Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 27(Pt 2): 386-395, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32153277

RESUMEN

Following the recent demonstration of grazing-incidence X-ray fluorescence (GIXRF)-based characterization of the 3D atomic distribution of different elements and dimensional parameters of periodic nanoscale structures, this work presents a new computational scheme for the simulation of the angular-dependent fluorescence intensities from such periodic 2D and 3D nanoscale structures. The computational scheme is based on the dynamical diffraction theory in many-beam approximation, which allows a semi-analytical solution to the Sherman equation to be derived in a linear-algebraic form. The computational scheme has been used to analyze recently published GIXRF data measured on 2D Si3N4 lamellar gratings, as well as on periodically structured 3D Cr nanopillars. Both the dimensional and structural parameters of these nanostructures have been reconstructed by fitting numerical simulations to the experimental GIXRF data. Obtained results show good agreement with nominal parameters used in the manufacturing of the structures, as well as with reconstructed parameters based on the previously published finite-element-method simulations, in the case of the Si3N4 grating.

2.
Rev Sci Instrum ; 89(5): 053904, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29864805

RESUMEN

A fully self-contained in-vacuum device for measuring thin film stress in situ is presented. The stress was measured by measuring the curvature of a cantilever on which the thin film was deposited. For this, a dual beam laser deflectometer was used. All optics and electronics needed to perform the measurement are placed inside a vacuum-compatible vessel with the form factor of the substrate holders of the deposition system used. The stand-alone nature of the setup allows the vessel to be moved inside a deposition system independently of optical or electronic feedthroughs while measuring continuously. A Mo/Si multilayer structure was analyzed to evaluate the performance of the setup. A radius of curvature resolution of 270 km was achieved. This allows small details of the stress development to be resolved, such as the interlayer formation between the layers and the amorphous-to-crystalline transition of the molybdenum which occurs at around 2 nm. The setup communicates with an external computer via a Wi-Fi connection. This wireless connection allows remote control over the acquisition and the live feedback of the measured stress. In principle, the vessel can act as a general metrology platform and add measurement capabilities to deposition setups with no modification to the deposition system.

3.
Phys Chem Chem Phys ; 19(12): 8174-8187, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28149999

RESUMEN

We employ X-ray absorption near-edge spectroscopy at the boron K-edge and the phosphorus L2,3-edge to study the structural properties of cubic boron phosphide (c-BP) samples. The X-ray absorption spectra are modeled from first-principles within the density functional theory framework using the excited electron core-hole (XCH) approach. A simple structural model of a perfect c-BP crystal accurately reproduces the P L2,3-edge, however it fails to describe the broad and gradual onset of the B K-edge. Simulations of the spectroscopic signatures in boron 1s excitations of intrinsic point defects and the hexagonal BP crystal phase show that these additions to the structural model cannot reproduce the broad pre-edge of the experimental spectrum. Calculated formation enthalpies show that, during the growth of c-BP, it is possible that amorphous boron phases can be grown in conjunction with the desired boron phosphide crystalline phase. In combination with experimental and theoretically obtained X-ray absorption spectra of an amorphous boron structure, which have a similar broad absorption onset in the B K-edge spectrum as the cubic boron phosphide samples, we provide evidence for the presence of amorphous boron clusters in the synthesized c-BP samples.

4.
Opt Express ; 25(3): 1993-2008, 2017 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29519048

RESUMEN

We present the first experimental demonstration of a novel type of narrowband and wavelength-tunable multilayer transmission filter for the extreme ultraviolet (EUV) region. The operating principle of the filter is based on spatially overlapping the nodes of a standing wave field with the absorbing layers within the multilayer structure. For a wavelength with a matching node pattern, this increases the transmission as compared to neighboring wavelengths where anti-nodes overlap with the absorbing layers. Using Ni/Si multilayers where Ni provides strong absorption, we demonstrate the proper working of such anomalous transmission filter. The demonstration is carried out at the example of 13.5 nm wavelength and at normal incidence, providing a 0.27 nm-wide transmission peak. We also demonstrate wavelength tunability by operating the same Ni/Si filter at different wavelengths by varying the angle of incidence. As the multilayer filter is directly deposited on the active area of an EUV-sensitive photodiode, this provides an extremely compact device for easy spectral monitoring in the EUV. The transmission spectrum of the filter is modeled and found to be in good agreement with the experimental data. The agreement proves that such filters and compact monitoring devices can be straightforwardly designed and fabricated, as desired, also for other EUV wavelengths, bandwidths and angles of incidence, thereby showing a high potential for applications.

5.
Opt Lett ; 40(16): 3778-81, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26274658

RESUMEN

We report a hybrid thin-film deposition procedure to significantly enhance the reflectivity of La/B-based multilayer structures. This is of relevance for applications of multilayer optics at 6.7-nm wavelength and beyond. Such multilayers showed a reflectance of 64.1% at 6.65 nm measured at 1.5-degrees off-normal incidence at PTB (BESSY-II). This was achieved by a special scheme of La passivation. The La layer was nitridated to avoid formation of the optically unfavorable LaBx compound at the B-on-La interface. To avoid the also undesired BN formation at the La-on-B interface, a time-dosed nitridation at the initial stage was applied. This research revealed a good potential for further increase in the reflectivity of multilayer structures at 6.7 nm.

6.
Opt Express ; 22(17): 20076-86, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25321217

RESUMEN

We present a way to analyze the chemical composition of periodical multilayer structures using the simultaneous analysis of grazing incidence hard X-Ray reflectivity (GIXR) and normal incidence extreme ultraviolet reflectance (EUVR). This allows to combine the high sensitivity of GIXR data to layer and interface thicknesses with the sensitivity of EUVR to the layer densities and atomic compositions. This method was applied to the reconstruction of the layered structure of a LaN/B multilayer mirror with 3.5 nm periodicity. We have compared profiles obtained by simultaneous EUVR and GIXR and GIXR-only data analysis, both reconstructed profiles result in a similar description of the layered structure. However, the simultaneous analysis of both EUVR and GIXR by a single algorithm lead to a ∼ 2x increased accuracy of the reconstructed layered model, or a more narrow range of solutions, as compared to the GIXR analysis only. It also explains the inherent difficulty of accurately predicting EUV reflectivity from a GIXR-only analysis.

7.
Opt Express ; 22(1): 490-7, 2014 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-24515009

RESUMEN

We present theoretically derived design rules for an absorbing resonance antireflection coating for the spectral range of 100 - 400 nm, applied here on top of a molybdenum-silicon multilayer mirror (Mo/Si MLM) as commonly used in extreme ultraviolet lithography. The design rules for optimal suppression are found to be strongly dependent on the thickness and optical constants of the coating. For wavelengths below λ ∼ 230 nm, absorbing thin films can be used to generate an additional phase shift and complement the propagational phase shift, enabling full suppression already with film thicknesses far below the quarter-wave limit. Above λ ∼ 230 nm, minimal absorption (k < 0.2) is necessary for low reflectance and the minimum required layer thickness increases with increasing wavelength slowly converging towards the quarter-wave limit.As a proof of principle, SixCyNz thin films were deposited that exhibit optical constants close to the design rules for suppression around 285 nm. The thin films were deposited by electron beam co-deposition of silicon and carbon, with N+ ion implantation during growth and analyzed with variable angle spectroscopic ellipsometry to characterize the optical constants. We report a reduction of reflectance at λ = 285 nm, from 58% to 0.3% for a Mo/Si MLM coated with a 20 nm thin film of Si0.52C0.16N0.29.


Asunto(s)
Diseño Asistido por Computadora , Lentes , Membranas Artificiales , Modelos Teóricos , Dispersión de Radiación , Absorción , Simulación por Computador , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Propiedades de Superficie
8.
Opt Lett ; 37(7): 1169-71, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22466184

RESUMEN

An extreme ultraviolet multilayer mirror with an integrated spectral filter for the IR range is presented and experimentally evaluated. The system consists of an IR-transparent B4C/Si multilayer stack which is used both as EUV-reflective coating and as a phase shift layer of the resonant IR antireflective (AR) coating. The AR coating is optimized in our particular case to suppress CO2 laser radiation at a wavelength of 10.6 µm, and a suppression of more than two orders of magnitude is demonstrated. The method allows high suppression over a large angular acceptance range, relevant for application in lithography systems.

9.
Opt Lett ; 36(17): 3344-6, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21886205

RESUMEN

We have developed a multilayer mirror for extreme UV (EUV) radiation (13.5 nm), which has near-zero reflectance for IR line radiation (10.6 µm). The EUV reflecting multilayer is based on alternating B4C and Si layers. Substantial transparency of these materials with respect to the IR radiation allowed the integration of the multilayer coating in a resonant quarter-wave structure for 10.6 µm. Samples were manufactured using magnetron sputtering deposition technique and demonstrated suppression of the IR radiation by up to 3 orders of magnitude. The EUV peak reflectance amounts 45% at 13.5 nm, with a bandwidth at FWHM being 0.284 nm. Therefore such a mirror could replace conventional multilayer mirrors to suppress undesired spectral components in monochromatic imaging applications, including EUV photolithography.

10.
Opt Lett ; 36(17): 3386-8, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21886219

RESUMEN

We characterize the phase shift induced by reflection on a multilayer mirror in the extreme UV range (80-93 eV) using two techniques: one based on high order harmonic generation and attosecond metrology (reconstruction of attosecond beating by interference of two-photon transitions), and a second based on synchrotron radiation and measurements of standing waves (total electron yield). We find an excellent agreement between the results from the two measurements and a flat group delay shift (±40 as) over the main reflectivity peak of the mirror.

11.
Opt Express ; 19(1): 193-205, 2011 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-21263557

RESUMEN

We investigated the damage mechanism of MoN/SiN multilayer XUV optics under two extreme conditions: thermal annealing and irradiation with single shot intense XUV pulses from the free-electron laser facility in Hamburg - FLASH. The damage was studied "post-mortem" by means of X-ray diffraction, interference-polarizing optical microscopy, atomic force microscopy, and scanning transmission electron microscopy. Although the timescale of the damage processes and the damage threshold temperatures were different (in the case of annealing it was the dissociation temperature of Mo2N and in the case of XUV irradiation it was the melting temperature of MoN) the main damage mechanism is very similar: molecular dissociation and the formation of N2, leading to bubbles inside the multilayer structure.

12.
Opt Express ; 18(2): 700-12, 2010 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20173890

RESUMEN

We investigated single shot damage of Mo/Si multilayer coatings exposed to the intense fs XUV radiation at the Free-electron LASer facility in Hamburg - FLASH. The interaction process was studied in situ by XUV reflectometry, time resolved optical microscopy, and "post-mortem" by interference-polarizing optical microscopy (with Nomarski contrast), atomic force microscopy, and scanning transmission electron microcopy. An ultrafast molybdenum silicide formation due to enhanced atomic diffusion in melted silicon has been determined to be the key process in the damage mechanism. The influence of the energy diffusion on the damage process was estimated. The results are of significance for the design of multilayer optics for a new generation of pulsed (from atto- to nanosecond) XUV sources.


Asunto(s)
Membranas Artificiales , Molibdeno/química , Molibdeno/efectos de la radiación , Dispositivos Ópticos , Silicio/química , Silicio/efectos de la radiación , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales , Rayos Ultravioleta
13.
Opt Lett ; 33(6): 560-2, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18347709

RESUMEN

We demonstrate, both theoretically and experimentally, that special spectral-purity-enhancing multilayer mirror systems can be designed and fabricated to substantially reduce the level of out-of-band radiation expected in an extreme ultraviolet lithographic tool. A first proof of principle of applying such spectral-purity-enhancement layers showed reduced out-of-band reflectance by a factor of five, while the in-band reflectance is only 4.5% (absolute) less than for a standard capped multilayer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...