Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; : e202300900, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856848

RESUMEN

Studies on the electrochemical hydrogenation (ECH) of levulinic acid (LA) to valeric acid (VA) or γ-valerolactone (GVL) have mainly focused on the electroreduction of LA in acidic aqueous solutions. However, the narrow range of applied potentials has hindered understanding of some mechanistic aspects of LA electrochemical conversion. Earlier, we discovered that employing proton-deficient non-aqueous reaction media provides more comprehensive insights into the mechanism of LA electrochemical reduction. Here, we conducted further investigations into the LA electroreduction process using cyclic voltammetry in various organic solvents on a Pt electrode and on various electrode materials in acetonitrile, both with and without the addition of proton donors. The products of the ECH processes were identified using HPLC. The solvent nature, the presence of proton donors, the electrode material, and the applied potential strongly influence the LA electroreduction process. This study reveals that LA, in the presence proton donors, can undergo electroreduction through different pathways, depending on the difference (ΔE1/2) between the reduction half-wave potential of protons and LA. When the difference is large, the LA reduction is incomplete and the formation of GVL is observed. Under the close reduction potentials of protons and LA, LA can be completely reduced to VA.

2.
ChemSusChem ; : e202400417, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656661

RESUMEN

Herein, we report a highly selective production route for butadiene from γ-valerolactone over zeolite catalysts. The catalytic performance of eight zeolites with different framework topologies were compared, revealing that zeolites with narrower 10-membered ring channels exhibit enhanced selectivity of butadiene. Specifically, ZSM-35 and ZSM-22, featuring the narrowest 10-membered ring channels, demonstrate the highest butadiene selectivity to 61 % and 59 %, respectively. Notably, surface passivation of ZSM-35 leads to a remarkable increase in butadiene selectivity to 82 %, maintaining a 99 % conversion. Additionally, we propose a reaction network and identify cyclopentenone as a key intermediate in the transformation of γ-valerolactone to butadiene. Both experimental and theoretical results conclude that confinement effect of 10-membered ring channels improves the selectivity of butadiene.

3.
Adv Mater ; 36(18): e2310056, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38252812

RESUMEN

In this work, the properties of a novel electrolyte based on the combination of bio-based Æ´-valerolactone (GVL) solvent with lithium bis(oxalato)borate (LiBOB) salt and its use for lithium-ion capacitors (LICs) are presented. It is shown that the 1 m LiBOB in GVL electrolyte displays good transport properties, high thermal stability, and the ability to prevent anodic dissolution. Its impact on the performance of both battery-type and capacitive-type electrodes is evaluated. In this regard, special attention is paid to the filming properties associated with LiBOB and GVL decomposition at the electrode surfaces. To the best of the authors' knowledge, the full-cell devices assembled in this study are the first example of a fluorine-free LIC. These devices exhibit a favorable energy-to-power ratio, delivering 80 Wh kg-1 AM at 10 000 W kg-1 AM along with excellent cycling stability, retaining 80% of the initial capacitance after 25 000 cycles. Furthermore, post-mortem analysis of the LIC electrodes is conducted to gain deeper insights into the degradation mechanisms within the device.

4.
Nutr Neurosci ; : 1-19, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287652

RESUMEN

Many epidemiological studies have shown the beneficial effects of a largely plant-based diet, and the strong association between the consumption of a Mediterranean-type diet with healthy aging including a lower risk of cognitive decline. The Mediterranean diet is characterized by a high intake of olive oil, fruits and vegetables and is rich in dietary fiber and polyphenols - both of which have been postulated to act as important mediators of these benefits. Polyphenols are large molecules produced by plants to protect them from environmental threats and injury. When ingested by humans, as little as 5% of these molecules are absorbed in the small intestine with the majority metabolized by the gut microbiota into absorbable simple phenolic compounds. Flavan-3-ols, a type of flavonoid, contained in grapes, berries, pome fruits, tea, and cocoa have been associated with many beneficial effects on several risk factors for cardiovascular disease, cognitive function and brain regions involved in memory formation. Both preclinical and clinical studies suggest that these brain and heart benefits can be attributed to endothelial vascular effects and anti-inflammatory properties among others. More recently the gut microbiota has emerged as a potential modulator of the aging brain and intriguingly polyphenols have been shown to alter microbiota composition and be metabolized by different microbial species. However, there is a need for well controlled studies in large populations to identify predictors of response, particularly given the vast inter-individual variation of human gut microbiota.

5.
Small ; 20(7): e2306227, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37806748

RESUMEN

γ-valerolactone (GVL) is a key value-added chemical catalytically produced from levulinic acid (LA), an important biomass derivative platform chemical. Here an ultra-efficient 3D Ru catalyst generated by in situ reduction of RuZnOx nanoboxes is reported; the catalyst features a well-defined structure of highly dispersed in situ oxide-derived Ru (IOD-Ru) clusters (≈1 nm in size) spatially confined within the 3D nanocages with rich mesopores, which guarantees a maximized atom utilization with a high exposure of Ru active sites as well as a 3D accessibility for substrate molecules. The IOD-Ru exhibits ultrahigh performance for the hydrogenation of LA into GVL with a record-breaking turnover frequency (TOF) up to 59400 h-1 , 14 times higher than that of the ex situ reduction of RuZnOx nanoboxes catalyst. Structural characterizations and theoretical calculations collectively indicate that the defect-rich and coordination-unsaturated IOD-Ru sites can boost the activation of the carbonyl group in LA with a significantly lowered energy barrier of hydrogenation.

6.
Redox Biol ; 69: 102981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38104483

RESUMEN

Proanthocyanidins (PACs), the predominant constituents within Grape Seed Extract (GSE), are intricate compounds composed of interconnected flavan-3-ol units. Renowned for their health-affirming properties, PACs offer a shield against a spectrum of inflammation associated diseases, such as diabetes, obesity, degenerations and possibly cancer. While monomeric and dimeric PACs undergo some absorption within the gastrointestinal tract, their larger oligomeric and polymeric counterparts are not bioavailable. However, higher molecular weight PACs engage with the colonic microbiota, fostering the production of bioavailable metabolites that undergo metabolic processes, culminating in the emergence of bioactive agents capable of modulating physiological processes. Within this investigation, a GSE enriched with polymeric PACs was employed to explore in detail their impact. Through comprehensive analysis, the present study unequivocally verified the gastrointestinal-mediated transformation of medium to high molecular weight polymeric PACs, thereby establishing the bioaccessibility of a principal catabolite termed 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (VL). Notably, our findings, encompassing cell biology, chemistry and proteomics, converge to the proposal of the notion of the capacity of VL to activate, upon oxidation to the corresponding quinone, the nuclear factor E2-related factor 2 (Nrf2) pathway-an intricate process that incites cellular defenses and mitigates stress-induced responses, such as a challenge brought by TNFα. This mechanistic paradigm seamlessly aligns with the concept of para-hormesis, ultimately orchestrating the resilience to stress and the preservation of cellular redox equilibrium and homeostasis as benchmarks of health.


Asunto(s)
Proantocianidinas , Humanos , Proantocianidinas/farmacología , Tracto Gastrointestinal/metabolismo , Colon/metabolismo , Inflamación/metabolismo
7.
J Agric Food Chem ; 71(37): 13814-13827, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37683128

RESUMEN

Although the relationship between gut microbiota and flavan-3-ol metabolism differs greatly between individuals, the specific metabolic profiles, known as metabotypes, have not yet been clearly defined. In this study, fecal batch fermentations of 34 healthy donors inoculated with (-)-epicatechin were stratified into groups based on their conversion rate of (-)-epicatechin and their quali-quantitative metabolic profile. Fast and slow converters of (-)-epicatechin, high producers of 1-(3'-hydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol (3-HPP-2-ol) and 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (3,4-DHPVL) were identified. Fecal microbiota analysis revealed that fast conversion of (-)-epicatechin was associated with short-chain fatty acid (SCFA)-producing bacteria, such as Faecalibacterium spp. and Bacteroides spp., and higher levels of acetate, propionate, butyrate, and valerate were observed for fast converters. Other bacteria were associated with the conversion of 1-(3',4'-dihydroxyphenyl)-3-(2″,4″,6″-trihydroxyphenyl)-propan-2-ol into 3-HPP-2-ol (Lachnospiraceae UCG-010 spp.) and 3,4-DHPVL (Adlercreutzia equolifaciens). Such stratification sheds light on the mechanisms of action underlying the high interindividual variability associated with the health benefits of flavan-3-ols.


Asunto(s)
Catequina , Humanos , 2-Propanol , Butiratos , Clostridiales , Heces
8.
Free Radic Biol Med ; 208: 309-318, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611644

RESUMEN

Phenolic compounds are promising agents for the prevention of osteoporosis. 5-(3',4'-dihydroxyphenyl)-γ-valerolactone (DHPV) is the major microbiota metabolite of the flavan-3-ols phenolic compound. Herein, we aimed to investigate the potential mechanisms underlying the effects of DHPV on an osteoblast cell model with H2O2-induced oxidative injury. The MC3T3-E1 cell cultured with H2O2 was used as an oxidative injury model after pretreating with DHPV. Pretreatment with DHPV significantly attenuated cell viability decline, enhanced the activity of alkaline phosphatase and mineralization capacity in MC3T3-E1 cells. Reduced reactive oxygen species (ROS) and malondialdehyde (MDA) levels as well as increased in mitochondrial membrane potential and superoxide dismutase (SOD) activities indicated that DHPV affected both the oxidative and antioxidative processes in the cells. DHPV administration increased the LC3-II/I ratio and Beclin-1 protein levels, thereby promoting autophagy, which perhaps contributes to ROS elimination. However, the inhibition of Sirtuin 1 (SIRT1) by SIRT1 small interfering RNA reduced the protective effect of DHPV or SRT1720, as revealed by the increased ROS and MDA levels and decreased SOD, LC3-II/I ratio and Beclin-1 levels. DHPV may promote autophagy and reduce oxidative stress through the SIRT1-mediated pathway, thereby protecting MC3T3-E1 cells from H2O2-induced oxidative damage.


Asunto(s)
Flavonoides , Peróxido de Hidrógeno , Sirtuina 1 , Autofagia , Diferenciación Celular , Línea Celular , Flavonoides/metabolismo , Flavonoides/farmacología , Peróxido de Hidrógeno/metabolismo , Microbiota/fisiología , Osteoblastos , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Superóxido Dismutasa/metabolismo , Animales , Ratones
9.
Bioresour Technol ; 387: 129637, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37549711

RESUMEN

The research on the efficient use of biomass to produce chemical products has received extensive attention. In this work, a novel heterogeneous biocarbon-based heterogeneous catalyst AT-Sn-YB was prepared using yellow bamboo (YB) as a carrier, and its physical properties were proved to be good by various characterization and stability experiments. In the γ-valerolactone/water (3:1, v/v) medium containing 100 mM CuCl2, the use of AT-Sn-YB (3.6 wt%) under 170 °C for 20 min was applied to catalyze YB into furfural (80.3% yield), accompanied with 2.8 g/L xylooligosaccharides. The YB solid residue obtained from treatment was efficiently saccharified to reducing sugars (17.2 g/L). Accordingly, comprehensive understanding of efficiently co-producing xylooligosaccharides, furfural and reducing sugars from YB was demonstrated via the pretreatment with biochar-based catalyst. This study innovatively used a new type of solid acid to complete the efficient co-production of chemical products, and realized the value-added utilization of yellow bamboo.


Asunto(s)
Furaldehído , Azúcares , Furaldehído/química , Catálisis
10.
Chemistry ; 29(52): e202300950, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392150

RESUMEN

γ-Valerolactone (GVL) is considered as a star biochemical which can be used as a green solvent, fuel additive and versatile organic intermediate. In this study, metal triflate (M(OTf)n ) was utilized as the catalyst for one-pot transformation of furfural (FF) to GVL in alcohol media under microwave irradiation. Alcohol plays multiple functions including solvent, hydrogen donor and alcoholysis reagent in this cascade reaction process. And process efficiency of GVL production from FF upgrading is strongly related to the effective charge density of selected catalyst and the reduction potential of selected alcohol. Complex (OTf)n -M-O(H)R, presenting both Brønsted acid and Lewis acid, is the real catalytic active species in this cascade reaction process. Among various catalysts, Sc(OTf)3 exhibited the best catalytic activity for GVL production. Various reaction parameters including the Sc(OTf)3 amount, reaction temperature and time were optimized by the response surface methodology with the central composite design (RSM-CCD). Up to 81.2 % GVL yield and 100 % FF conversion were achieved at 143.9 °C after 8.1 h in the presence of 0.16 mmol catalyst. This catalyst exhibits high reusability and can be regenerated by oxidative degradation of humins. In addition, a plausible cascade reaction network was proposed based on the distribution of product.

11.
Antioxidants (Basel) ; 12(6)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37371883

RESUMEN

Reaction kinetics have been theoretically examined to ascertain the potency of quercetin (Q) and flavonoid catecholic metabolites 1-5 in the inactivation of HOO•, CH3OO•, and O2•- under physiological conditions. In lipidic media, the koverallTST/Eck rate constants for the proton-coupled electron transfer (PCET) mechanism indicate the catecholic moiety of Q and 1-5 as the most important in HOO• and CH3OO• scavenging. 5-(3,4-Dihydroxyphenyl)-γ-valerolactone (1) and alphitonin (5) are the most potent scavengers of HOO• and CH3OO•, respectively. The koverallMf rate constants, representing actual behavior in aqueous media, reveal Q as more potent in the inactivation of HOO• and CH3OO• via single electron transfer (SET). SET from 3-O- phenoxide anion of Q, a structural motif absent in 1-5, represents the most contributing reaction path to overall activity. All studied polyphenolics have a potency of O2•- inactivation via a concerted two-proton-coupled electron transfer (2PCET) mechanism. The obtained results indicate that metabolites with notable radical scavenging potency, and more bioavailability than ingested flavonoids, may contribute to human health-promoting effects ascribed to parent molecules.

12.
Int J Biol Macromol ; 240: 124451, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37062379

RESUMEN

The hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) has attracted much attention, as GVL can be used as biofuel, green solvent, and platform chemical. Inspired by Stöber method, various lignin-metal coordinated colloidal nanospheres (LCS) from lignin and cetyltrimethylammonium bromide (CTAB) were synthesized in which the metal ions (Co2+) replace formaldehyde as the crosslinker. The characterization of the catalyst revealed that alkali lignin was first self-assembled with CTAB through electrostatic attraction to form a lignin polymer, the subsequent addition of metal ions (Co2+) promoted the aggregation of lignin polymers and generated the LCS. Increasing calcination temperature for LCS resulted in the Co2+ being reduced to metallic Co. The lignin-metal coordinated colloidal nanospheres calcined at 500 °C possess both CoO and metallic Co active sites, which effectively accelerated the hydrogenation of levulinic acid (LA) to γ-valerolactone (GVL) than simplex metallic Co active sites. A 99.8 % yield of GVL with 100 % LA conversion was obtained after 60 min reaction time at 200 °C and 2 MPa H2.


Asunto(s)
Lignina , Nanosferas , Hidrogenación , Lignina/química , Agua , Cetrimonio , Ácidos Levulínicos/química , Metales
13.
Glob Chall ; 7(4): 2200208, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37020618

RESUMEN

The exploitation of biomass to reduce the dependency on fossil fuels represents a challenge that needs to be solved as soon as possible. Nowadays, one of the most fashionable processes is γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML). Deep understanding of the thermodynamic aspects involved in this process is key for a successful outcome, but detailed studies are missing in the existing literature. A thermodynamic study of the reaction of γ-valerolactone (GVL) production from bio-derived methyl levulinate (ML) is performed by the Gibbs free energy minimization method. The effect of various reaction conditions (temperature, concentration, flow rate) and the implication of possible intermediates and byproducts are assessed. Conversion and selectivity are calculated from the simulation of the ML hydrogenation using isopropanol as the hydrogen donor under continuous flow conditions. Significant increases in GVL selectivity can be achieved under dry conditions, keeping the high conversion. Comparison between theoretical and experimental results from a previous article discloses the effect of using 5%RuTiO2 catalysts, which increases the selectivity from 3-40% to 41-98%. Enthalpy and Gibbs free energy of the reactions at issue are also calculated from models using Barin equations according to Aspen Physical Property System parameters.

14.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768767

RESUMEN

Currently, there is a great interest in the development of sustainable and green technologies for production of biofuels and chemicals. In this sense, much attention is being paid to lignocellulosic biomass as feedstock, as alternative to fossil-based resources, inasmuch as its fractions can be transformed into value-added chemicals. Two important platform molecules derived from lignocellulosic sugars are furfural and levulinic acid, which can be transformed into a large spectrum of chemicals, by hydrogenation, oxidation, or condensation, with applications as solvents, agrochemicals, fragrances, pharmaceuticals, among others. However, in many cases, noble metal-based catalysts, scarce and expensive, are used. Therefore, an important effort is performed to search the most abundant, readily available, and cheap transition-metal-based catalysts. Among these, copper-based catalysts have been proposed, and the present review deals with the hydrogenation of furfural and levulinic acid, with Cu-based catalysts, into several relevant chemicals: furfuryl alcohol, 2-methylfuran, and cyclopentanone from FUR, and γ-valerolactone and 2-methyltetrahydrofuran from LA. Special emphasis has been placed on catalytic processes used (gas- and liquid-phase, catalytic transfer hydrogenation), under heterogeneous catalysis. Moreover, the effect of addition of other metal to Cu-based catalysts has been considered, as well as the issue related to catalyst stability in reusing studies.


Asunto(s)
Cobre , Furaldehído , Furaldehído/química , Hidrogenación , Cobre/química , Ácidos Levulínicos/química , Catálisis
15.
Molecules ; 29(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38202681

RESUMEN

Monometallic (Ni, Co, Cu) and bimetallic (Ni-Co, Ni-Cu) 10-20 wt.% metal containing catalysts supported on fly ash zeolite were prepared by post-synthesis impregnation method. The catalysts were characterized by X-ray powder diffraction, N2 physisorption, XPS and H2-TPR methods. Finely dispersed metal oxides and mixed oxides were detected after the decomposition of the impregnating salt on the relevant zeolite support. Via reduction intermetallic, NiCo and NiCu phases were identified in the bimetallic catalysts. The catalysts were studied in hydrodeoxygenation of lignocellulosic biomass-derived levulinic acid to γ-valerolactone (GVL) in a batch system by water as a solvent. Bimetallic, 10 wt.% Ni, and 10 wt.% Cu or Co containing fly ash zeolite catalysts showed higher catalytic activity than monometallic ones. Their selectivity to GVL reached 70-85% at about 100% conversion. The hydrogenation activity of catalysts was found to be stronger compared to their hydration ability; therefore, the reaction proceeds through formation of 4-hydroxy pentanoic acid as the only intermediate compound.

16.
Polymers (Basel) ; 16(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38201715

RESUMEN

The valorization of the black liquor produced during the chemical pulping of wheat straw is the key to the sustainable use of this abundant agricultural waste. However, the silica problem has hampered the recovery process. Herein, nanoprecipitation technology was used to produce lignin nanoparticles (LNPs) from wheat straw black liquor using γ-valerolactone (GVL) as a solvent and water as an anti-solvent. The results showed that a uniform, well-dispersed, and stable LNP was produced. The particle size and Zeta potential of 161 nm and -24 mV of the LNP suspension were obtained at a GVL concentration of 87%. The chemical structure and bonding of the lignin were adequately preserved after nanoprecipitation based on two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) spectroscopy, Fourier transform infrared (FTIR) analysis, and thermal stability was improved based on thermogravimetric analysis. In addition, the abundant phenolic hydroxyl groups of LNP quantified by 31P-NMR analysis are beneficial for chemical cross-linking and modification. This work not only achieved the valorization of wheat straw black liquor but also opened up a new avenue for advanced nanomaterials.

17.
Materials (Basel) ; 15(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36363056

RESUMEN

Herein, we report a stable catalyst with Ru single atoms anchored on a one-dimensional carbon fiber@graphitic carbon nitride hierarchy, by assembling wet wipes composed of fiber-derived carbon fiber (CF), melamine-derived graphitic carbon nitride (g-C3N4) and RuCl3 before NaBH4 reduction. The atomically dispersed Ru species (3.0 wt%) are tightly attached via N-coordination provided by exterior g-C3N4 nanosheets, and further stabilized by the interior mesoporous CF. The obtained CF@g-C3N4-Ru SAs catalyst can be cycled six times without notable leaching of Ru or loss of GVL yield in the acidic media. This catalyst is more stable than Ru nanoparticles supported on CF@g-C3N4, as well as Ru single atoms anchored on CF and g-C3N4, and proves to be one of the most efficient metal catalysts for aqueous LA hydrogenation to γ-valerolactone (GVL). The isolated Ru atoms by strong N-coordination, and their enhanced electron/mass transfer afforded by the one-dimensional hierarchy, can be responsible for the excellent durability of CF@g-C3N4-Ru SAs under harsh reaction conditions.

18.
Polymers (Basel) ; 14(19)2022 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-36236173

RESUMEN

Synthesis of P(3HB-co-3HV-co-4HV) copolymers by the wild-type strain Cupriavidus necator B-10646 on fructose or sodium butyrate as the main C-substrate with the addition of γ-valerolactone as a precursor of 3HV and 4HV monomers was studied. Bacterial cells were cultivated in the modes that enabled production of a series of copolymers with molar fractions of 3HV (from 7.3 to 23.4 mol.%) and 4HV (from 1.9 to 4.7 mol.%) with bacterial biomass concentration (8.2 ± 0.2 g/L) and PHA content (80 ± 2%). Using HPLC, DTA, DSC, X-Ray, SEM, and AFM, the physicochemical properties of copolymers and films prepared from them have been investigated as dependent on proportions of monomers. Copolymers are characterized by a reduced degree of crystallinity (Cx 38-49%) molecular weight characteristics Mn (45-87 kDa), and Mw (201-248 kDa) compared with P(3HB). The properties of the films surface of various composition including the porosity and surface roughness were studied. Most of the samples showed a decrease in the average pore area and an increase in their number with a total increase in 3HV and 4HV monomers. The results allow scaling up the productive synthesis of P(3HB-co-3HV-co-4HV) copolymers using Cupriavidus necator B-10646.

19.
Front Chem ; 10: 1006981, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36247668

RESUMEN

The biomass-derived platform chemicals furfural and 5-(hydroxymethyl)furfural (HMF) may be converted to α-angelica lactone (AnL) and levulinic acid (LA). Presently, LA (synthesized from carbohydrates) has several multinational market players. Attractive biobased oxygenated fuel additives, solvents, etc., may be produced from AnL and LA via acid and reduction chemistry, namely alkyl levulinates and γ-valerolactone (GVL). In this work, hierarchical hafnium-containing multifunctional Linde type L (LTL) related zeotypes were prepared via top-down strategies, for the chemical valorization of LA, AnL and HMF via integrated catalytic transfer hydrogenation (CTH) and acid reactions in alcohol medium. This is the first report of CTH applications (in general) of LTL related materials. The influence of the post-synthesis treatments/conditions (desilication, dealumination, solid-state impregnation of Hf or Zr) on the material properties and catalytic performances was studied. AnL and LA were converted to 2-butyl levulinate (2BL) and GVL in high total yields of up to ca. 100%, at 200°C, and GVL/2BL molar ratios up to 10. HMF conversion gave mainly the furanic ethers 5-(sec-butoxymethyl)furfural and 2,5-bis(sec-butoxymethyl)furan (up to 63% total yield, in 2-butanol at 200°C/24 h). Mechanistic, reaction kinetics and material characterization studies indicated that the catalytic results depend on a complex interplay of different factors (material properties, type of substrate). The recovered-reused solids performed steadily.

20.
Molecules ; 27(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36080151

RESUMEN

Monometallic (Cu, Ni) and bimetallic (Cu-Ni) catalysts supported on KIT-6 based mesoporous silica/zeolite composites were prepared using the wet impregnation method. The catalysts were characterized using X-ray powder diffraction, N2 physisorption, SEM, solid state NMR and H2-TPR methods. Finely dispersed NiO and CuO were detected after the decomposition of impregnating salt on the silica carrier. The formation of small fractions of ionic Ni2+ and/or Cu2+ species, interacting strongly with the silica supports, was found. The catalysts were studied in the gas-phase upgrading of lignocellulosic biomass-derived levulinic acid (LA) to γ-valerolactone (GVL). The bimetallic, CuNi-KIT-6 catalyst showed 100% LA conversion at 250 °C and atmospheric pressure. The high LA conversion and GVL yield can be attributed to the high specific surface area and finely dispersed Cu-Ni species in the catalyst. Furthermore, the catalyst also exhibited high stability after 24 h of reaction time with a GVL yield above 80% without any significant change in metal dispersion.


Asunto(s)
Ácidos Levulínicos , Dióxido de Silicio , Hidrogenación , Lactonas , Ácidos Levulínicos/química , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...