Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Más filtros

Base de datos
Intervalo de año de publicación
Toxicol Mech Methods ; : 1-9, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38486414


The agricultural fumigant pesticide aluminum phosphide (AlP) is cardiotoxic. Water causes AlP to emit phosphine gas, a cardiac toxin that affects heart function and causes cardiogenic shock. AlP poisoning's high fatality rate is due to cardiotoxicity. This study examines how resveratrol reduces oxidative stress, mitochondrial activity, and apoptosis in human cardiac myocyte (HCM) cells. After determining the optimal doses of resveratrol using the MTT test, HCM cells were subjected to a 24-h treatment of resveratrol following exposure to AlP (2.36 µM). The levels of reactive oxygen species (ROS), superoxide dismutase (SOD) activity, mitochondrial swelling, mitochondrial cytochrome c release, and mitochondrial membrane potential (MMP) in HCM cells were investigated. Also, the expression of Bax and Bcl-2, caspace-3 activity, and apoptosis were assessed. The present investigation revealed that AlP substantially increased the level of ROS and decreased SOD activation, which were significantly modulated by resveratrol in a dose-dependent manner. Moreover, AlP induced an elevation of mitochondrial swelling, cytochrome c release, and MMP collapse. Co-administration of resveratrol significantly reduced above mitochondrial markers. AlP also significantly upregulated BAX and downregulated Bcl-2 expression, elevated caspace-3 activity, and apoptosis. Resveratrol co-administration was able to meaningfully modulate the mentioned parameters and finally reduce apoptosis. In conclusion, resveratrol, via its pleotropic properties, significantly demonstrated cytoprotective effects on HCM cytotoxicity induced by AlP.

Saudi J Biol Sci ; 30(11): 103795, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37692328


A potentially beneficial method in laser irradiation is currently gaining popularity. The biosynthesis of low-power lasers has also been applied to the therapy of disease in biological tissues. This study used laser pre-treatments of Silybum marianum (S. marianum) fruit extract as a stabilising agent to bio-fabricate a low-power laser. The silybin A and silybin B of the S. marianum fruit, which are derived from seedlings before S. marianum undergoes therapy with an He-Ne laser at various intervals, were assessed for their expressive properties in this study. The findings revealed that 6-min laser pre-treatments increased silybin A + B and bacterial inhibition and improved the medicinal property of S. marianum. The analysis of the reaction records was performed using ultraviolet-visible spectroscopy. The minimum inhibitory concentration (MIC) limit for the sphere dispersion approach's antimicrobial effect on the microorganisms under investigation was 50 to 100 g/mL. With an IC50 of 0.69 mg/mL, the laser-treated S. marianum (6 min) demonstrated radical scavenging activity. At MIC concentration, the laser-treated S. marianum (6 min) did not exhibit cytotoxicity in the MCF-7 cell line. Additionally, Salmonella typhi, methicillin-resistant Staphylococcus aureus (MRSA), and E. coli were more susceptible to the antimicrobial effects of ethanolic fruit extract with a greater silybin level. It was observed that the laser-treated S. marianum (6 min) showed beneficial antioxidant and antibacterial properties and could be employed without risk in several medical applications.

Antibiotics (Basel) ; 12(7)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37508210


BACKGROUND: Massive fruit losses are caused by microbial pathogens of unknown identities. Therefore, ecofriendly biocontrol measures are well sought after, and biogenic silver nanoparticles are plausible candidates. Here we investigate the antimicrobial effect of three different sized AgNPs samples on those pathogens. METHODOLOGY: Identities of three local pathogenic bacteria were investigated using molecular methods. Three different-sized samples of silver nanoparticles were bio-synthesized in the external solution of a cyanobacterial culture, characterized, and used in antimicrobial bioassay. RESULTS: The pathogens were identified as Erwinia pyrifoliae, Staphylococcus warneri, and Xanthomonas citri. UV-vis. and FTIR spectroscopy confirmed the biosynthesis of AgNPs. and their three different sizes were confirmed using Scanning electron microscopy. Growth of bacterial pathogens was inhibited by all three samples of AgNPs, but the largest inhibition zone was for the smallest sized AgNPs against Staphylococcus warneri (1.7 cm). DISCUSSION: The identity of the pathogens infecting different local fruits is reported for the first time. They belong to different bacterial lineages. The fact that biogenic AAgNPs were effective against all of them shows their broad-spectrum of antibacterial effect. Customized biosynthesis was successful in yielding different-sized AgNPs. The smaller the AgNPs, the stronger the antimicrobial impact. CONCLUSION: Local bacterial species infecting fruits are diverse. Customized biogenic AgNPs are effective broad-spectrum biocontrol agents against bacterial pathogens of local fruits and thereby help maintain food security and environmental sustainability.

Molecules ; 28(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37446597


Incorporating nanoparticles into plant cultivation has been shown to improve growth parameters and alter the bioactive component compositions of many plant species, including Curcumin longa. The aim of the current study was to investigate the effects of foliar application of zinc oxide nanoparticles on the content of bioactive compounds and their antibacterial activities against potential bacterial pathogens. To this end, C. longa leaves were treated with different doses of ZnO NPs to see how this affected their bioactive component composition. The effect of different doses of ZnO NPs on the accumulation of bisdemethoxycurcumin, demethoxycurcumin, and curcumin in ethanolic extracts of C. longa rhizomes was evaluated using high-performance liquid chromatography (HPLC). When compared to the control treatment, foliar spraying with (5 and 40 mgL-1) of ZnO NPs increased bisdemethoxycurcumin, demethoxycurcumin, and curcumin levels approximately (2.69 and 2.84)-, (2.61 and 3.22)-, and (2.90 and 3.45)-fold, respectively. We then checked whether the ethanolic extracts produced from the plantlets changed in terms of their phytochemical makeup and antibacterial properties. Furthermore, the results revealed that C. long-ZnO NPs displayed antibacterial activity against the tested S. aureus and P. aeruginosa bacterium strains, but had a few effect against E. coli. The MIC for P. aeruginosa was 100 g/mL. The time-kill studies also revealed that ZnO NPs at 4 MIC killed P. aeruginosa, Actinobacteria baumannii, and Bacillus sp. after 2 h, while S. aureus did not grow when treated with 4 × MIC of the extract for 6 h. The strongest antibacterial activity was seen in the extract from plantlets grown without nanoparticles for P. aeruginosa, whereas it was seen in the extract from plantlets grown in the presence of 5 mg/L ZnO NPs for E. coli, S. aureus, and P. aeruginosa. These findings show that ZnO NPs are powerful enhancers of bioactive compound production in C. longa, a trait that can be used to combat antibiotic resistance in pathogenic bacterial species.

Curcumina , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Óxido de Zinc/farmacología , Óxido de Zinc/química , Curcuma , Curcumina/farmacología , Staphylococcus aureus , Escherichia coli , Bacterias , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana , Nanopartículas del Metal/química
PLoS One ; 18(3): e0282963, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36913358


Ninety-one elastase-producing bacterial isolates were recovered from different localities of the Eastern Province of Saudi Arabia. Elastase from the best isolate Priestia megaterium gasm32, from luncheon samples was purified to electrophoretic homogeneity using DEAE-Sepharose CL-6B and Sephadex G-100 chromatographic techniques. The recovery was 17.7%, the purification fold was 11.7x, and the molecular mass was 30 kDa. Enzymatic activity was highly repressed by Ba2+ and almost completely lost by EDTA, but it was greatly stimulated by Cu2+ ions, suggesting a metalloprotease type. The enzyme was stable at 45°C and pH 6.0-10.0 for 2 hours. Ca2+ ions considerably enhanced the stability of the heat-treated enzyme. The Vmax and Km against the synthetic substrate elastin-Congo red were 6.03 mg/mL, and 8.82 U/mg, respectively. Interestingly, the enzyme showed potent antibacterial activity against many bacterial pathogens. Under SEM, most bacterial cells showed loss of integrity, damage, and perforation. SEM micrographs also showed a time-dependent gradual breakdown of elastin fibers exposed to elastase. After 3 hours, intact elastin fibers disappeared, leaving irregular pieces. Given these good features, this elastase may be a promising candidate for treating damaged skin fibers with the inhibition of contaminating bacteria.

Elastina , Elastasa Pancreática , Elastasa Pancreática/metabolismo , Elastina/metabolismo , Bacterias/metabolismo , Arabia Saudita , Concentración de Iones de Hidrógeno
Microorganisms ; 10(1)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35056594


Chlorella vulgaris from Al-Ahsa, KSA was proved to be an active silver and gold nanoparticle producer. Nanogold and nanosilver particles were characterized using UV-visible spectroscopy, Fourier-transform infrared spectroscopy, and scanning electronmicroscopy. Both nanoparticles were used in the antimicrobial bioassay. The two nanoparticles showed antibacterial activities, with the silver nanoparticles being the most effective. To investigate the argumentative nature of their biosynthesis (i.e., whether it is a biotic or abiotic process), we isolated total ribonucleic acid RNA as an indicator of vitality. RNA was completely absent in samples taken after one week of incubation with silver nitrate and even after one or two days. However, successful extraction was only achievable in samples taken after incubation for one and four hours with silver nitrate. Most importantly, the gel image showed recognizable shearing of the nucleic acid after 4 h as compared to the control. An assumption can be drawn that the synthesis of nanoparticles may start biotically by the action of enzyme(s) and abiotically by action of reducing entities. Nonetheless, with prolonged incubation, excessive nanoparticle accumulation can be deadly. Hence, their synthesis continues abiotically. From the RNA banding profile, we suggest that nanosilver production starts both biotically and abiotically in the first few hours of incubation and then continues abiotically. Nanosilver particles proved to have more of an antimicrobial impact than nanogold and hence are recommended for different applications as antibacterial agents.