Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Acta Pharm Sin B ; 14(7): 2795-2814, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39027235

RESUMEN

Alzheimer's disease (AD) is considered the most common and prevalent form of dementia of adult-onset with characteristic progressive impairment in cognition and memory. The cure for AD has not been found yet and the treatments available until recently were only symptomatic. Regardless of multidisciplinary approaches and efforts made by pharmaceutical companies, it was only in the past two years that new drugs were approved for the treatment of the disease. Amyloid beta (Aß) immunotherapy is at the core of this therapy, which is one of the most innovative approaches looking to change the course of AD. This technology is based on synthetic peptides or monoclonal antibodies (mAb) to reduce Aß levels in the brain and slow down the advance of neurodegeneration. Hence, this article reviews the state of the art about AD neuropathogenesis, the traditional pharmacologic treatment, as well as the modern active and passive immunization describing approved drugs, and drug prototypes currently under investigation in different clinical trials. In addition, future perspectives on immunotherapeutic strategies for AD and the rise of the aptamer technology as a non-immunogenic alternative to curb the disease progression are discussed.

2.
J Alzheimers Dis ; 99(1): 121-143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640149

RESUMEN

Background: Previous work from our group has shown that chronic exposure to Vanadium pentoxide (V2O5) causes cytoskeletal alterations suggesting that V2O5 can interact with cytoskeletal proteins through polymerization and tyrosine phosphatases inhibition, causing Alzheimer's disease (AD)-like hippocampal cell death. Objective: This work aims to characterize an innovative AD experimental model through chronic V2O5 inhalation, analyzing the spatial memory alterations and the presence of neurofibrillary tangles (NFTs), amyloid-ß (Aß) senile plaques, cerebral amyloid angiopathy, and dendritic spine loss in AD-related brain structures. Methods: 20 male Wistar rats were divided into control (deionized water) and experimental (0.02 M V2O5 1 h, 3/week for 6 months) groups (n = 10). The T-maze test was used to assess spatial memory once a month. After 6 months, histological alterations of the frontal and entorhinal cortices, CA1, subiculum, and amygdala were analyzed by performing Congo red, Bielschowsky, and Golgi impregnation. Results: Cognitive results in the T-maze showed memory impairment from the third month of V2O5 inhalation. We also noted NFTs, Aß plaque accumulation in the vascular endothelium and pyramidal neurons, dendritic spine, and neuronal loss in all the analyzed structures, CA1 being the most affected. Conclusions: This model characterizes neurodegenerative changes specific to AD. Our model is compatible with Braak AD stage IV, which represents a moment where it is feasible to propose therapies that have a positive impact on stopping neuronal damage.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Modelos Animales de Enfermedad , Memoria Espacial , Compuestos de Vanadio , Animales , Masculino , Administración por Inhalación , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/patología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/patología , Encéfalo/efectos de los fármacos , Encéfalo/patología , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/patología , Angiopatía Amiloide Cerebral/inducido químicamente , Angiopatía Amiloide Cerebral/patología , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/patología , Corteza Entorrinal/efectos de los fármacos , Corteza Entorrinal/patología , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/patología , Aprendizaje por Laberinto/efectos de los fármacos , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/patología , Placa Amiloide/inducido químicamente , Placa Amiloide/patología , Ratas Wistar , Memoria Espacial/efectos de los fármacos , Compuestos de Vanadio/administración & dosificación , Compuestos de Vanadio/toxicidad
3.
ACS Appl Bio Mater ; 7(4): 2218-2239, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38527228

RESUMEN

The prompt detection of diseases hinges on the accessibility and the capability to identify relevant biomarkers. The integration of aptamers and the incorporation of nanomaterials into signal transducers have not only expedited but also enhanced the development of nanoaptasensors, enabling heightened sensitivity and selectivity. Here, the bimetallic nickel-cobalt-porphyrin metal-organic framework ((Ni + Cu)TPyP MOF) is regarded as an electron mediator, immobilization platform for an Alzheimer aptamer and to increase the electrochemical signal for the detection of the main biomarker of Alzheimer's disease (AD), amyloid ß (Aß-42). Furthermore, the ((Ni + Cu)TPyP MOF) was combined with reduced graphene oxide (rGO) and gold nanoparticles (AuNPs), on a gold electrode (GE) to provide an efficient interface for immobilizing aptamer strands. Concurrently, the incorporation of rGO and AuNPs imparts enhanced electrical conductivity and efficacious catalytic activity, establishing them as adept electrochemical indicators. Owing to the superior excellent electrical conductivity of rGO and AuNPs, coupled with the presence of ample mesoporous channels and numerous Ni and Cu metal sites within (Ni + Cu)TPyP MOF, this nanostructure with abundant functional groups is proficient in immobilizing a substantial quantity of aptamer. These interactions are achieved through robust π-π stacking and electrostatic interactions, alongside the high affinity between the thiol group of the aptamer and AuNPs concurrently. The as-prepared ternary (Au@(Ni + Cu)TPyP MOF/rGO) nanostructure electrode exhibited an enhancement in its electrochemically active surface area of about 7 times, compared with the bare electrode and the Aß-42 redox process is highly accelerated, so the peak currents are significantly higher than those obtained with bare GE substrate. Under the optimized conditions, the designed aptasensor had the quantitative detection of Aß-42 with a low detection limit of 48.6 fg mL-1 within the linear range of 0.05 pg mL-1 to 5 ng mL-1 by differential pulse voltammetry (DPV), accompanied by precise reproducibility, satisfactory stability (95.6% of the initial activity after 10 days), and minimal impact of interfering agents. Recorded results in human blood plasma demonstrated the high efficacy of porphyrin MOF system sensing even in the clinical matrix. The great performance of this aptasensor indicates that our new design of Au@(Ni + Cu)TPyP MOF/rGO nanostructure provides more opportunities for the detection of chemical signals in early diagnosis of Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Aptámeros de Nucleótidos , Técnicas Biosensibles , Grafito , Nanopartículas del Metal , Humanos , Oro/química , Péptidos beta-Amiloides , Nanopartículas del Metal/química , Reproducibilidad de los Resultados , Aptámeros de Nucleótidos/química , Técnicas Electroquímicas/métodos , Técnicas Biosensibles/métodos
4.
J Clin Med ; 13(4)2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38398429

RESUMEN

Background/Objective: Amyloid beta (ß) -40 levels increase with age and inflammation states and appear to be associated with clinical manifestations of acute coronary syndrome (ACS). We investigated the correlation of Aß peptides with myocardial injury and inflammation biomarkers in patients with or without ST elevation myocardial infarction (STEMI, NSTEMI). Methods: This singe-center, cross-sectional, observational, and correlation study included 65 patients with ACS (n = 34 STEMI, 29 males, age = 58 ± 12 years; n = 31 NSTEMI, 22 males, age = 60 ± 12 years) who were enrolled in the coronary care unit within 12 h after symptom onset from February 2022 to May 2023. Aß peptide levels and biochemical parameters were assessed. Results: NSTEMI patients had a higher prevalence of hypertension (p = 0.039), diabetes (p = 0.043), smoking (p = 0.003), and prior myocardial infarction (p = 0.010) compared to STEMI patients. We observed a higher level of Aß-42 in NSTEMI (p = 0.001) but no difference in Aß-40 levels. We also found a correlation between age and NT-proBNP with both Aß peptides (Aß-40, Aß-42) (p = 0.001, p = 0.002 respectively). Conclusions: Our results show that patients with NSTEMI had a higher prevalence of cardiovascular risk factors (hypertension, diabetes, smoking, and prior myocardial infarction). Considering these results, we propose that Aß-42 can add value to risk stratification in NSTEMI patients.

5.
Mikrochim Acta ; 190(10): 409, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37733170

RESUMEN

Alzheimer's disease (AD) is considered one of the main progressive chronic diseases in elderly individuals. Early diagnosis using related biomarkers, specifically beta-amyloid peptide (Aß), allows finding expected treatment routes. Here, we developed an electrochemical aptasensing platform for AD by employing a glassy carbon electrode (GCE) modified with a layer of jagged gold (JG) nanostructure (diameter: 60-185 nm) and graphene oxide-carboxylic acid functionalized multiwalled carbon nanotubes (GO-c-MWCNTs) nanocomposite. These surface modifications acted as the signal amplifier and provided an optimum nano-interface substrate for immobilizing aptamer strands. The measurements of Aß were performed via differential pulse voltammetry (DPV), and the aptasensor detected the analyte in a linear range from 0.1 pg mL-1 to 1 ng mL-1, with an estimated limit of detection (LOD) of about 0.088 pg mL-1 (S/N = 3). The aptasensor showed sufficient stability (11 days), reversibility (three times), and reproducibility (five times re-fabrication with relative standard deviation (RSD): 1.27). The potential interfering agents showed negligible impact on the sensing performance. Finally, the application of the aptasensor was evaluated in the presence of 10 serum samples, and the recovery values were from 93 to 110.1%.


Asunto(s)
Enfermedad de Alzheimer , Nanocompuestos , Nanotubos de Carbono , Anciano , Humanos , Enfermedad de Alzheimer/diagnóstico , Reproducibilidad de los Resultados , Oro
6.
Micromachines (Basel) ; 14(6)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37374847

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease with only late-stage detection; thus, diagnosis is made when it is no longer possible to treat the disease, only its symptoms. Consequently, this often leads to caregivers who are the patient's relatives, which adversely impacts the workforce along with severely diminishing the quality of life for all involved. It is, therefore, highly desirable to develop a fast, effective and reliable sensor to enable early-stage detection in an attempt to reverse disease progression. This research validates the detection of amyloid-beta 42 (Aß42) using a Silicon Carbide (SiC) electrode, a fact that is unprecedented in the literature. Aß42 is considered a reliable biomarker for AD detection, as reported in previous studies. To validate the detection with a SiC-based electrochemical sensor, a gold (Au) electrode-based electrochemical sensor was used as a control. The same cleaning, functionalization and Aß1-28 antibody immobilization steps were used on both electrodes. Sensor validation was carried out by means of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS) aiming to detect an 0.5 µg·mL-1 Aß42 concentration in 0.1 M buffer solution as a proof of concept. A repeatable peak directly related to the presence of Aß42 was observed, indicating that a fast SiC-based electrochemical sensor was constructed and may prove to be a useful approach for the early detection of AD.

7.
IBRO Neurosci Rep ; 14: 264-272, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36926592

RESUMEN

Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of ß-amyloid (Aß) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aß and GFAP in the hippocampus and that treatment with melatonin reduces Aß levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.

8.
J Prev Alzheimers Dis ; 10(1): 50-68, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36641610

RESUMEN

Alzheimer's disease (AD) is the most common form of dementia. There is currently no cure, and the available pharmacological treatment focuses on treating the symptoms. This study aimed to analyze the pharmacological treatments for AD protected in the US Patent Office. The Matheo Patent software was used to search for patents granted in the 2010-2020 period in the USPTO database. The search strategy «Alzheimer¼ was used in title and abstract and the International Patent Classification (IPC) codes A61P* and A61K*. The selected patents were divided into six categories according to therapeutic target. Complementary information from scientific databases was used to determine the stage of investigation and efficacy of the patented molecules. In the analyzed period, 58 patents were granted: 10 directed to Aß peptide metabolism and deposition, three to tau, seven to inflammation, nine to cholinergic, two to glutamatergic and 27 to other targets. More than 80.0% belong to holders from the USA, France, and Japan. The molecules Elenbecestat and LY3202626 decreased the burden of Aß plaques without significant cognitive improvement, Donanemab is in Phase 3 clinical trial, and the FDA has designated it Breakthrough Therapy. CPC-201 and PXT864 demonstrated, in Phase 2, good tolerability and improvement of AD symptoms. Most of the inventions are focused on treating the earliest phase of AD. The most advanced treatments in their research are those focused on treating Aß accumulation. More studies are needed to prove the efficacy of the patented molecules.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/tratamiento farmacológico , Francia , Japón , Estados Unidos , Patentes como Asunto
9.
Neurosci Lett ; 795: 137030, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36572143

RESUMEN

Research on the memory impairment caused by the Amyloid-ß 25-35 (Aß25-35) peptide in animal models has provided an understanding of the causes that occurs in Alzheimer's disease. However, it is uncertain whether this cognitive impairment occurs due to disruption of information encoding and consolidation or impaired retrieval of stored memory. The aim of this study was to determine the effect of the Aß25-35 peptide on the morphology of dendritic spines and the changes in the expression of NR2B and PSD-95 in the hippocampus associated with learning and memory deficit. Vehicle or Aß25-35 peptide (0.1 µg/µL) was bilaterally administered into the CA1 subfield of the rat hippocampus, then tested for spatial learning and memory in the Morris Water Maze. On Day 39, the morphological changes in the CA1 of the hippocampus and dentate gyrus were examined via Golgi-Cox stain. It was observed that the Aß25-35 peptide administered in the CA1 region of the rat hippocampus induced changes to the morphology of dendritic spines and the expression of the NR2B subunit of the NMDA receptor co-localized with both the spatial memory and PSD-95 protein in the hippocampus of learning rats. We conclude that, in soluble form, the Aß25-35 peptide perturbs synaptic plasticity, specifically in the formation of new synapses, thus promoting the progression of memory impairment.


Asunto(s)
Enfermedad de Alzheimer , Espinas Dendríticas , Animales , Ratas , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Hipocampo/metabolismo , Aprendizaje por Laberinto , Trastornos de la Memoria/metabolismo , Fragmentos de Péptidos/farmacología , Fragmentos de Péptidos/metabolismo , Memoria Espacial
10.
J Alzheimers Dis ; 94(s1): S97-S108, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36463456

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive impairment and memory loss. One of the hallmarks in AD is amyloid-ß peptide (Aß) accumulation, where the soluble oligomers of Aß (AßOs) are the most toxic species, deteriorating the synaptic function, membrane integrity, and neuronal structures, which ultimately lead to apoptosis. Currently, there are no drugs to arrest AD progression, and current scientific efforts are focused on searching for novel leads to control this disease. Lignans are compounds extracted from conifers and have several medicinal properties. Eudesmin (Eu) is an extractable lignan from the wood of Araucaria araucana, a native tree from Chile. This metabolite has shown a range of biological properties, including the ability to control inflammation and antibacterial effects. OBJECTIVE: In this study, the neuroprotective abilities of Eu on synaptic failure induced by AßOs were analyzed. METHODS: Using neuronal models, PC12 cells, and in silico simulations we evaluated the neuroprotective effect of Eu (30 nM) against the toxicity induced by AßOs. RESULTS: In primary cultures from mouse hippocampus, Eu preserved the synaptic structure against AßOs toxicity, maintaining stable levels of the presynaptic protein SV2 at the same concentration. Eu also averted synapsis failure from the AßOs toxicity by sustaining the frequencies of cytosolic Ca2+ transients. Finally, we found that Eu (30 nM) interacts with the Aß aggregation process inducing a decrease in AßOs toxicity, suggesting an alternative mechanism to explain the neuroprotective activity of Eu. CONCLUSION: We believe that Eu represents a novel lead that reduces the Aß toxicity, opening new research venues for lignans as neuroprotective agents.


Asunto(s)
Enfermedad de Alzheimer , Lignanos , Fármacos Neuroprotectores , Ratas , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Lignanos/farmacología , Células PC12 , Fármacos Neuroprotectores/farmacología
11.
Nutr Neurosci ; 26(11): 1147-1158, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36342065

RESUMEN

OBJECTIVES: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence of aggregated amyloid-ß (Aß) peptides. Several natural compounds have been proposed against this disease and grape products are among these. However, little is known about grape juice potential. Transgenic Caenorhabditis elegans (C. elegans) strains that express human Aß have been used as an in vivo model for AD. METHODS: In this study, we have exposed CL2006 worms to nine different juices obtained from different cultivars. RESULTS: Cora, Bordo, Isabel, Isabel Precoce, BRS-Magna, BRS-Rubea and BRS-Violeta juices improved the behavioral phenotype (paralysis) that is caused by Aß aggregation in the transgenic animals at the concentrations tested and no toxic effects were found. Some juices were also able to increase the worm's lifespan. We could not attribute lifespan increase and paralysis reduction with any specific compound found in the phytochemical analysis. DISCUSSION: Our data indicate that the rich constitution of the juices is responsible for attenuating the phenotype caused by Aß aggregation in C. elegans.


Asunto(s)
Enfermedad de Alzheimer , Vitis , Animales , Humanos , Péptidos beta-Amiloides/genética , Caenorhabditis elegans , Longevidad , Animales Modificados Genéticamente , Enfermedad de Alzheimer/genética , Parálisis , Modelos Animales de Enfermedad
12.
Artículo en Inglés | MEDLINE | ID: mdl-36195205

RESUMEN

Women older than 60 have a higher risk of dementia, aging-related cognitive decline, and Alzheimer's Disease (AD) than the rest of the population. The main reason is hormonal senescence after menopause, a period characterized by a decline in estrogen levels. Since the effectiveness of drugs currently approved for the treatment of AD is limited, it is necessary to seek the development of new therapeutic strategies. Vitamin D deficiency is prevalent in AD patients and individuals with dementia in general. The supplementation of this vitamin in dementia patients might be an interesting approach for increasing the effectiveness of pre-existing medications for dementia treatment. Thus, the present study aims to investigate the effect of vitamin D treatment associated with memantine and donepezil in female mice submitted to ovariectomy (OVX) for five months and subjected to a dementia animal model induced by intracerebroventricular injection of aggregated amyloid ßeta (Aß1-42). For this purpose, Balb/c mice were divided into five experimental groups, which received 17 days of combined therapy with vitamin D, donepezil, and memantine. Then, animals were subjected to behavioral tests. OVX groups exhibited reduced levels of estradiol (E2) in serum, which was not altered by the combined therapy. Higher levels of vitamin D3 were found in the OVX animals submitted to the triple-association treatment. Mice exposed to both OVX and the dementia animal model presented impairment in short and long-term spatial and habituation memories. Also, female mice exposed to Aß and OVX exhibited a reduction in brain-derived neurotrophic factor (BDNF) and interleukin-4 (IL-4) levels, and an increase in tumor necrose factor-α (TNFα) levels in the hippocampus. Besides, increased levels of IL-1ß in the hippocampus and cerebral cortex were observed, as well as a significant increase in immunoreactivity for glial fibrillary acidic protein (GFAP), an astrocytes marker, in the hippocampus. Notably, triple-association treatment reversed the effects of the exposition of mice to Aß and OVX in the long-term spatial and habituation memories impairment, as well as reversed changes in TNFα, IL-1ß, IL-4, and GFAP immunoreactivity levels in the hippocampus of treated animals. Our results indicate that the therapeutic association of vitamin D, memantine, and donepezil has beneficial effects on memory performance and attenuated the neuroinflammatory response in female mice subjected to OVX associated with a dementia animal model.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Ratones , Femenino , Animales , Memantina/farmacología , Memantina/uso terapéutico , Donepezilo/metabolismo , Donepezilo/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Vitamina D/farmacología , Interleucina-4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Vitaminas , Hipocampo/metabolismo , Péptidos beta-Amiloides/metabolismo
13.
Int J Nanomedicine ; 18: 8169-8185, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38169997

RESUMEN

Introduction: The development of new materials and tools for radiology is key to the implementation of this diagnostic technique in clinics. In this work, we evaluated the differential accumulation of peptide-functionalized GNRs in a transgenic animal model (APPswe/PSENd1E9) of Alzheimer's disease (AD) by computed tomography (CT) and measured the pharmacokinetic parameters and bioaccumulation of the nanosystem. Methods: The GNRs were functionalized with two peptides, Ang2 and D1, which conferred on them the properties of crossing the blood-brain barrier and binding to amyloid aggregates, respectively, thus making them a diagnostic tool with great potential for AD. The nanosystem was administered intravenously in APPswe/PSEN1dE9 model mice of 4-, 8- and 18-months of age, and the accumulation of gold nanoparticles was observed by computed tomography (CT). The gold accumulation and biodistribution were determined by atomic absorption. Results: Our findings indicated that 18-month-old animals treated with our nanosystem (GNR-D1/Ang2) displayed noticeable differences in CT signals compared to those treated with a control nanosystem (GNR-Ang2). However, no such distinctions were observed in younger animals. This suggests that our nanosystem holds the potential to effectively detect AD pathology. Discussion: These results support the future development of gold nanoparticle-based technology as a more effective and accessible alternative for the diagnosis of AD and represent a significant advance in the development of gold nanoparticle applications in disease diagnosis.


Asunto(s)
Enfermedad de Alzheimer , Nanopartículas del Metal , Nanotubos , Ratones , Animales , Oro/química , Bioacumulación , Distribución Tisular , Nanopartículas del Metal/química , Péptidos/química , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Tomografía Computarizada por Rayos X , Nanotubos/química , Tomografía , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Modelos Animales de Enfermedad , Encéfalo/metabolismo
14.
Metabolites ; 12(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36557245

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative illness responsible for cognitive impairment and dementia. Accumulation of amyloid-beta (Aß) peptides in neurons and synapses causes cell metabolism to unbalance, and the production of reactive oxygen species (ROS), leading to neuronal death and cognitive damage. Guanosine is an endogenous nucleoside recognized as a neuroprotective agent since it prevents glutamate-induced neurotoxicity by a mechanism not yet completely elucidated. In this study, we evaluated behavioral and biochemical effects in the hippocampus caused by the intracerebroventricular (i.c.v.) infusion of Aß1-42 peptide (400 pmol/site) in mice, and the neuroprotective effect of guanosine (8 mg/kg, i.p.). An initial evaluation on the eighth day after Aß1-42 infusion showed no changes in the tail suspension test, although ex vivo analyses in hippocampal slices showed increased ROS production. In the second protocol, on the tenth day following Aß1-42 infusion, no effect was observed in the sucrose splash test, but a reduction in the recognition index in the object location test showed impaired spatial memory. Analysis of hippocampal slices showed no ROS production and mitochondrial membrane potential alteration, but a tendency to increase glutamate release and a significant lactate release, pointing to a metabolic alteration. Those effects were accompanied by decreased cell viability and increased membrane damage. Guanosine treatment prevented behavioral and biochemical alterations evoked by Aß1-42, suggesting a potential role against behavioral and biochemical damage evoked by Aß in the hippocampus.

15.
Metabolites ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36422238

RESUMEN

The main neuropathological feature of Alzheimer's disease (AD) is extracellular amyloid deposition in senile plaques, resulting from an imbalance between the production and clearance of amyloid beta peptides. Amyloid deposition is also found around cerebral blood vessels, termed cerebral amyloid angiopathy (CAA), in 90% of AD cases. Although the relationship between these two amyloid disorders is obvious, this does not make CAA a characteristic of AD, as 40% of the non-demented population presents this derangement. AD is predominantly sporadic; therefore, many factors contribute to its genesis. Herein, the starting point for discussion is the COVID-19 pandemic that we are experiencing and how SARS-CoV-2 may be able to, both directly and indirectly, contribute to CAA, with consequences for the outcome and extent of the disease. We highlight the role of astrocytes and endothelial cells in the process of amyloidgenesis, as well as the role of other amyloidgenic proteins, such as fibrinogen and serum amyloid A protein, in addition to the neuronal amyloid precursor protein. We discuss three independent hypotheses that complement each other to explain the cerebrovascular amyloidgenesis that may underlie long-term COVID-19 and new cases of dementia.

16.
Proteins ; 90(12): 2124-2143, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36321654

RESUMEN

Calcium ion regulation plays a crucial role in maintaining neuronal functions such as neurotransmitter release and synaptic plasticity. Copper (Cu2+ ) coordination to amyloid-ß (Aß) has accelerated Aß1-42 aggregation that can trigger calcium dysregulation by enhancing the influx of calcium ions by extensive perturbing integrity of the membranes. Aß1-42 aggregation, calcium dysregulation, and membrane damage are Alzheimer disease (AD) implications. To gain a detail of calcium ions' role in the full-length Aß1-42 and Aß1-42 -Cu2+ monomers contact, the cellular membrane before their aggregation to elucidate the neurotoxicity mechanism, we carried out 2.5 µs extensive molecular dynamics simulation (MD) to rigorous explorations of the intriguing feature of the Aß1-42 and Aß1-42 -Cu2+ interaction with the dimyristoylphosphatidylcholine (DMPC) bilayer in the presence of calcium ions. The outcome of the results compared to the same simulations without calcium ions. We surprisingly noted robust binding energies between the Aß1-42 and membrane observed in simulations containing without calcium ions and is two and a half fold lesser in the simulation with calcium ions. Therefore, in the case of the absence of calcium ions, N-terminal residues of Aß1-42 deeply penetrate from the surface to the center of the bilayer; in contrast to calcium ions presence, the N- and C-terminal residues are involved only in surface contacts through binding phosphate moieties. On the other hand, Aß1-42 -Cu2+ actively participated in surface bilayer contacts in the absence of calcium ions. These contacts are prevented by forming a calcium bridge between Aß1-42 -Cu2+ and the DMPC bilayer in the case of calcium ions presence. In a nutshell, Calcium ions do not allow Aß1-42 penetration into the membranes nor contact of Aß1-42 -Cu2+ with the membranes. These pieces of information imply that the calcium ions mediate the membrane perturbation via the monomer interactions but do not damage the membrane; they agree with the western blot experimental results of a higher concentration of calcium ions inhibit the membrane pore formation by Aß peptides.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Calcio , Dimiristoilfosfatidilcolina , Fragmentos de Péptidos/química , Péptidos beta-Amiloides/química , Cobre/química , Iones
17.
Toxics ; 10(10)2022 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-36287840

RESUMEN

Environmental exposures to fine particulate matter (PM2.5) and ultrafine particle matter (UFPM) are associated with overlapping Alzheimer's, Parkinson's and TAR DNA-binding protein 43 (TDP-43) hallmark protein pathologies in young Metropolitan Mexico City (MMC) urbanites. We measured CSF concentrations of TDP-43 in 194 urban residents, including 92 MMC children aged 10.2 ± 4.7 y exposed to PM2.5 levels above the USEPA annual standard and to high UFPM and 26 low pollution controls (11.5 ± 4.4 y); 43 MMC adults (42.3 ± 15.9 y) and 14 low pollution adult controls (33.1 ± 12.0 y); and 19 amyotrophic lateral sclerosis (ALS) patients (52.4 ± 14.1 y). TDP-43 neuropathology and cisternal CSF data from 20 subjects­15 MMC (41.1 ± 18.9 y) and 5 low pollution controls (46 ± 16.01 y)­were included. CSF TDP-43 exponentially increased with age (p < 0.0001) and it was higher for MMC residents. TDP-43 cisternal CSF levels of 572 ± 208 pg/mL in 6/15 MMC autopsy cases forecasted TDP-43 in the olfactory bulb, medulla and pons, reticular formation and motor nuclei neurons. A 16 y old with TDP-43 cisternal levels of 1030 pg/mL exhibited TDP-43 pathology and all 15 MMC autopsy cases exhibited AD and PD hallmarks. Overlapping TDP-43, AD and PD pathologies start in childhood in urbanites with high exposures to PM2.5 and UFPM. Early, sustained exposures to PM air pollution represent a high risk for developing brains and MMC UFPM emissions sources ought to be clearly identified, regulated, monitored and controlled. Prevention of deadly neurologic diseases associated with air pollution ought to be a public health priority and preventive medicine is key.

18.
Biochem Biophys Rep ; 31: 101300, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35755270

RESUMEN

Background: Acute lymphoblastic leukemia (ALL) is still incurable hematologic neoplasia in an important percentage of patients. Therefore, new therapeutic approaches need to be developed. Methods: To evaluate the cellular effect of cell-penetrating peptides (C-PP) on leukemia cells, Jurkat cells -a model of ALL were exposed to increasing concentration (50-500 µM) Aß25-35, R7-G-Aß25-35 and Aß25-35-G-R7 peptide for 24 h. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, flow cytometry (FC), and fluorescent microscopy (FM) analysis were used to assess metabolic viability, cell cycle and proliferation, mitochondria functionality, oxidative stress, and cell death markers. Results: We report for the first time that the R7-G-Aß25-35, but not Aß25-35 peptide, induced selective cell death in Jurkat cells more efficiently than the Aß25-35-G-R7 peptide. Indeed, R7-G-Aß25-35 (200 µM) altered the metabolic activity (-25%), arrested the cell cycle in the G2/M-phase (15%), and induced a significant reduction of cellular proliferation (i.e., -74% reduction of Ki-67 nuclei reactivity). Moreover, R7-G-Aß25-35 induced the dissipation of mitochondrial membrane potential (ΔΨm, 51%) and produced an important amount of reactive oxygen species (ROS, 75% at 8 h) in Jurkat cells. The exposure of cells to antioxidant/cytoprotectant N-acetylcysteine (NAC) did not prevent R7-G-Aß25-35 from a loss of ΔΨm in Jurkat cells. The peptide was also unable to activate the executer CASPASE-3, thereby preserving the integrity of the cellular DNA corroborated by the fact that the caspase-3 inhibitor NSCI was unable to protect cells from R7-G-Aß25-35 -induced cell damage. Further analysis showed that the R7-G-Aß25-35 peptide is specifically localized at the outer mitochondria membrane (OMM) according to colocalization with the protein translocase TOMM20. Additionally, the cytotoxic effect of the poly-R7 peptide resembles the toxic action of the uncoupler FCCP, mitocan oligomycin, and rotenone in Jurkat cells. Importantly, the R7-G-Aß25-35 peptide was innocuous to menstrual mesenchymal stromal cells (MenSC) -normal non-leukemia proliferative cells. Conclusion: Our findings demonstrated that the cationic Aß peptide possesses specific anti-leukemia activity against Jurkat cells through oxidative stress (OS)- and CASPASE-3-independent mechanism but fast mitochondria depolarization.

19.
Arch. latinoam. nutr ; Arch. latinoam. nutr;72(1): 43-49, mar. 2022. tab, graf
Artículo en Inglés | LILACS, LIVECS | ID: biblio-1368367

RESUMEN

Lifestyle, psychological well-being, and body mass index of indigenous women. Introduction. Obesity is more common in women and has also been found to be present in indigenous populations. During university studies, obesity-related lifestyles are in the process of consolidation, and although this is known, research is limited to addressing physical activity and diet, ignoring other lifestyle components, such as life appreciation. Additionally, there is a need to corroborate whether psychological well-being contributes to excess weight in indigenous women. Objective. To determine whether there is an association between lifestyle, psychological well-being, and body mass index (BMI) in indigenous women. Materials and methods. A cross-sectional study was conducted among 110 female Zapotec university students in Juchitán, Oaxaca, Mexico. The Psychological Well-Being Scale, the Healthy Lifestyle Scale for University Students, and a questionnaire about personal data were used. Body weight and height were measured to calculate BMI. Results. There was a negative correlation between BMI, self-acceptance (r = -0.33; p < 0.01), and life appreciation (r = -0.22; p < 0.05). Positive correlations were found between lifestyle and psychological well-being dimensions, with the strongest correlations being observed between life appreciation and purpose in life (r = 0.55) and self-acceptance (r = 0.48). The multivariable models determined that life appreciation and self-acceptance are associated with BMI. Conclusion. Life appreciation and self-acceptance are predictors of BMI and are even more strongly associated than exercise and nutrition behaviors(AU)


La obesidad es más frecuente en mujeres, aún en poblaciones indígenas. Durante los estudios universitarios, los estilos de vida relacionados con la obesidad se encuentran en proceso de consolidación, y aunque esto es conocido, las investigaciones se limitan a abordar la actividad física y la dieta, ignorando otros componentes del estilo de vida, como la apreciación por la vida. Adicionalmente, es necesario corroborar si el bienestar psicológico contribuye al exceso de peso en mujeres indígenas. Objetivo. Determinar si existe asociación entre los estilos de vida, el bienestar psicológico y el Índice de Masa Corporal (IMC) en mujeres indígenas. Materiales y métodos. Se realizó un estudio transversal en 110 mujeres zapotecas estudiantes universitarias en Juchitán, Oaxaca, México. Se utilizó la escala de bienestar psicológico, la escala de estilos de vida saludables para estudiantes universitarias y un cuestionario sobre datos personales. Se midió el peso corporal y la estatura para calcular el IMC. Resultados. Hubo correlación negativa entre el IMC, la autoaceptación (r=-0,33; p<0,01) y la apreciación por la vida (r=-0,22; p<0,05). Se encontraron correlaciones entre las dimensiones de estilos de vida y las dimensiones de bienestar psicológico: las correlaciones más fuertes se observaron entre apreciación por la vida y propósito en la vida (r 0 0.55) y autoaceptación (r = 0.48). La apreciación por la vida y la autoaceptación son factores predictores del IMC. Conclusión. La apreciación por la vida y la autoaceptación son predictores del IMC, incluso más fuertemente asociados que el ejercicio físico y la alimentación(AU)


Asunto(s)
Humanos , Femenino , Adulto , Peso Corporal , Índice de Masa Corporal , Pueblos Indígenas , Estilo de Vida , Obesidad , Estudiantes , Universidades , Estatura , Estudios Transversales , Encuestas y Cuestionarios , México
20.
Biochim Biophys Acta Biomembr ; 1864(1): 183749, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34506795

RESUMEN

Gangliosides induced a smelting process in nanostructured amyloid fibril-like films throughout the surface properties contributed by glycosphingolipids when mixed with 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC)/Aß(1-40) amyloid peptide. We observed a dynamical smelting process when pre-formed amyloid/phospholipid mixture is laterally mixed with gangliosides. This particular environment, gangliosides/phospholipid/Aß(1-40) peptide mixed interfaces, showed complex miscibility behavior depending on gangliosides content. At 0% of ganglioside covered surface respect to POPC, Aß(1-40) peptide forms fibril-like structure. In between 5 and 15% of gangliosides, the fibrils dissolve into irregular domains and they disappear when the proportion of gangliosides reach the 20%. The amyloid interfacial dissolving effect of gangliosides is taken place at lateral pressure equivalent to the organization of biological membranes. Domains formed at the interface are clearly evidenced by Brewster Angle Microscopy and Atomic Force Microscopy when the films are transferred onto a mica support. The domains are thioflavin T (ThT) positive when observed by fluorescence microscopy. We postulated that the smelting process of amyloids fibrils-like structure at the membrane surface provoked by gangliosides is a direct result of a new interfacial environment imposed by the complex glycosphingolipids. We add experimental evidence, for the first time, how a change in the lipid environment (increase in ganglioside proportion) induces a rapid loss of the asymmetric structure of amyloid fibrils by a simple modification of the membrane condition (a more physiological situation).


Asunto(s)
Péptidos beta-Amiloides/química , Gangliósidos/química , Glicoesfingolípidos/química , Lípidos de la Membrana/química , Nanoestructuras/química , Fragmentos de Péptidos/química , Amiloide/química , Péptidos beta-Amiloides/ultraestructura , Microscopía de Fuerza Atómica , Nanoestructuras/ultraestructura , Fragmentos de Péptidos/ultraestructura , Fosfatidilcolinas/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA