmonary fibrosis (IPF), and the intensity of smoking presents a dose-response association with IPF. METHODS: We retrospectively analyzed IPF patients diagnosed in our hospital from 2014 to 2018 and performed follow-up to confirm survival status and duration, and determine the effect of smoking on the prognosis of IPF. We retrieved information on IPF from a bioinformatics database to identify the differential expression of lncRNAs and proteins in smokers. Therefore, we explored and verified the mechanism by which cigarette smoke exposure (CSE) regulates LINC00665/XBP-1 involvement in pulmonary fibrosis through cell experiments. We clarified the mechanism between LINC00665 and XBP-1 through cellular and molecular experiments, and verified the inhibitory effect of silencing LINC00665 on pulmonary fibrosis by using a bleomycin (BLM)-induced pulmonary fibrosis model. RESULTS: We found that smokers with IPF had a poor prognosis compared with non-smokers. Both the expression of LINC00665 and XBP-1 in IPF lung tissue and smoker lung tissue were significantly upregulated, moreover, LINC00665 was higher in smoker IPF lung tissue than in smoker healthy people. Exposure to CSE could upregulate LINC00665/XBP-1 in lung fibroblast-to-myofibroblast transition. Cellular and molecular experiments showed that LINC00665 regulates the expression of XBP-1 by targeting miR-214-3p. LINC00665 expression, was significantly upregulated in BLM-induced mouse lung fibrosis tissues, and LINC00665 knockdown inhibited fibrogenesis in BLM-induced lung fibrosis. CONCLUSIONS: Our study found that the high expression of LINC00665 is involved in the pathogenesis of smoker IPF and that CSE may positively regulate LINC00665/XBP-1 to participate in lung fibroblast-to-myofibroblast transition. These findings help elucidate the pathogenesis of smoker IPF and may contribute to the development of new targeted drugs for IPF therapy.

17.
Int J Chron Obstruct Pulmon Dis ; 18: 2341-2352, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908629

RESUMEN

Background: The revised Global Initiative for Chronic Obstructive Lung Disease (GOLD) 2023 group ABE classification has undergone major modifications, which can simplify clinical assessment and optimize treatment recommendations for Chronic Obstructive Pulmonary Disease (COPD). However, the predictive value of the new grouping classification for prognosis is worth further exploration. We aimed to compare the prediction of hospitalization and mortality between this new GOLD group 2023 ABE classification and the earlier 2017 ABCD classification in a Chinese COPD cohort. Methods: Data from 2,499 outpatients with COPD, who first registered in the RealDTC study of Second Xiangya Hospital from December 2016 to December 2019, were collected prospectively and assessed retrospectively. Patients were followed up on all-cause mortality until October 2022 or death. Results: Of the 2,499 patients with COPD, the risk of hospitalization during the first-year follow-up was higher in group E than in groups A and B. The mortality was higher in group E than in groups A and B, and group B was higher than group A. No differences were seen in the area under the curve (AUC) of 2017 vs 2023 GOLD grouping to predict hospitalization. The time-dependent AUC and concordance index for predicting mortality is slightly higher in the GOLD 2017 ABCD than in the 2023 ABE groups. The new GOLD 12-subgroup (1A-4E) classification combining the GOLD 1-4 staging and grouping performed similarly discriminate predictive power for mortality to the GOLD 2017 16-subgroup (A1-4D) classification. Conclusion: The risk of hospitalization during the first-year follow-up was higher in group E than in groups A and B. The all-cause mortality increased gradually from GOLD group A to E. The GOLD 2023 classification based on ABE groups did not predict mortality better than the earlier 2017 ABCD classifications.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/terapia , Estudios Retrospectivos , Estudios Prospectivos , Progresión de la Enfermedad , Hospitalización , Índice de Severidad de la Enfermedad
18.
Tob Induc Dis ; 21: 130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822364

RESUMEN

INTRODUCTION: Abnormal apoptosis of pulmonary microvascular endothelial cells (PMVECs) participates in the pathogenesis of COPD. Studies have shown that microRNAs (miRNAs) contribute to the pathogenesis of pulmonary diseases by regulating cell apoptosis. The present study aimed to investigate the effects of miR-216a in cigarette smoke extract (CSE)-induced apoptosis of PMVECs in COPD and explore the potential mechanisms. METHODS: The emphysema model mice were treated with CSE and CS exposure. The expression of miR-216a and DNA methyltransferase 1 (DNMT1) was assessed in emphysema mice and COPD patients. The miR-216a mimic and Lenti-DNMT1 were transfected into PMVECs to identify the underlying mechanisms. The expression levels of miR-216a and DNMT1 were detected by real-time quantitative polymerase chain reaction (RT-qPCR) or Western blot. Moreover, cell apoptosis was examined by flow cytometry assays. RESULTS: The results show that the expression of miR-216a was decreased, whereas the expression of DNMT1 was increased in the lung tissue of emphysema mice and COPD patients. In addition, the expression of miR-216a was significantly reduced in CSE-treated PMVECs, and the overexpression of miR-216a attenuated CSE-induced PMVEC apoptosis. Furthermore, the expression of DNMT1 was increased in the CSE-induced PMVECs and then was reduced after the overexpression of miR-216a in the CSE-stimulated PMVECs. Luciferase reporter assays confirmed the target reaction between miR-216a and DNMT1. Also, the overexpression of DNMT1 was able to reverse the anti-apoptotic effect of miR-216a in CSE-induced PMVECs. CONCLUSIONS: The results indicate that miR-216a may play a crucial role in CSE-induced apoptosis by directly regulating its target gene DNMT1 in COPD. It provides insights into the function of MiR-216a/DNMT1 as a potential molecule in COPD.

19.
Stem Cell Res ; 72: 103201, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37856927

RESUMEN

In this study, fibroblasts were harvested and isolated from a healthy 14-year-old male donor and reprogrammed with four Yamanaka factors containing Oct3/4, Sox2, Klf4 and c-Myc to generate human induced pluripotent stem cell (iPSC) lines. The resulting iPSCs were integration-free, expressed normal karyotype, displayed pluripotency markers, and have been demonstrated to differentiate into cells with three germ layer. And the iPSCs were further differentiated to chondrosphere in vivo. The models could be used to test multiple differentiation protocols and also as a control for screening drugs and studying cartilage related disease.


Asunto(s)
Células Madre Pluripotentes Inducidas , Masculino , Humanos , Adolescente , Células Madre Pluripotentes Inducidas/metabolismo , Diferenciación Celular , Fibroblastos/metabolismo , Células Cultivadas , Proteínas Proto-Oncogénicas c-myc/genética , Reprogramación Celular
20.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37762116

RESUMEN

Masson pine (Pinus massoniana Lamb.) is an important resin-producing conifer species in China. Resin yield is a highly heritable trait and varies greatly among different genotypes. However, the mechanisms regulating the resin yield of masson pine remain largely unknown. In this study, physiological, proteomic, and gene expression analysis was performed on xylem tissues of masson pine with high and low resin yield. Physiological investigation showed that the activity of terpene synthase, as well as the contents of soluble sugar, jasmonic acid (JA), methyl jasmonate (MeJA), gibberellins (GA1, GA4, GA9, GA19, and GA20), indole-3-acetic acid (IAA), and abscisic acid (ABA) were significantly increased in the high yielder, whereas sucrose and salicylic acid (SA) were significantly decreased compared with the low one. A total of 2984 differentially expressed proteins (DEPs) were identified in four groups, which were mainly enriched in the biosynthesis of secondary metabolites, protein processing in the endoplasmic reticulum, carbohydrate metabolism, phytohormone biosynthesis, glutathione metabolism, and plant-pathogen interaction. Integrated physiological and proteomic analysis revealed that carbohydrate metabolism, terpenoid biosynthesis, resistance to stress, as well as JA and GA biosynthesis and signaling, play key roles in regulating resin yield. A series of proteins associated with resin yield, e.g., terpene synthase proteins (TPSs), ATP-binding cassette transporters (ABCs), glutathione S-transferase proteins (GSTs), and heat shock proteins (HSPs), were identified. Resin yield-related gene expression was also associated with resin yield. Our study unveils the implicated molecular mechanisms regulating resin yield and is of pivotal significance to breeding strategies of high resin-yielding masson pine cultivars.


Asunto(s)
Fitomejoramiento , Proteómica , Transportadoras de Casetes de Unión a ATP , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA