Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
Front Immunol ; 15: 1386939, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100670

RESUMEN

Objective: This study aimed to evaluate the role of absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis in the pathogenesis of acute gouty arthritis (AGA) and asymptomatic hyperuricemia(AHU). Methods: A cohort of 30 AGA patients, 30 AHU individuals, and 30 healthy controls (HC) was assembled. Demographic and biochemical data, along with blood samples, were collected. Serum double-stranded DNA (dsDNA) levels were quantified using a fluorescent assay. Transcriptomic and proteomic analysis of AIM2, Caspase-1, GSDMD, IL-1ß, and IL-18 in peripheral blood mononuclear cells was performed using qRT-PCR and Western blot. Enzyme-linked immunosorbent assay (ELISA) was employed to measure serum IL-1ß and IL-18. Spearman correlation analysis was utilized to assess relationships between variables. Results: Both AGA and AHU groups demonstrated elevated metabolic indicators and serum levels of dsDNA, IL-1ß, and IL-18 compared to the HC group. AGA patients exhibited higher inflammatory markers than the AHU group. In the AGA group, there was a significant increase in the mRNA and protein levels of AIM2, Caspase-1, GSDMD, IL-1ß, and IL-18 (P<0.05 to P<0.001). The AHU group showed higher AIM2, Caspase-1, GSDMD, and IL-18 mRNA levels than the HC group (P<0.001 to P<0.01), with a non-significant increase in AIM2, GSDMD, and IL-1ß proteins (P>0.05). In contrast, Caspase-1 and IL-18 proteins were significantly higher in the AHU group (P<0.05). Notable correlations were observed between AIM2 protein expression and levels of Caspase-1 and GSDMD in both AGA and AHU groups. In the AGA group, AIM2 protein correlated with IL-1ß, but not in the AHU group. The AIM2 protein in the AHU group was positively associated with IL-18, with no such correlation in the AGA group. Conclusion: AIM2 inflammasome may play a role in the inflammatory processes of AGA and AHU and that its activation may be related to the pyroptosis pathway.


Asunto(s)
Artritis Gotosa , Proteínas de Unión al ADN , Hiperuricemia , Inflamasomas , Piroptosis , Humanos , Masculino , Inflamasomas/metabolismo , Artritis Gotosa/inmunología , Artritis Gotosa/sangre , Artritis Gotosa/metabolismo , Persona de Mediana Edad , Hiperuricemia/sangre , Hiperuricemia/inmunología , Femenino , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Adulto , Interleucina-18/sangre , Anciano , Estudios de Casos y Controles , Biomarcadores/sangre , Caspasa 1/metabolismo
2.
Vet Res Commun ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145856

RESUMEN

Clinically, the incidence of nontuberculous mycobacteria (NTM) lung disease is on the rise, and Mycobacterium intracellulare (M. intracellulare) has attracted much attention as a common opportunistic pathogen in clinical practice. So it is very important to study its immunopathogenic mechanism. In this study, the mechanism of M. intracellulare induced pyroptosis of macrophage was investigated. As shown in Fig. 1, the secretion of IL-1ß and IL-18 in J774A.1 cells increased with time after M. intracellulare infection and was affected by caspase-1 activation and K + efflux, while caspase-1 was significantly expressed in infected cells. Further from Fig. 2, NLRP3,AIM2,ASC proteins were significantly expressed in J774A.1 cells after infection, indicating that the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and absent in melanoma 2 (AIM2) inflammasome were involved in the infection process. In addition, when caspase-1 activity and K + efflux were inhibited, the expression of related proteins was significantly reduced. It indicates that the activation of NLRP3 and AIM2 is regulated by caspase-1 and K+. Figure 3, the percentage of dead cells with cell membrane damage increases after infection and cleavage of GSDMD proteins occurs. In summary, infection of J774A.1 cells with M. intracellulare induces pyroptosis, and this process is mediated by caspase-1. Our study provides information for further understanding of the molecular mechanism of M. intracellulare infection.

3.
Atherosclerosis ; 396: 118541, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39111028

RESUMEN

The cardiovascular complications of atherosclerosis are thought to arise from an inflammatory response to the accumulation of cholesterol-rich lipoproteins in the arterial wall. The positive outcome of CANTOS (Canakinumab Anti-inflammatory Thrombosis Outcome Study) provided key evidence to support this concept and suggested that inflammasomes and IL-1ß are important inflammatory mediators in human atherosclerotic cardiovascular diseases (ACVD). In specific settings NLRP3 or AIM2 inflammasomes can induce inflammatory responses in the arterial wall and promote the formation of unstable atherosclerotic plaques. Clonal hematopoiesis (CH) has recently emerged as a major independent risk factor for ACVD. CH mutations arise during ageing and commonly involves variants in genes mediating epigenetic modifications (TET2, DNMT3A, ASXL1) or cytokine signaling (JAK2). Accumulating evidence points to the role of inflammasomes in the progression of CH-induced ACVD events and has shed light on the regulatory pathways and possible therapeutic approaches that specifically target inflammasomes in atherosclerosis. Epigenetic dynamics play a vital role in regulating the generation and activation of inflammasome components by causing changes in DNA methylation patterns and chromatin assembly. This review examines the genetic and epigenetic regulation of inflammasomes, the intersection of macrophage cholesterol accumulation with inflammasome activation and their roles in atherosclerosis. Understanding the involvement of inflammasomes in atherosclerosis pathogenesis may lead to customized treatments that reduce the burden of ACVD.

4.
Biomed Pharmacother ; 178: 117301, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39137650

RESUMEN

OBJECTIVES: This study aimed to evaluate the therapeutic effects of forsythoside A (FA) on brain injury induced by severe acute pancreatitis (SAP) using a murine model. METHODS: Mice were induced with 3.5 % sodium taurocholate to model SAP-induced brain injury (SAP-IBI) and were randomly assigned to four distinct treatment regimens: the SAP-IBI model group (SAP-IBI), low-dose FA treatment group (FA L+SI), middle-dose FA treatment group (FA M+SI), and high-dose FA treatment group (FA H+SI). A sham-operation group (SO) served as a negative control. Serum levels of interleukin-1ß (IL-1ß) and IL-18 were quantified via ELISA, and serum amylase levels were assessed using optical turbidimetry. mRNA expression levels of AIM2, ASC, Caspase-1, and GAPDH in hippocampal brain tissue were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Protein levels of NLRP3, GSDMD, IL-1ß, and IL-18 in hippocampal brain tissue were evaluated using Western blotting. Neurological function in surviving mice was assessed through modified neurological severity scores (mNSS). Transmission electron microscopy (TEM) provided ultrastructural analysis of the hippocampus. Additionally, water content and pathological changes in hippocampal brain tissue were examined 24 hours post-operation, along with other relevant indicators. RESULTS: At 24 hours post-operation, the FA H+SI group exhibited significantly reduced levels of serum amylase, IL-1ß, and IL-18, along with decreased expression of AIM2, ASC, and Caspase-1 mRNA. Furthermore, NLRP3 protein levels, water content, pancreas and hippocampal brain pathological scores, and mNSS were significantly lower compared to the SAP-IBI group (P<0.01). CONCLUSIONS: FA demonstrates protective effects against SAP-IBI in mice, suggesting potential therapeutic benefits.

5.
Front Immunol ; 15: 1441385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076969

RESUMEN

AIM2, a cytosolic innate immune receptor, has the capability to recognize double-stranded DNA (dsDNA). This paper delineates the structural features of AIM2 and its mechanisms of activation, emphasizing its capacity to detect cytosolic DNA and initiate inflammasome assembly. Additionally, we explore the diverse functions of AIM2 in different cells. Insights into AIM2-mediated neuroinflammation provide a foundation for investigating novel therapeutic strategies targeting AIM2 signaling pathways. Furthermore, we present a comprehensive review of the roles of AIM2 in neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we discuss its therapeutic implications. In conclusion, a profound understanding of AIM2 in neurodegenerative diseases may facilitate the development of effective interventions to mitigate neuronal damage and slow disease progression.


Asunto(s)
Proteínas de Unión al ADN , Inflamasomas , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/terapia , Enfermedades Neurodegenerativas/inmunología , Enfermedades Neurodegenerativas/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Inflamasomas/metabolismo , Transducción de Señal , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/etiología , Inmunidad Innata , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/inmunología , ADN/metabolismo , ADN/inmunología
6.
MedComm (2020) ; 5(8): e668, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39081514

RESUMEN

Retinopathy of prematurity (ROP) is a retinal neovascularization (RNV) disease that is characterized by abnormal blood vessel development in the retina. Importantly, the etiology of ROP remains understudied. We re-analyzed previously published single-cell data and discovered a strong correlation between microglia and RNV diseases, particularly ROP. Subsequently, we found that reactive oxygen species reduced autophagy-dependent protein degradation of absent in melanoma 2 (AIM2) in hypoxic BV2 cells, leading to increased AIM2 protein accumulation. Furthermore, we engineered AIM2 knockout mice and observed that the RNV was significantly reduced compared to wild-type mice. In vitro vascular function assays also demonstrated diminished angiogenic capabilities following AIM2 knockdown in hypoxic BV2 cells. Mechanistically, AIM2 enhanced the M1-type polarization of microglia via the ASC/CASP1/IL-1ß pathway, resulting in RNV. Notably, the administration of recombinant protein IL-1ß exacerbated angiogenesis, while its inhibition ameliorated the condition. Taken together, our study provides a novel therapeutic target for ROP and offers insight into the interaction between pyroptosis and autophagy.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39013640

RESUMEN

Periodontitis and peri-implantitis are inflammatory diseases of infectious etiology that lead to the destruction of the supporting tissues located around teeth or implants. Although both pathologies share several characteristics, it is also known that they show important differences which could be due to the release of particles and metal ions from the implant surface. The activation of the inflammasome pathway is one of the main triggers of the inflammatory process. The inflammatory process in patients who suffer periodontitis or peri-implantitis has been mainly studied on cells of the immune system; however, it is also important to consider other cell types with high relevance in the regulation of the inflammatory response. In that context, mesenchymal stromal cells (MSCs) play an essential role in the regulation of inflammation due to their ability to modulate the immune response. This study shows that the induction of NLRP3 and absent in melanoma 2 (AIM2) inflammasome pathways mediated by bacterial components increases the secretion of active IL-1ß and the pyroptotic process on human alveolar bone-derived mesenchymal stromal cells (hABSCs). Interestingly, when bacterial components are combined with titanium ions, NLRP3 expression is further increased while AIM2 expression is reduced. Furthermore, decrease of NLRP3 or AIM2 expression in hABSCs partially reverses the negative effect observed on the progression of the inflammatory process as well as on cell survival. In summary, our data suggest that the progression of the inflammatory process in peri-implantitis could be more acute due to the combined action of organic and inorganic components.

8.
Neurochem Int ; 179: 105810, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069080

RESUMEN

The absent in melanoma 2 (AIM2) inflammasome contributes to ischemic brain injury by inducing cell pyroptosis and inflammatory responses. Our research group has previously demonstrated that ATP-sensitive potassium channels (KATP channels) openers can modulate neuronal synaptic plasticity post-ischemic stroke for neuroprotection. However, the specific mechanisms of KATP channels in the inflammatory response following ischemic stroke remain unclear. Here, we assessed cellular damage by observing changes in BV-2 morphology and viability. 2,3,5-Triphenyl tetrazolium chloride (TTC) staining, mNSS scoring, Nissl staining, and TdT-mediated dUTP nick end labeling (TUNEL) staining were used to evaluate behavioral deficits, brain injury severity, and neuronal damage in mice subjected to middle cerebral artery occlusion (MCAO). Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, immunofluorescence, and enzyme-linked immunosorbent assay (ELISA) were used to measure cell pyroptosis and nuclear factor-kappaB (NF-κB) activation in vivo and in vitro. We observed that AIM2 protein expression was upregulated and localized within the cytoplasm of BV-2 cells. Notably, low-dose Nicorandil treatment reduced inflammatory cytokine secretion and pyroptosis-related protein expression, including AIM2, cleaved cysteinyl aspartate-specific protease-1 (cleaved caspase-1), and Gasdermin D N-terminal (GSDMD-NT). Further investigations revealed that the KATP channel inhibitor 5-HD upregulated p-NF-κB p65, NF-κB p65, and p-IκBα expression, reversing Nicorandil's neuroprotective effect in vivo. In summary, our results suggest that Nicorandil may serve as a potential therapeutic option for ischemic stroke. Targeting AIM2 and NF-κB represents effective strategies for inhibiting neuroinflammation.

9.
Int J Mol Sci ; 25(12)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38928277

RESUMEN

Absent in melanoma 2 (AIM2), a key component of the IFI20X/IFI16 (PYHIN) protein family, is characterized as a DNA sensor to detect cytosolic bacteria and DNA viruses. However, little is known about its immunological role during pathogenic Clostridium perfringens (C. perfringens) infection, an extracellular bacterial pathogen. In a pathogenic C. perfringens gas gangrene model, Aim2-/- mice are more susceptible to pathogenic C. perfringens soft tissue infection, revealing the importance of AIM2 in host protection. Notably, Aim2 deficiency leads to a defect in bacterial killing and clearance. Our in vivo and in vitro findings further establish that inflammasome signaling is impaired in the absence of Aim2 in response to pathogenic C. perfringens. Mechanistically, inflammasome signaling downstream of active AIM2 promotes pathogen control. Importantly, pathogenic C. perfringens-derived genomic DNA triggers inflammasome signaling activation in an AIM2-dependent manner. Thus, these observations uncover a central role for AIM2 in host defense and triggering innate immunity to combat pathogenic C. perfringens infections.


Asunto(s)
Clostridium perfringens , Proteínas de Unión al ADN , Inflamasomas , Transducción de Señal , Inflamasomas/metabolismo , Inflamasomas/inmunología , Animales , Clostridium perfringens/inmunología , Clostridium perfringens/patogenicidad , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ratones Noqueados , Inmunidad Innata , Ratones Endogámicos C57BL , Gangrena Gaseosa/inmunología , Gangrena Gaseosa/microbiología , Modelos Animales de Enfermedad , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/metabolismo , Humanos
10.
Pathogens ; 13(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38921772

RESUMEN

(1) Background: Peptides are appealing as pharmacological materials because they are easily produced, safe, and tolerable. Despite increasing gum-care awareness, periodontitis is still prevalent and is influenced by factors like high sugar consumption, smoking, and aging. Porphyromonas gingivalis is considered a major etiologic agent of periodontitis and activates the NLR family pyrin domain containing 3 (NLRP3) but is absent in melanoma 2 (AIM2) inflammasomes, resulting in pro-inflammatory cytokine release. (2) Methods: We examined the anti-inflammatory effects of 18 peptides derived from human stromal cell-derived factor-1 (SDF-1) on THP-1 macrophages. Inflammation was induced by P. gingivalis, and the anti-inflammatory effects were analyzed using molecular biological techniques. In a mouse periodontitis model, alveolar bone resorption was assessed using micro-CT. (3) Results: Of the 18 SDF-1-derived peptides, S10 notably reduced IL-1ß and TNF-α secretion. S10 also diminished the P. gingivalis-induced expression of NLRP3, AIM2, ASC (apoptosis-associated speck-like protein), caspase-1, and IL-1ß. Furthermore, S10 attenuated the enhanced TLR (toll-like receptor) signaling pathway and decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). In addition, S10 mitigated alveolar bone loss in our P. gingivalis-induced mouse model of periodontitis. (4) Conclusions: S10 suppressed TLR/NF-κB/NLRP3 inflammasome signaling and the AIM2 inflammasome in our P. gingivalis-induced murine periodontitis model, which suggests that it has potential use as a therapeutic treatment for periodontitis.

11.
Cell Mol Life Sci ; 81(1): 280, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918243

RESUMEN

Candida albicans is among the most prevalent invasive fungal pathogens for immunocompromised individuals and novel therapeutic approaches that involve immune response modulation are imperative. Absent in melanoma 2 (AIM2), a pattern recognition receptor for DNA sensing, is well recognized for its involvement in inflammasome formation and its crucial role in safeguarding the host against various pathogenic infections. However, the role of AIM2 in host defense against C. albicans infection remains uncertain. This study reveals that the gene expression of AIM2 is induced in human and mouse innate immune cells or tissues after C. albicans infection. Furthermore, compared to their wild-type (WT) counterparts, Aim2-/- mice surprisingly exhibit resistance to C. albicans infection, along with reduced inflammation in the kidneys post-infection. The resistance of Aim2-/- mice to C. albicans infection is not reliant on inflammasome or type I interferon production. Instead, Aim2-/- mice display lower levels of apoptosis in kidney tissues following infection than WT mice. The deficiency of AIM2 in macrophages, but not in dendritic cells, results in a phenocopy of the resistance observed in Aim2-/- mice against C. albican infection. The treatment of Clodronate Liposome, a reagent that depletes macrophages, also shows the critical role of macrophages in host defense against C. albican infection in Aim2-/- mice. Furthermore, the reduction in apoptosis is observed in Aim2-/- mouse macrophages following infection or treatment of DNA from C. albicans in comparison with controls. Additionally, higher levels of AKT activation are observed in Aim2-/- mice, and treatment with an AKT inhibitor reverses the host resistance to C. albicans infection. The findings collectively demonstrate that AIM2 exerts a negative regulatory effect on AKT activation and enhances macrophage apoptosis, ultimately compromising host defense against C. albicans infection. This suggests that AIM2 and AKT may represent promising therapeutic targets for the management of fungal infections.


Asunto(s)
Apoptosis , Candida albicans , Candidiasis , Proteínas de Unión al ADN , Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Animales , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Candidiasis/inmunología , Candidiasis/microbiología , Candidiasis/metabolismo , Candidiasis/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Inflamasomas/metabolismo , Inmunidad Innata , Riñón/patología , Riñón/metabolismo , Riñón/microbiología
12.
J Ethnopharmacol ; 333: 118474, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38906338

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is a serious disabling and fatal disease that places a heavy burden on the world. Stroke induces a state of systemic immunosuppression that is strongly associated with an increased risk of infection and severe outcomes. Buyang Huanwu Decoction (BYHWD) is an ancient Chinese traditional formula with a good clinical and experimental basis. However, the role of BYHWD on post-stroke immunomodulation, especially immunosuppression, is unclear. AIM OF THE STUDY: The aim of this study was to investigate the pharmacological mechanism of BYHWD to alleviate ischemic stroke by analyzing splenic T cells apoptosis triggered by the AIM2 inflammasome activation cascade. MATERIALS AND METHODS: An ischemic stroke model in C57BL/6 J mice was constructed using the MCAO method. The mNSS test and the hanging wire test were conducted to evaluate neurological impairment in mice. Histopathological damage was visualized by Nissl staining and HE staining. The protective effects of BYHWD on the spleen were determined by splenic index and spleen HE staining. The inhibition of AIM2 inflammasome cascade by BYHWD were explored through immunofluorescence (IF), flow cytometry, enzyme-linked immunosorbent assay (ELISA) and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Flow cytometry was used to assess the apoptosis of splenic T cells. RESULTS: BYHWD significantly reduced infarct size, improved neurological function scores, and alleviated histopathological damage in middle cerebral artery occlusion (MCAO) mice. At the same time, BYHWD salvaged spleen atrophy. BYHWD significantly ameliorated apoptosis of splenic T lymphocytes. Key proteins and factors in the AIM2/IL-1ß/FasL/Fas axis are effectively inhibited from expression after BYHWD treatment. CONCLUSION: It is the first study to demonstrate that BYHWD can improve stroke-induced immunosuppression by down-regulating Fas-dependent splenic T-cell apoptosis triggered by peripheral AIM2 inflammasome-driven signaling cascade.


Asunto(s)
Apoptosis , Proteínas de Unión al ADN , Medicamentos Herbarios Chinos , Infarto de la Arteria Cerebral Media , Inflamasomas , Bazo , Linfocitos T , Animales , Masculino , Ratones , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas de Unión al ADN/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Ratones Endogámicos C57BL , Bazo/efectos de los fármacos , Linfocitos T/efectos de los fármacos
13.
Chem Biol Interact ; 399: 111122, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-38944328

RESUMEN

Cadmium (Cd) is a widely used heavy metal and has recently been recognized as a possible source of human toxicity due to its ability to accumulate in organs. Accumulation of heavy metals has several adverse effects, including inducing inflammation, in multiple organs, such as the testis. However, how Cd ions are sensed by host cells and how tissue inflammation eventually occurs remains unclear. Here, we show that Cd activates the AIM2 inflammasome by mediating genomic DNA release into the cytoplasm after DNA damage via oxidative stress, to trigger IL-1ß secretion and pyroptosis. Specifically, the toxicity effects induced by Cd in cells were prevented by melatonin, which served as an antagonist of oxidative stress. Accordingly, in a mouse model, Cd-induced inflammation in the testis and consequential male reproductive dysfunction were effectively reversed by melatonin. Thus, our results suggest a function of AIM2 in Cd-mediated testis inflammation and identify AIM2 as a major pattern recognition receptor in response to heavy metal Cd ions.


Asunto(s)
Cadmio , Proteínas de Unión al ADN , Inmunidad Innata , Inflamasomas , Testículo , Animales , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Cadmio/toxicidad , Masculino , Ratones , Inmunidad Innata/efectos de los fármacos , Humanos , Proteínas de Unión al ADN/metabolismo , Testículo/efectos de los fármacos , Testículo/metabolismo , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Interleucina-1beta/metabolismo , Melatonina/farmacología , Daño del ADN/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/metabolismo , Piroptosis/efectos de los fármacos
14.
Immun Inflamm Dis ; 12(6): e1317, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38869352

RESUMEN

BACKGROUND: Numerous studies have demonstrated that Absent in Melanoma 2 (AIM2) is upregulated in aortic plaques, especially in Vascular Smooth Muscle Cells in Coronary Artery Disease (CAD), and is related to inflammasome-induced inflammation. However, the underlying mechanism of this phenomenon and the role of AIM2 in atherosclerosis remained unclear. METHODS: This study enrolled 133 CAD patients and 123 controls. We isolated Peripheral Blood Leukocytes (PBLs) and the mRNA expression of AIM2 inflammasome and its downstream genes (ASC, Caspase-1, IL-1ß, and IL-18) were detected by real-time quantitative PCR (qPCR). We assessed correlations between AIM2 expressions and clinical characteristics by multiple linear regression and spearman's correlation. The THP-1 cells cultured in poly(dA:dT), A151, interferon-gamma (IFN-γ), AG490, or JC2-11. And then the mRNA and protein levels of AIM2, ASC, Caspase-1, IL-1ß, IL-18, GSDMD, and STAT1 were analyzed by qPCR and Western blot analysis, respectively. The migration and adhesive capacity of THP-1 cells was assessed using an inverted microscope and an inverted fluorescence microscope, respectively. RESULTS: In this study, we found that expressions of components of AIM2 inflammasome and its downstream genes (ASC, Caspase-1, IL-1ß, and IL-18), were all increased in PBLs of CAD patients, which indicated the inflammasome activation. AIM2 inflammasome activation further induced pyroptosis, and stimulated migration and adhesion in monocyte cell lines, which was regulated by IFN-γ probably through JAK2/STAT1 pathway. In addition, AIM2 expressions were positively correlated with systemic inflammatory indicators as an independent risk factor for CAD. CONCLUSIONS: In conclusion, increased AIM2 expression, induced by the IFN-γ/JAK2/STAT1 signal, orientates monocytes to inflammatory status or even pyroptosis through AIM2 inflammasome activation, which is involved in the development of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Proteínas de Unión al ADN , Inflamasomas , Interferón gamma , Janus Quinasa 2 , Monocitos , Piroptosis , Factor de Transcripción STAT1 , Transducción de Señal , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/inmunología , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Inflamasomas/metabolismo , Interferón gamma/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Monocitos/metabolismo , Monocitos/inmunología , Factor de Transcripción STAT1/metabolismo , Células THP-1
15.
mBio ; 15(7): e0120924, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38860764

RESUMEN

Mammalian AIM-2-like receptor (ALR) proteins bind nucleic acids and initiate production of type I interferons or inflammasome assembly, thereby contributing to host innate immunity. In mice, the Alr locus is highly polymorphic at the sequence and copy number level, and we show here that it is one of the most dynamic regions of the genome. One rapidly evolving gene within this region, Ifi207, was introduced to the Mus genome by gene conversion or an unequal recombination event a few million years ago. Ifi207 has a large, distinctive repeat region that differs in sequence and length among Mus species and even closely related inbred Mus musculus strains. We show that IFI207 controls murine leukemia virus (MLV) infection in vivo and that it plays a role in the STING-mediated response to cGAMP, dsDNA, DMXXA, and MLV. IFI207 binds to STING, and inclusion of its repeat region appears to stabilize STING protein. The Alr locus and Ifi207 provide a clear example of the evolutionary innovation of gene function, possibly as a result of host-pathogen co-evolution.IMPORTANCEThe Red Queen hypothesis predicts that the arms race between pathogens and the host may accelerate evolution of both sides, and therefore causes higher diversity in virulence factors and immune-related proteins, respectively . The Alr gene family in mice has undergone rapid evolution in the last few million years and includes the creation of two novel members, MndaL and Ifi207. Ifi207, in particular, became highly divergent, with significant genetic changes between highly related inbred mice. IFI207 protein acts in the STING pathway and contributes to anti-retroviral resistance via a novel mechanism. The data show that under the pressure of host-pathogen coevolution in a dynamic locus, gene conversion and recombination between gene family members creates new genes with novel and essential functions that play diverse roles in biological processes.


Asunto(s)
Proteínas de la Membrana , Replicación Viral , Animales , Ratones , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Inmunidad Innata , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
16.
Sci Rep ; 14(1): 10782, 2024 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734775

RESUMEN

The inflammatory corpuscle recombinant absents in melanoma 2 (AIM2) and cholesterol efflux protein ATP binding cassette transporter A1(ABCA1) have been reported to play opposing roles in atherosclerosis (AS) plaques. However, the relationship between AIM2 and ABCA1 remains unclear. In this study, we explored the potential connection between AIM2 and ABCA1 in the modulation of AS by bioinformatic analysis combined with in vitro experiments. The GEO database was used to obtain AS transcriptional profiling data; screen differentially expressed genes (DEGs) and construct a weighted gene co-expression network analysis (WGCNA) to obtain AS-related modules. Phorbol myristate acetate (PMA) was used to induce macrophage modelling in THP-1 cells, and ox-LDL was used to induce macrophage foam cell formation. The experiment was divided into Negative Control (NC) group, Model Control (MC) group, AIM2 overexpression + ox-LDL (OE AIM2 + ox-LDL) group, and AIM2 short hairpin RNA + ox-LDL (sh AIM2 + ox-LDL) group. The intracellular cholesterol efflux rate was detected by scintillation counting; high-performance liquid chromatography (HPLC) was used to detect intracellular cholesterol levels; apoptosis levels were detected by TUNEL kit; levels of inflammatory markers (IL-1ß, IL-18, ROS, and GSH) were detected by ELISA kits; and levels of AIM2 and ABCA1 proteins were detected by Western blot. Bioinformatic analysis revealed that the turquoise module correlated most strongly with AS, and AIM2 and ABCA1 were co-expressed in the turquoise module with a trend towards negative correlation. In vitro experiments demonstrated that AIM2 inhibited macrophage cholesterol efflux, resulting in increased intracellular cholesterol levels and foam cell formation. Moreover, AIM2 had a synergistic effect with ox-LDL, exacerbating macrophage oxidative stress and inflammatory response. Silencing AIM2 ameliorated the above conditions. Furthermore, the protein expression levels of AIM2 and ABCA1 were consistent with the bioinformatic analysis, showing a negative correlation. AIM2 inhibits ABCA1 expression, causing abnormal cholesterol metabolism in macrophages and ultimately leading to foam cell formation. Inhibiting AIM2 may reverse this process. Overall, our study suggests that AIM2 is a reliable anti-inflammatory therapeutic target for AS. Inhibiting AIM2 expression may reduce foam cell formation and, consequently, inhibit the progression of AS plaques.


Asunto(s)
Transportador 1 de Casete de Unión a ATP , Colesterol , Proteínas de Unión al ADN , Células Espumosas , Lipoproteínas LDL , Transportador 1 de Casete de Unión a ATP/metabolismo , Transportador 1 de Casete de Unión a ATP/genética , Células Espumosas/metabolismo , Humanos , Colesterol/metabolismo , Lipoproteínas LDL/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Células THP-1 , Macrófagos/metabolismo , Biología Computacional/métodos , Apoptosis , Inflamación/metabolismo , Inflamación/patología
17.
Adv Immunol ; 161: 53-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763702

RESUMEN

Our innate immune system uses pattern recognition receptors (PRRs) as a first line of defense to detect microbial ligands and initiate an immune response. Viral nucleic acids are key ligands for the activation of many PRRs and the induction of downstream inflammatory and antiviral effects. Initially it was thought that endogenous (self) nucleic acids rarely activated these PRRs, however emerging evidence indicates that endogenous nucleic acids are able to activate host PRRs in homeostasis and disease. In fact, many regulatory mechanisms are in place to finely control and regulate sensing of self-nucleic acids by PRRs. Sensing of self-nucleic acids is particularly important in the brain, as perturbations to nucleic acid sensing commonly leads to neuropathology. This review will highlight the role of nucleic acid sensors in the brain, both in disease and homeostasis. We also indicate the source of endogenous stimulatory nucleic acids where known and summarize future directions for the study of this growing field.


Asunto(s)
Encéfalo , Inmunidad Innata , Ácidos Nucleicos , Receptores de Reconocimiento de Patrones , Humanos , Encéfalo/metabolismo , Encéfalo/inmunología , Animales , Receptores de Reconocimiento de Patrones/metabolismo , Ácidos Nucleicos/inmunología , Ácidos Nucleicos/metabolismo , Homeostasis , Transducción de Señal
18.
Phytomedicine ; 130: 155693, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38763006

RESUMEN

BACKGROUND: Alcoholic liver disease (ALD), a public health challenge worldwide caused by long-term persistent drinking, is life-threatening with minimal approved therapies. Hepatic steatosis accompanied by inflammation is an initial and inevitable stage in the complex progression of simple alcoholic liver injury to more severe liver diseases such as hepatitis, liver fibrosis, cirrhosis and liver cancer. PURPOSE: We aimed to identify the therapeutic role of Bruceine A (BA) in ALD whilst attempting to explore whether its protective effects depend specifically on the farnesoid X receptor (FXR). METHODS: Autodock was applied to detect the affinity between BA and FXR. Lieber-DeCarli liquid diet with 5 % ethanol (v/v) was adopted to establish the mouse ALD model. The lentivirus mediating FXR (LV-FXR) was injected into mice via the tail vein to establish FXR-overexpressed mice. FXR silencing or overexpression plasmids were transfected into AML-12 cells prior to ethanol stimulation. Quantitative real-time PCR, Western blotting and immunofluorescence assays were employed to determine the expression of related genes. We subjected liver sections to H&E and Oil Red O staining to evaluate the liver histological injury and the deposition of lipid droplets. RESULTS: BA significantly reduced body weight and liver-to-body weight ratios as well as biochemical indexes in mice. Ethanol-induced liver damage and lipid accumulation could be alleviated by BA treatment. BA bound to FXR by two hydrogen bonds. There was a positive correlation between BA administration and FXR expression. BA inhibited the expression of lipid synthesis genes and enhanced the expression of lipid metabolism genes by activating FXR, thus alleviating steatosis in ALD. Moreover, BA exerted an ameliorative effect against inflammation by inhibiting the activation of absent in melanoma 2 (AIM2) inflammasome by activating FXR. FXR overexpression possessed the ability to counter the accumulation of lipid and the activation of AIM2 inflammasome caused by ethanol. FXR deficiency exacerbated ethanol-induced liver steatosis and inflammation. The hepatoprotective effect of BA could be disrupted by FXR antagonist guggulsterone (GS) in vivo and FXR siRNA in vitro. CONCLUSION: BA alleviated alcoholic liver disease by inhibiting AIM2 inflammasome activation through an FXR-dependent mechanism. This study may potentially represent a new therapeutic approach for ALD.


Asunto(s)
Inflamasomas , Hepatopatías Alcohólicas , Ratones Endogámicos C57BL , Receptores Citoplasmáticos y Nucleares , Animales , Receptores Citoplasmáticos y Nucleares/metabolismo , Hepatopatías Alcohólicas/tratamiento farmacológico , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Ratones , Modelos Animales de Enfermedad , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Etanol
19.
Int J Mol Sci ; 25(9)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38732221

RESUMEN

Abdominal aortic aneurysm (AAA) has been recognized as a serious chronic inflammatory degenerative aortic disease in recent years. At present, there is no other effective intervention except surgical treatment for AAA. With the aging of the human population, its incidence is increasing year by year, posing a serious threat to human health. Modern studies suggest that vascular chronic inflammatory response is the core process in AAA occurrence and development. Inflammasome, a multiprotein complex located in the cytoplasm, mediates the expression of various inflammatory cytokines like interleukin (IL)-1ß and IL-18, and thus plays a pivotal role in inflammation regulation. Therefore, inflammasome may exert a crucial influence on the progression of AAA. This article reviews some mechanism studies to investigate the role of inflammasome in AAA and then summarizes several potential drugs targeting inflammasome for the treatment of AAA, aiming to provide new ideas for the clinical prevention and treatment of AAA beyond surgical methods.


Asunto(s)
Aneurisma de la Aorta Abdominal , Inflamasomas , Aneurisma de la Aorta Abdominal/metabolismo , Humanos , Inflamasomas/metabolismo , Animales , Inflamación/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-38662322

RESUMEN

Osteolysis resulting from wear particles and subsequent aseptic loosening is a leading cause of revision surgery of artificial joints. The underlying pathogenesis of particle-induced osteolysis (PPO) has remained largely uncertain. Addressing how to mitigate osteolysis caused by wear particles presents a significant challenge for orthopedic surgeons. This study aimed to explore the molecular mechanism by which Angiopoietin (Ang-1) inhibits osteoclast activation to alleviate osteolysis. RAW264.7 mouse macrophages were stimulated with LPS or RANKL to induce osteoclast formation. Additionally, titanium (Ti) particles (50 mg) were subperiosteally implanted around the cranial suture of mice to establish a calvarial osteolysis model. Ang-1, a member of the pro-angiogenic factor protein family and an important inflammatory regulator molecule, was utilized in this model. TRAP staining was utilized to detect osteoclast activation, while a western blot was conducted to identify key proteins associated with mitophagy and pyroptosis. Scanning electron microscopy was employed to observe the morphology and dimensions of Ti particles. Additionally, a combination of micro-CT, H&E, Masson's trichrome, and immunohistochemical staining techniques were applied to analyze the calvarial samples. Results indicated that Ang-1 could inhibit LPS- or RANKL-induced osteoclastogenesis and alleviate Ti particle-induced calvarial osteolysis in mice. TBK-1, a key signaling molecule involved in initiating mitophagy, was found to be mechanistically enhanced by Ang-1 through promoting TBK-1 phosphorylation in macrophages. This process inhibited AIM2 inflammasome-mediated pyroptosis and impeded osteoclastogenesis. Overall, this research uncovers a novel mechanism by which Ang-1 can attenuate inflammatory osteolysis, potentially offering a new therapeutic approach for PPO.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA