Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cell Physiol ; 238(1): 227-241, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477412

RESUMEN

The elimination of transformed and viral infected cells by natural killer (NK) cells requires a specialized junction between NK and target cells, denominated immunological synapse (IS). After initial recognition, the IS enables the directed secretion of lytic granules content into the susceptible target cell. The lymphocyte function-associated antigen (LFA)-1 regulates NK effector function by enabling NK-IS assembly and maturation. The pathways underlying LFA-1 accumulation at the IS in NK cells remained uncharacterized. A kinase anchoring protein 350 (AKAP350) is a centrosome/Golgi-associated protein, which, in T cells, participates in LFA-1 activation by mechanisms that have not been elucidated. We first evaluated AKAP350 participation in NK cytolytic activity. Our results showed that the decrease in AKAP350 levels by RNA interference (AKAP350KD) inhibited NK-YTS cytolytic activity, without affecting conjugate formation. The impairment of NK effector function in AKAP350KD cells correlated with decreased LFA-1 clustering and defective IS maturation. AKAP350KD cells that were exclusively activated via LFA-1 showed impaired LFA-1 organization and deficient lytic granule translocation as well. In NK AKAP350KD cells, activation signaling through Vav1 was preserved up to 10 min of interaction with target cells, but significantly decreased afterwards. Experiments in YTS and in ex vivo NK cells identified an intracellular pool of LFA-1, which partially associated with the Golgi apparatus and, upon NK activation, redistributed to the IS in an AKAP350-dependent manner. The analysis of Golgi organization indicated that the decrease in AKAP350 expression led to the disruption of the Golgi integrity in NK cells. Alteration of Golgi function by BFA treatment or AKAP350 delocalization from this organelle also led to impaired LFA-1 localization at the IS. Therefore, this study characterizes AKAP350 participation in the modulation of NK effector function, revealing the existence of a Golgi-dependent trafficking pathway for LFA-1, which is relevant for LFA-1 organization at NK-lytic IS.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Sinapsis Inmunológicas , Células Asesinas Naturales , Antígeno-1 Asociado a Función de Linfocito , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Centrosoma/metabolismo , Citotoxicidad Inmunológica , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Células Asesinas Naturales/metabolismo
2.
Biochimie ; 177: 127-131, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32841682

RESUMEN

A-kinase anchoring protein 350 (AKAP350) is a centrosomal/Golgi scaffold protein, critical for the regulation of microtubule dynamics. AKAP350 recruits end-binding protein 1 (EB1) to the centrosome in mitotic cells, ensuring proper spindle orientation in epithelial cells. AKAP350 also interacts with p150glued, the main component of the dynactin complex. In the present work, we found that AKAP350 localized p150glued to the spindle poles, facilitating p150glued/EB1 interaction at these structures. Our results further showed that the decrease in AKAP350 expression reduced p150glued localization at astral microtubules and impaired the elongation of astral microtubules during anaphase. Overall, this study provides mechanistic data on how microtubule regulatory proteins gather to define microtubule dynamics in mitotic cells.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/fisiología , Complejo Dinactina/fisiología , Polos del Huso/metabolismo , Animales , Centrosoma/metabolismo , Centrosoma/ultraestructura , Perros , Células de Riñón Canino Madin Darby , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Polos del Huso/ultraestructura
3.
Front Immunol ; 10: 2642, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31781123

RESUMEN

CG-NAP, also known as AKAP450, is an anchoring/adaptor protein that streamlines signal transduction in various cell types by localizing signaling proteins and enzymes with their substrates. Great efforts are being devoted to elucidating functional roles of this protein and associated macromolecular signaling complex. Increasing understanding of pathways involved in regulating T lymphocytes suggests that CG-NAP can facilitate dynamic interactions between kinases and their substrates and thus fine-tune T cell motility and effector functions. As a result, new binding partners of CG-NAP are continually being uncovered. Here, we review recent advances in CG-NAP research, focusing on its interactions with kinases in T cells with an emphasis on the possible role of this anchoring protein as a target for therapeutic intervention in immune-mediated diseases.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/inmunología , Proteínas del Citoesqueleto/inmunología , Transducción de Señal/inmunología , Linfocitos T/inmunología , Animales , Humanos
4.
Cancer Lett ; 461: 65-77, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31319138

RESUMEN

CDC42 interacting protein 4 (CIP4) is a CDC42 effector that coordinates membrane deformation and actin polymerization. The correlation of CIP4 overexpression with metastatic capacity has been characterized in several types of cancer. However, little information exists on how CIP4 function is regulated. CIP4 interacts with A-kinase (PKA) anchoring protein 350 (AKAP350) and CIP4 is also a PKA substrate. Here, we identified CIP4 T225 as the major CIP4 PKA phosphorylation site. In vitro and in vivo experiments using hepatocellular carcinoma (HCC) and breast cancer cells showed that expression of a CIP4(T225E) phosphomimetic mutant increased cancer cell metastatic capacity and that, conversely, expression of a CIP4(T225A) non-phosphorylatable mutant reduced invasive properties. PKA inhibition decreased to CIP4(T225A) cell-levels control but not CIP4(T225E) cell migratory and invasive efficiency. Concomitantly, our studies indicate that CIP4 T225 phosphorylation promotes the formation of functional invadopodia and enhances CIP4 localization at these structures. Our findings further provide mechanistic data indicating that CIP4 T225 phosphorylation facilitates CIP4 interaction with CDC42. Altogether this study identifies a signaling pathway that involves CIP4 phosphorylation by PKA during the acquisition of a metastatic phenotype in cancer cells.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Hepatocelular/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Neoplasias Pulmonares/secundario , Proteínas Asociadas a Microtúbulos/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Animales , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/genética , Antígenos de Histocompatibilidad Menor/genética , Invasividad Neoplásica , Fosforilación , Podosomas/metabolismo , Podosomas/patología , Transducción de Señal , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteína de Unión al GTP cdc42/metabolismo
5.
EMBO Rep ; 19(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30224411

RESUMEN

Here, we address the regulation of microtubule nucleation during interphase by genetically ablating one, or two, of three major mammalian γ-TuRC-binding factors namely pericentrin, CDK5Rap2, and AKAP450. Unexpectedly, we find that while all of them participate in microtubule nucleation at the Golgi apparatus, they only modestly contribute at the centrosome where CEP192 has a more predominant function. We also show that inhibiting microtubule nucleation at the Golgi does not affect centrosomal activity, whereas manipulating the number of centrosomes with centrinone modifies microtubule nucleation activity of the Golgi apparatus. In centrosome-free cells, inhibition of Golgi-based microtubule nucleation triggers pericentrin-dependent formation of cytoplasmic-nucleating structures. Further depletion of pericentrin under these conditions leads to the generation of individual microtubules in a γ-tubulin-dependent manner. In all cases, a conspicuous MT network forms. Strikingly, centrosome loss increases microtubule number independently of where they were growing from. Our results lead to an unexpected view of the interphase centrosome that would control microtubule network organization not only by nucleating microtubules, but also by modulating the activity of alternative microtubule-organizing centers.


Asunto(s)
Centrosoma/metabolismo , Interfase/fisiología , Microtúbulos/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Antígenos/genética , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular , Línea Celular , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas del Citoesqueleto/genética , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Microtúbulos/genética , Proteínas del Tejido Nervioso/genética , Tubulina (Proteína)/metabolismo
6.
Front Immunol ; 9: 397, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29545805

RESUMEN

Centrosome- and Golgi-localized protein kinase N-associated protein (CG-NAP), also known as AKAP450, is a cytosolic scaffolding protein involved in the targeted positioning of multiple signaling molecules, which are critical for cellular functioning. Here, we show that CG-NAP is predominantly expressed in human primary T-lymphocytes, localizes in close proximity (<0.2 µm) with centrosomal and Golgi structures and serves as a docking platform for Protein Kinase A (PKA). GapmeR-mediated knockdown of CG-NAP inhibits LFA-1-induced T-cell migration and impairs T-cell chemotaxis toward the chemokine SDF-1α. Depletion of CG-NAP dislocates PKARIIα, disrupts centrosomal and non-centrosomal microtubule nucleation, causes Golgi fragmentation, and impedes α-tubulin tyrosination and acetylation, which are important for microtubule dynamics and stability in migrating T-cells. Furthermore, we show that CG-NAP coordinates PKA-mediated phosphorylation of pericentrin and dynein in T-cells. Overall, our findings provide critical insights into the roles of CG-NAP in regulating cytoskeletal architecture and T-cell migration.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Microtúbulos/fisiología , Proteína Quinasa C/metabolismo , Linfocitos T/fisiología , Movimiento Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dineínas/metabolismo , Células HeLa , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Transporte de Proteínas , Transducción de Señal
7.
J Biol Chem ; 292(50): 20394-20409, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29054927

RESUMEN

Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Anclaje a la Quinasa A/antagonistas & inhibidores , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/genética , Biomarcadores/metabolismo , Proteínas de Ciclo Celular , Línea Celular , Centrosoma/ultraestructura , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Humanos , Imagenología Tridimensional , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Centro Organizador de los Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/química , Fosfoproteínas/genética , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteómica/métodos , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Técnicas del Sistema de Dos Híbridos
8.
Curr Biol ; 27(19): 2999-3009.e9, 2017 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-28966089

RESUMEN

The nucleus is the main microtubule-organizing center (MTOC) in muscle cells due to the accumulation of centrosomal proteins and microtubule (MT) nucleation activity at the nuclear envelope (NE) [1-4]. The relocalization of centrosomal proteins, including Pericentrin, Pcm1, and γ-tubulin, depends on Nesprin-1, an outer nuclear membrane (ONM) protein that connects the nucleus to the cytoskeleton via its N-terminal region [5-7]. Nesprins are also involved in the recruitment of kinesin to the NE and play a role in nuclear positioning in skeletal muscle cells [8-12]. However, a function for MT nucleation from the NE in nuclear positioning has not been established. Using the proximity-dependent biotin identification (BioID) method [13, 14], we found several centrosomal proteins, including Akap450, Pcm1, and Pericentrin, whose association with Nesprin-1α is increased in differentiated myotubes. We show that Nesprin-1α recruits Akap450 to the NE independently of kinesin and that Akap450, but not other centrosomal proteins, is required for MT nucleation from the NE. Furthermore, we demonstrate that this mechanism is disrupted in congenital muscular dystrophy patient myotubes carrying a nonsense mutation within the SYNE1 gene (23560 G>T) encoding Nesprin-1 [15, 16]. Finally, using computer simulation and cell culture systems, we provide evidence for a role of MT nucleation from the NE on nuclear spreading in myotubes. Our data thus reveal a novel function for Nesprin-1α/Nesprin-1 in nuclear positioning through recruitment of Akap450-mediated MT nucleation activity to the NE.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/genética , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Línea Celular , Proteínas del Citoesqueleto , Femenino , Células HeLa , Humanos , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Ratas
9.
J Cell Sci ; 128(17): 3277-89, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26208639

RESUMEN

The acquisition of a migratory phenotype is central in processes as diverse as embryo differentiation and tumor metastasis. An early event in this phenomenon is the generation of a nucleus-centrosome-Golgi back-to-front axis. AKAP350 (also known as AKAP9) is a Golgi and centrosome scaffold protein that is involved in microtubule nucleation. AKAP350 interacts with CIP4 (also known as TRIP10), a cdc42 effector that regulates actin dynamics. The present study aimed to characterize the participation of centrosomal AKAP350 in the acquisition of migratory polarity, and the involvement of CIP4 in the pathway. The decrease in total or in centrosomal AKAP350 led to decreased formation of the nucleus-centrosome-Golgi axis and defective cell migration. CIP4 localized at the centrosome, which was enhanced in migratory cells, but inhibited in cells with decreased centrosomal AKAP350. A decrease in the CIP4 expression or inhibition of the CIP4-AKAP350 interaction also led to defective cell polarization. Centrosome positioning, but not nuclear movement, was affected by loss of CIP4 or AKAP350 function. Our results support a model in which AKAP350 recruits CIP4 to the centrosome, providing a centrosomal scaffold to integrate microtubule and actin dynamics, thus enabling centrosome polarization and ensuring cell migration directionality.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Centrosoma/metabolismo , Proteínas del Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Animales , Proteínas del Citoesqueleto/genética , Perros , Aparato de Golgi/genética , Células Hep G2 , Humanos , Células de Riñón Canino Madin Darby , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/genética , Microtúbulos/metabolismo , Antígenos de Histocompatibilidad Menor
10.
Philos Trans R Soc Lond B Biol Sci ; 369(1650)2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25047616

RESUMEN

A shared feature among all microtubule (MT)-dependent processes is the requirement for MTs to be organized in arrays of defined geometry. At a fundamental level, this is achieved by precisely controlling the timing and localization of the nucleation events that give rise to new MTs. To this end, MT nucleation is restricted to specific subcellular sites called MT-organizing centres. The primary MT-organizing centre in proliferating animal cells is the centrosome. However, the discovery of MT nucleation capacity of the Golgi apparatus (GA) has substantially changed our understanding of MT network organization in interphase cells. Interestingly, MT nucleation at the Golgi apparently relies on multiprotein complexes, similar to those present at the centrosome, that assemble at the cis-face of the organelle. In this process, AKAP450 plays a central role, acting as a scaffold to recruit other centrosomal proteins important for MT generation. MT arrays derived from either the centrosome or the GA differ in their geometry, probably reflecting their different, yet complementary, functions. Here, I review our current understanding of the molecular mechanisms involved in MT nucleation at the GA and how Golgi- and centrosome-based MT arrays work in concert to ensure the formation of a pericentrosomal polarized continuous Golgi ribbon structure, a critical feature for cell polarity in mammalian cells. In addition, I comment on the important role of the Golgi-nucleated MTs in organizing specialized MT arrays that serve specific functions in terminally differentiated cells.


Asunto(s)
Centrosoma/fisiología , Aparato de Golgi/fisiología , Microtúbulos/fisiología , Mitosis/fisiología , Modelos Biológicos , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas del Citoesqueleto/metabolismo
11.
Cell Logist ; 4(3): e943597, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25610720

RESUMEN

Mitochondria regulate metabolism and homeostasis within cells. Mitochondria are also very dynamic organelles, constantly undergoing fission and fusion. The importance of maintaining proper mitochondrial dynamics is evident in the various diseases associated with defects in these processes. Protein kinase A (PKA) is a key regulator of mitochondrial dynamics. PKA is spatially regulated by A-Kinase Anchoring Proteins (AKAPs). We completed cloning of a novel AKAP350 isoform, AKAP350C. Immunostaining for endogenous AKAP350C showed localization to mitochondria. The carboxyl-terminal 54-amino acid sequence unique to AKAP350C contains a novel amphipathic alpha helical mitochondrial-targeting domain. AKAP350C co-localizes with Mff (mitochondrial fission protein) and mitofusins 1 and 2 (mitochondrial fusion proteins), and likely regulates mitochondrial dynamics by scaffolding PKA and mitochondrial fission and fusion proteins.

12.
Cell Logist ; 3(1): e26331, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24475373

RESUMEN

AKAP350 (AKAP450/AKAP9/CG-NAP) is an A-kinase anchoring protein, which recruits multiple signaling proteins to the Golgi apparatus and the centrosomes. Several proteins recruited to the centrosomes by this scaffold participate in the regulation of the cell cycle. Previous studies indicated that AKAP350 participates in centrosome duplication. In the present study we specifically assessed the role of AKAP350 in the progression of the cell cycle. Our results showed that interference with AKAP350 expression inhibits G1/S transition, decreasing the initiation of both DNA synthesis and centrosome duplication. We identified an AKAP350 carboxyl-terminal domain (AKAP350CTD), which contained the centrosomal targeting domain of AKAP350 and induced the initiation of DNA synthesis. Nevertheless, AKAP350CTD expression did not induce centrosomal duplication. AKAP350CTD partially delocalized endogenous AKAP350 from the centrosomes, but increased the centrosomal levels of the cyclin-dependent kinase 2 (Cdk2). Accordingly, the expression of this AKAP350 domain increased the endogenous phosphorylation of nucleophosmin by Cdk2, which occurs at the G1/S transition and is a marker of the centrosomal activity of the cyclin E-Cdk2 complex. Cdk2 recruitment to the centrosomes is a necessary event for the development of the G1/S transition. Altogether, our results indicate that AKAP350 facilitates the initiation of DNA synthesis by scaffolding Cdk2 to the centrosomes, and enabling its specific activity at this organelle. Although this mechanism could also be involved in AKAP350-dependent modulation of centrosomal duplication, it is not sufficient to account for this process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA