Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Ginseng Res ; 46(2): 304-314, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35509827

RESUMEN

Background: Ginsenosides are biologically active components of ginseng and have various functions. In this study, we investigated the immunomodulatory activity of a ginseng product generated from ginseng powder (GP) via enzymatic bioconversion. This product, General Bio compound K-10 mg solution (GBCK10S), exhibited increased levels of minor ginsenosides, including ginsenoside-F1, compound K, and compound Y. Methods: The immunomodulatory properties of GBCK10S were confirmed using mice and a human natural killer (NK) cell line. We monitored the expression of molecules involved in immune responses via enzyme-linked immunosorbent assay, flow cytometry, NK cell-targeted cell destruction, quantitative reverse-transcription real-time polymerase chain reaction, and Western blot analyses. Results: Oral administration of GBCK10S significantly increased serum immunoglobulin M levels and primed splenocytes to express pro-inflammatory cytokines such as interleukin-6, tumor necrosis factor-α, and interferon-γ. Oral administration of GBCK10S also activated NK cells in mice. Furthermore, GBCK10S treatment stimulated a human NK cell line in vitro, thereby increasing granzyme B gene expression and activating STAT5. Conclusion: GBCK10S may have potent immunostimulatory properties and can activate immune responses mediated by B cells, Th1-type T cells, and NK cells.

2.
JHEP Rep ; 3(4): 100318, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34377970

RESUMEN

BACKGROUND & AIMS: Virus-specific T cell dysfunction is a common feature of HBV-related hepatocellular carcinoma (HBV-HCC). Conventional T (ConT) cells can be redirected towards viral antigens in HBV-HCC when they express an HBV-specific receptor; however, their efficacy can be impaired by liver-specific physical and metabolic features. Mucosal-associated invariant T (MAIT) cells are the most abundant innate-like T cells in the liver and can elicit potent intrahepatic effector functions. Here, we engineered ConT and MAIT cells to kill HBV expressing hepatoma cells and compared their functional properties. METHODS: Donor-matched ConT and MAIT cells were engineered to express an HBV-specific T cell receptor (TCR). Cytotoxicity and hepatocyte homing potential were investigated using flow cytometry, real-time killing assays, and confocal microscopy in 2D and 3D HBV-HCC cell models. Major histocompatibility complex (MHC) class I-related molecule (MR1)-dependent and MR1-independent activation was evaluated in an Escherichia coli THP-1 cell model and by IL-12/IL-18 stimulation, respectively. RESULTS: HBV TCR-MAIT cells demonstrated polyfunctional properties (CD107a, interferon [IFN] γ, tumour necrosis factor [TNF], and IL-17A) with strong HBV target sensitivity and liver-homing chemokine receptor expression when compared with HBV TCR-ConT cells. TCR-mediated lysis of hepatoma cells was comparable between the cell types and augmented in the presence of inflammation. Coculturing with HBV+ target cells in a 3D microdevice mimicking aspects of the liver microenvironment demonstrated that TCR-MAIT cells migrate readily towards hepatoma targets. Expression of an ectopic TCR did not affect the ability of the MAIT cells to be activated via MR1-presented bacterial antigens or IL-12/IL-18 stimulation. CONCLUSIONS: HBV TCR-MAIT cells demonstrate anti-HBV functions without losing their endogenous antimicrobial mechanisms or hepatotropic features. Our results support future exploitations of MAIT cells for liver-directed immunotherapies. LAY SUMMARY: Chronic HBV infection is a leading cause of liver cancer. T cell receptor (TCR)-engineered T cells are patients' immune cells that have been modified to recognise virus-infected and/or cancer cells. Herein, we evaluated whether mucosal-associated invariant T cells, a large population of unconventional T cells in the liver, could recognise and kill HBV infected hepatocytes when engineered with an HBV-specific TCR. We show that their effector functions may exceed those of conventional T cells currently used in the clinic, including antimicrobial properties and chemokine receptor profiles better suited for targeting liver tumours.

3.
Regen Ther ; 14: 79-86, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31988997

RESUMEN

INTRODUCTION: Cell sheets consisting of adipose-derived stem cells (ADSCs) have been reported to be effective for wound healing. We conducted this study to clarify the efficacy of ADSC sheets in wound healing at the duct-to-duct biliary anastomotic site in pigs. METHODS: Eleven female pigs (20-25 kg) were divided into two groups: biliary anastomosis with an ADSC sheet (n = 6) or without an ADSC sheet (n = 5). To follow the transplanted ADSCs, PKH26GL-labeled sheets were used in one of the ADSC pigs. Two weeks prior to laparotomy, ADSCs were isolated from the lower abdominal subcutaneous adipose tissue. After three passages, ADSCs were seeded on temperature-responsive culture dishes and collected as cell sheets. ADSC sheets were gently transplanted on the anastomotic site. We evaluated specimens by PKH26GL labeling, macroscopic changes, infiltration of inflammatory cells, and collagen content. RESULTS: Labeled ADSCs remained around the bile duct wall. In the no-ADSC group, more adhesion developed at the hepatic hilum as observed during relaparotomy. Histopathological examination showed that the diameter and cross-sectional area of the bile duct wall were decreased in the ADSC group. In the no-ADSC group, a large number of inflammatory cells and more collagen fibers were identified in the bile duct wall. CONCLUSIONS: The present study demonstrated that autologous ADSC sheet transplantation reduced hypertrophic changes in the bile duct wall at the anastomotic site. A long-term follow-up is required to evaluate the efficacy of this mechanism in prevention of biliary anastomotic strictures.

4.
Regen Ther ; 10: 17-26, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30525067

RESUMEN

INTRODUCTION: Cartilage regeneration is a promising therapy for restoring joint function in patients with cartilage defects. The limited availability of autologous chondrocytes or chondrogenic progenitor cells is an obstacle to its clinical application. We investigated the existence and chondrogenic potential of synovial membrane-derived multilineage-differentiating stress-enduring (Muse)-like cells as an alternative cell source for cartilage regeneration. METHODS: Cells positive for stage-specific embryonic antigen-3 (SSEA-3), a marker of Muse cells, were isolated from the synovial membranes of 6 of 8 patients (median age, 53.5 years; range 36-72 years) by fluorescence-activated cell sorting. SSEA-3-positive cells were cultured in methylcellulose to examine their ability to form Muse clusters that are similar to the embryoid bodies formed by human embryonic stem cells. Muse clusters were expanded and chondrogenic potential of M-cluster-derived MSCs examined using a pellet culture system. Chondrogenic differentiation was evaluated by proteoglycan, safranin O, toluidine blue and type II collagen staining. To evaluate the practicality of the procedure for isolating Muse-like cells, we compared chondrogenic potential of M-cluster derived MSCs with expanded cells derived from the clusters formed by unsorted synovial cells. RESULTS: Synovial membranes contained SSEA-3-positive cells that after isolation exhibited Muse-like characteristics such as forming clusters that expressed NANOG, OCT3/4, and SOX2. In the pellet culture system, cell pellets created from the M-cluster-derived MSCs exhibited an increase in wet weight, which implied an increase in extracellular matrix production, displayed metachromasia with toluidine blue and safranin O staining and were aggrecan-positive and type II collagen-positive by immunostaining. Unsorted synovial cells also formed clusters in methylcellulose culture, and the expanded cell population derived from them exhibited chondrogenic potential. The histological and immunohistochemical appearance of chondrogenic pellet created from unsorted synovial cell-derived cells were comparable with that from M-cluster-derived MSCs. CONCLUSIONS: Muse-like cells can be isolated from the human synovial membrane, even from older patients, and therefore may provide a source of multipotent cells for regenerative medicine. In addition, the cluster-forming cell population within synovial cells also has excellent chondrogenic potential. These cells may provide a more practical option for cartilage regeneration.

5.
Artículo en Inglés | MEDLINE | ID: mdl-29928673

RESUMEN

BACKGROUND & AIMS: Continual renewal of the intestinal epithelium is dependent on active- and slow-cycling stem cells that are confined to the crypt base. Tight regulation of these stem cell populations maintains homeostasis by balancing proliferation and differentiation to support critical intestinal functions. The hierarchical relation of discrete stem cell populations in homeostasis or during regenerative epithelial repair remains controversial. Although recent studies have supported a model for the active-cycling leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5)+ intestinal stem cell (ISC) functioning upstream of the slow-cycling B lymphoma Mo-MLV insertion region 1 homolog (Bmi1)-expressing cell, other studies have reported the opposite relation. Tools that facilitate simultaneous analyses of these populations are required to evaluate their coordinated function. METHODS: We used novel monoclonal antibodies (mAbs) raised against murine intestinal epithelial cells in conjunction with ISC-green fluorescent protein (GFP) reporter mice to analyze relations between ISC populations by microscopy. Ex vivo 3-dimensional cultures, flow cytometry, and quantitative reverse-transcription polymerase chain reaction analyses were performed. RESULTS: Two novel mAbs recognized distinct subpopulations of the intestinal epithelium and when used in combination permitted isolation of discrete Lgr5GFP and Bmi1GFP-enriched populations with stem activity. Growth from singly isolated Lgr5GFP ISCs gave rise to small spheroids. Spheroids did not express Lgr5GFP and instead up-regulated Bmi1GFP expression. Conversely, Bmi1-derived spheroids initiated Lgr5GFP expression as crypt domains were established. CONCLUSIONS: These data showed the functional utility of murine mAbs in the isolation and investigation of Lgr5GFP and Bmi1GFP ISC-enriched populations. Ex vivo analyses showed hierarchical plasticity between different ISC-expressing states; specifically Lgr5GFP ISCs gave rise to Bmi1GFP cells, and vice versa. These data highlight the impact of temporal and physiological context on unappreciated interactions between Lgr5GFP and Bmi1GFP cells during crypt formation.

6.
Acta Pharm Sin B ; 8(2): 188-199, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29719779

RESUMEN

Arylamine N-acetyltransferase (NAT; E.C. 2.3.1.5) enzymes are responsible for the biotransformation of several arylamine and hydrazine drugs by acetylation. In this process, the acetyl group transferred to the acceptor substrate produces NAT deacetylation and, in consequence, it is susceptible of degradation. Sirtuins are protein deacetylases, dependent on nicotine adenine dinucleotide, which perform post-translational modifications on cytosolic proteins. To explore possible sirtuin participation in the enzymatic activity of arylamine NATs, the expression levels of NAT1, NAT2, SIRT1 and SIRT6 in peripheral blood mononuclear cells (PBMC) from healthy subjects were examined by flow cytometry and Western blot. The in situ activity of the sirtuins on NAT enzymatic activity was analyzed by HPLC, in the presence or absence of an agonist (resveratrol) and inhibitor (nicotinamide) of sirtuins. We detected a higher percentage of positive cells for NAT2 in comparison with NAT1, and higher numbers of SIRT1+ cells compared to SIRT6 in lymphocytes. In situ NAT2 activity in the presence of NAM inhibitors was higher than in the presence of its substrate, but not in the presence of resveratrol. In contrast, the activity of NAT1 was not affected by sirtuins. These results showed that NAT2 activity might be modified by sirtuins.

7.
Cell Regen ; 7(1): 7-15, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30671224

RESUMEN

Obtaining T cells by reprogramming is one of the major goals in regenerative medicine. Here, we describe a protocol for generating functional T cells from Hoxb5-expressing pro/pre-B cells in vivo. This protocol includes the construction of Hoxb5 recombinant plasmids, retroviral packaging, isolation and viral transduction of pro/pre-B cells, cell transplantation, and phenotypic analysis of induced T cells. The procedure is reproducible and straightforward, providing an approach for generating induced T cells for translational research.

8.
Acta Pharmaceutica Sinica B ; (6): 188-199, 2018.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-690920

RESUMEN

Arylamine -acetyltransferase (NAT; E.C. 2.3.1.5) enzymes are responsible for the biotransformation of several arylamine and hydrazine drugs by acetylation. In this process, the acetyl group transferred to the acceptor substrate produces NAT deacetylation and, in consequence, it is susceptible of degradation. Sirtuins are protein deacetylases, dependent on nicotine adenine dinucleotide, which perform post-translational modifications on cytosolic proteins. To explore possible sirtuin participation in the enzymatic activity of arylamine NATs, the expression levels of NAT1, NAT2, SIRT1 and SIRT6 in peripheral blood mononuclear cells (PBMC) from healthy subjects were examined by flow cytometry and Western blot. The activity of the sirtuins on NAT enzymatic activity was analyzed by HPLC, in the presence or absence of an agonist (resveratrol) and inhibitor (nicotinamide) of sirtuins. We detected a higher percentage of positive cells for NAT2 in comparison with NAT1, and higher numbers of SIRT1+ cells compared to SIRT6 in lymphocytes. NAT2 activity in the presence of NAM inhibitors was higher than in the presence of its substrate, but not in the presence of resveratrol. In contrast, the activity of NAT1 was not affected by sirtuins. These results showed that NAT2 activity might be modified by sirtuins.

9.
Oncoimmunology ; 4(6): e1008824, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26155422

RESUMEN

Inhibition of JAK1 or JAK2 in human tumor cells was previously shown to increase susceptibility of these cells to NK cell lysis. In the present study, we examined the cellular mechanisms that mediate this effect in hematopoietic tumor cell lines and primary tumor cells. Incubation of tumor cells with supernatant from activated NK cells or interferon-gamma (IFNγ)-induced activation of pSTAT1 and increased expression of PD-L1 without altering expression of other activating or inhibitory NK cell ligands. These functional effects were blocked by chemical JAK inhibition or shRNAs targeting JAK1, JAK2 or STAT1. Inhibition of IFNγ signaling also prevented the upregulation of PD-L1 and blocking PD-L1 resulted in increased tumor lysis by NK cells. These results show that NK cell activation and secretion of IFNγ results in activation of JAK1, JAK2 and STAT1 in tumor cells, resulting in rapid up-regulation of PD-L1 expression. Increased expression of PD-L1 results in increased resistance to NK cell lysis. Blockade of JAK pathway activation prevents increased PD-L1 expression resulting in increased susceptibility of tumor cells to NK cell activity. These observations suggest that JAK pathway inhibitors as well as PD-1 and PD-L1 antibodies may work synergistically with other immune therapies by preventing IFN-induced inhibition of NK cell-mediated tumor cell lysis.

10.
Oncoimmunology ; 4(7): e1016699, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26140241

RESUMEN

The graft-versus-leukemia (GVL) effect following allogeneic hematopoietic stem cell transplantation (allo-HCT) is critical for its curative potential. Hwever, GVL is tightly linked to graft-versus-host disease (GVHD). Among hematological malignancies, acute lymphoblastic leukemia (ALL) is the most resistant to GVL, although the reasons for this remain poorly understood. Clinical studies have identified alterations in Ikaros (Ik) transcription factor as the major marker associated with poor outcomes in ALL. We have shown that the absence of Ik in professional host-derived hematopoietic antigen-presenting cells (APCs) exacerbates GVHD. However, whether Ik expression plays a role in resistance to GVL is not known. In this study we used multiple clinically relevant murine models of allo-HCT to explore whether Ik expression in hematopoietic APCs and/or leukemic cells is critical for increasing resistance to GVL and thus inducing relapse. We found that Ik deficiency in host APCs failed to enhance GVL despite increased GVHD severity. Mechanistic studies with bone marrow (BM) chimeras and tetramer analyses demonstrated reduced tumor-specific immunodominant (gag+) antigen responses in the [B6Ik-/-→B6] group. Loss of GVL was observed when both the leukemia cells and the host APCs were deficient in Ik. We found that calreticulin (CRT) expression in host antigen-presenting dendritic cells (DCs) of Ik-/- animals was significantly lower than in wild-type animals. Rescuing CRT expression in Ik-/- DCs improved leukemic-specific cytotoxic T cell function. Together, our data demonstrate that the absence of Ikaros in host hematopoietic cells promotes resistance to GVL despite increasing GVHD and thus provides a potential mechanism for the poor outcome of Ik-/- ALL patients.

11.
Autophagy ; 11(7): 1161-78, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26043024

RESUMEN

Multiple myeloma (MM) is the paradigmatic proteasome inhibitor (PI) responsive cancer, but many patients fail to respond. An attractive target to enhance sensitivity is (macro)autophagy, recently found essential to bone marrow plasma cells, the normal counterpart of MM. Here, integrating proteomics with hypothesis-driven strategies, we identified the autophagic cargo receptor and adapter protein, SQSTM1/p62 as an essential component of an autophagic reserve that not only synergizes with the proteasome to maintain proteostasis, but also mediates a plastic adaptive response to PIs, and faithfully reports on inherent PI sensitivity. Lentiviral engineering revealed that SQSTM1 is essential for MM cell survival and affords specific PI protection. Under basal conditions, SQSTM1-dependent autophagy alleviates the degradative burden on the proteasome by constitutively disposing of substantial amounts of ubiquitinated proteins. Indeed, its inhibition or stimulation greatly sensitized to, or protected from, PI-induced protein aggregation and cell death. Moreover, under proteasome stress, myeloma cells selectively enhanced SQSTM1 de novo expression and reset its vast endogenous interactome, diverting SQSTM1 from signaling partners to maximize its association with ubiquitinated proteins. Saturation of such autophagic reserve, as indicated by intracellular accumulation of undigested SQSTM1-positive aggregates, specifically discriminated patient-derived myelomas inherently susceptible to PIs from primarily resistant ones. These aggregates correlated with accumulation of the endoplasmic reticulum, which comparative proteomics identified as the main cell compartment targeted by autophagy in MM. Altogether, the data integrate autophagy into our previously established proteasome load-versus-capacity model, and reveal SQSTM1 aggregation as a faithful marker of defective proteostasis, defining a novel prognostic and therapeutic framework for MM.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagia/efectos de los fármacos , Homeostasis/efectos de los fármacos , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Inhibidores de Proteasoma/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citoprotección/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos , Proteína Sequestosoma-1 , Proteínas Ubiquitinadas/metabolismo
12.
Hum Vaccin Immunother ; 11(7): 1803-13, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26076321

RESUMEN

Vaccines containing multiple antigens may induce broader immune responses and provide better protection against Mycobacterium tuberculosis (Mtb) infection as compared to a single antigen. However, strategies for incorporating multiple antigens into a single vector and the immunization routes may affect their immunogenicity. In this study, we utilized recombinant adenovirus type 5 (rAd5) as a model vaccine vector, and Ag85A (Rv3804c) and Mtb32 (Rv0125) as model antigens, to comparatively evaluate the influence of codon usage optimization, signal sequence, fusion linkers, and immunization routes on the immunogenicity of tuberculosis (TB) vaccine containing multiple antigens in C57BL/6 mice. We showed that codon-optimized Ag85A and Mtb32 fused with a GSG linker induced the strongest systemic and pulmonary cell-mediated immune (CMI) responses. Strong CMI responses were characterized by the generation of a robust IFN-γ ELISPOT response as well as antigen-specific CD4(+) T and CD8(+) T cells, which secreted mono-, dual-, or multiple cytokines. We also found that subcutaneous (SC) and intranasal (IN)/oral immunization with this candidate vaccine exhibited the strongest boosting effects for Mycobacterium bovis bacille Calmette-Guérin (BCG)-primed systemic and pulmonary CMI responses, respectively. Our results supported that codon optimized Ag85A and Mtb32 fused with a proper linker and immunized through SC and IN/oral routes can generate the strongest systemic and pulmonary CMI responses in BCG-primed mice, which may be particularly important for the design of TB vaccines containing multiple antigens.


Asunto(s)
Adenoviridae/genética , Vacunas contra la Tuberculosis/genética , Vacunas contra la Tuberculosis/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Administración Oral , Animales , Vacuna BCG/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Citocinas/metabolismo , Femenino , Vectores Genéticos , Inmunidad Celular , Pulmón/inmunología , Ratones , Ratones Endogámicos C57BL , Bazo/inmunología , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas Sintéticas/administración & dosificación
13.
FEBS Open Bio ; 5: 308-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25941627

RESUMEN

In binary cell-fate decisions, driving one lineage and suppressing the other are conjoined. We have previously reported that aryl hydrocarbon receptor (AhR) promotes retinoic acid (RA)-induced granulocytic differentiation of lineage bipotent HL-60 myeloblastic leukemia cells. VAF347, an AhR agonist, impairs the development of CD14(+)CD11b(+) monocytes from granulo-monocytic (GM) stage precursors. We thus hypothesized that VAF347 propels RA-induced granulocytic differentiation and impairs D3-induced monocytic differentiation of HL-60 cells. Our results show that VAF347 enhanced RA-induced cell cycle arrest, CD11b integrin expression and neutrophil respiratory burst. Granulocytic differentiation is known to be driven by MAPK signaling events regulated by Fgr and Lyn Src-family kinases, the CD38 cell membrane receptor, the Vav1 GEF, the c-Cbl adaptor, as well as AhR, all of which are embodied in a putative signalsome. We found that the VAF347 AhR ligand regulates the signalsome. VAF347 augments RA-induced expression of AhR, Lyn, Vav1, and c-Cbl as well as p47(phox). Several interactions of partners in the signalsome appear to be enhanced: Fgr interaction with c-Cbl, CD38, and with pS259c-Raf and AhR interaction with c-Cbl and Lyn. Thus, we report that, while VAF347 impedes monocytic differentiation induced by 1,25-dihydroxyvitamin D3, VAF347 promotes RA-induced differentiation. This effect seems to involve but not to be limited to Lyn, Vav1, c-Cbl, AhR, and Fgr.

14.
Toxicol Rep ; 2: 194-202, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-28962351

RESUMEN

Skin reactions at the infusion site are a common side effect of continuous subcutaneous insulin infusion therapy. We hypothesized that local skin complications are caused by components of commercial insulin formulations that contain phenol or m-cresol as excipients. The toxic potential of insulin solutions and the mechanisms leading to skin reactions were explored in cultured cells. The toxicity of insulin formulations (Apidra, Humalog, NovoRapid, Insuman), excipient-free insulin, phenol and m-cresol was investigated in L929 cells, human adipocytes and monocytic THP-1 cells. The cells were incubated with the test compounds dose- and time-dependently. Cell viability, kinase signaling pathways, monocyte activation and the release of pro-inflammatory cytokines were analyzed. Insulin formulations were cytotoxic in all cell-types and the pure excipients phenol and m-cresol were toxic to the same extent. P38 and JNK signaling pathways were activated by phenolic compounds, whereas AKT phosphorylation was attenuated. THP-1 cells incubated with sub-toxic levels of the test compounds showed increased expression of the activation markers CD54, CD11b and CD14 and secreted the chemokine MCP-1 indicating a pro-inflammatory response. Insulin solutions displayed cytotoxic and pro-inflammatory potential caused by phenol or m-cresol. We speculate that during insulin pump therapy phenol and m-cresol might induce cell death and inflammatory reactions at the infusion site in vivo. Inflammation is perpetuated by release of MCP-1 by activated monocytic cells leading to enhanced recruitment of inflammatory cells. To minimize acute skin complications caused by phenol/m-cresol accumulation, a frequent change of infusion sets and rotation of the infusion site is recommended.

15.
J Bone Oncol ; 4(3): 59-68, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27556008

RESUMEN

Receptor activator of nuclear factor kappa-B ligand (RANKL) is an essential mediator of osteoclast formation, function and survival. In patients with solid tumor metastasis to the bone, targeting the bone microenvironment by inhibition of RANKL using denosumab, a fully human monoclonal antibody (mAb) specific to RANKL, has been demonstrated to prevent tumor-induced osteolysis and subsequent skeletal complications. Recently, a prominent functional role for the RANKL pathway has emerged in the primary bone tumor giant cell tumor of bone (GCTB). Expression of both RANKL and RANK is extremely high in GCTB tumors and denosumab treatment was associated with tumor regression and reduced tumor-associated bone lysis in GCTB patients. In order to address the potential role of the RANKL pathway in another primary bone tumor, this study assessed human RANKL and RANK expression in human primary osteosarcoma (OS) using specific mAbs, validated and optimized for immunohistochemistry (IHC) or flow cytometry. Our results demonstrate RANKL expression was observed in the tumor element in 68% of human OS using IHC. However, the staining intensity was relatively low and only 37% (29/79) of samples exhibited≥10% RANKL positive tumor cells. RANK expression was not observed in OS tumor cells. In contrast, RANK expression was clearly observed in other cells within OS samples, including the myeloid osteoclast precursor compartment, osteoclasts and in giant osteoclast cells. The intensity and frequency of RANKL and RANK staining in OS samples were substantially less than that observed in GCTB samples. The observation that RANKL is expressed in OS cells themselves suggests that these tumors may mediate an osteoclastic response, and anti-RANKL therapy may potentially be protective against bone pathologies in OS. However, the absence of RANK expression in primary human OS cells suggests that any autocrine RANKL/RANK signaling in human OS tumor cells is not operative, and anti-RANKL therapy would not directly affect the tumor.

16.
Cell Mol Gastroenterol Hepatol ; 1(3): 325-341.e1, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-28210682

RESUMEN

BACKGROUND & AIMS: The constant exposure of the liver to food and bacterial antigens through the mesenteric circulation requires it to maintain tolerance while preserving the ability to mount an effective immune response against pathogens. We investigated the contribution of the liver's tolerogenic nature on the establishment of chronic viral infections. METHODS: TTR-NP mice, which express the nucleoprotein (NP) of lymphocytic choriomeningitis virus (LCMV) specifically in hepatocytes under control of a modified transthyretin (TTR) promoter, were infected with the Armstrong (Arm) or WE acute strains of LCMV. RESULTS: The infection persisted for at least 147 days in TTR-NP mice. Expression of NP by the liver induced a strong peripheral tolerance against NP that was mediated by interleukin-10-secreting CD4+ regulatory T cells, leading to high PD-1 (programmed death-1) expression and reduced effector function of virus-specific T cells. Despite an active immune response against LCMV, peripheral tolerance against a single viral protein was sufficient to induce T-cell exhaustion and chronic LCMV Armstrong (Arm) or WE infection by limiting the antiviral T-cell response in an otherwise immunocompetent host. Regulatory T-cell depletion of chronically infected TTR-NP mice led to functional restoration of LCMV-specific CD4+ and CD8+ T cell responses and viral clearance. CONCLUSIONS: Expression of a viral antigen by hepatocytes can induce a state of peripheral tolerance mediated by regulatory T cells that can lead to the establishment of a chronic viral infection. Strategies targeting regulatory T cells in patients chronically infected with hepatotropic viruses could represent a promising approach to restore functional antiviral immunity and clear infection.

17.
RNA Biol ; 11(9): 1137-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483046

RESUMEN

Megakaryocytes exit from mitotic cell cycle and enter a phase of repeated DNA replication without undergoing cell division, in a process termed as endomitosis of which little is known. We studied the expression of a DNA replication licensing factor mini chromosome maintenance protein 7 (MCM7) and its intronic miR-106b-25 cluster during mitotic and endo-mitotic cycles in megakaryocytic cell lines and in vitro cultured megakaryocytes obtained from human cord blood derived CD34(+) cells. Our results show that contrary to mitotic cell cycle, endomitosis proceeds with an un-coupling of the expression of MCM7 and miR-106b-25. This was attributed to the presence of a transcript variant of MCM7 which undergoes nonsense mediated decay (NMD). Additionally, miR-25 which was up regulated during endomitosis was found to promote megakaryopoiesis by inhibiting the expression of PTEN. Our study thus highlights the importance of a transcript variant of MCM7 destined for NMD in the modulation of megakaryopoiesis.


Asunto(s)
Regulación de la Expresión Génica , Intrones/genética , Megacariocitos/metabolismo , MicroARNs/genética , Componente 7 del Complejo de Mantenimiento de Minicromosoma/genética , Poliploidía , Western Blotting , Ciclo Celular/fisiología , Proliferación Celular , Células Cultivadas , Replicación del ADN , Sangre Fetal/citología , Sangre Fetal/metabolismo , Citometría de Flujo , Humanos , Inmunoprecipitación , Megacariocitos/citología , MicroARNs/metabolismo , Microscopía Confocal , Componente 7 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Mitosis/fisiología , Degradación de ARNm Mediada por Codón sin Sentido/fisiología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Activación Transcripcional
18.
Cell Cycle ; 13(24): 3938-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25427281

RESUMEN

Platelets modulate vascular system integrity, and their loss is critical in haematological pathologies and after chemotherapy. Therefore, identification of molecules enhancing platelet production would be useful to counteract thrombocytopenia. We have previously shown that 2-arachidonoylglycerol (2-AG) acts as a true agonist of platelets, as well as it commits erythroid precursors toward the megakaryocytic lineage. Against this background, we sought to further interrogate the role of 2-AG in megakaryocyte/platelet physiology by investigating terminal differentiation, and subsequent thrombopoiesis. To this end, we used MEG-01 cells, a human megakaryoblastic cell line able to produce in vitro platelet-like particles. 2-AG increased the number of cells showing ruffled surface and enhanced surface expression of specific megakaryocyte/platelet surface antigens, typical hallmarks of terminal megakaryocytic differentiation and platelet production. Changes in cytoskeleton modeling also occurred in differentiated megakaryocytes and blebbing platelets. 2-AG acted by binding to CB1 and CB2 receptors, because specific antagonists reverted its effect. Platelets were split off from megakaryocytes and were functional: they contained the platelet-specific surface markers CD61 and CD49, whose levels increased following stimulation with a natural agonist like collagen. Given the importance of 2-AG for driving megakaryopoiesis and thrombopoiesis, not surprisingly we found that its hydrolytic enzymes were tightly controlled by classical inducers of megakaryocyte differentiation. In conclusion 2-AG, by triggering megakaryocyte maturation and platelet release, may have clinical efficacy to counteract thrombocytopenia-related diseases.


Asunto(s)
Ácidos Araquidónicos/farmacología , Plaquetas/citología , Diferenciación Celular/efectos de los fármacos , Endocannabinoides/farmacología , Glicéridos/farmacología , Antígenos CD/metabolismo , Plaquetas/metabolismo , Línea Celular , Linaje de la Célula , Citoesqueleto/efectos de los fármacos , Humanos , Megacariocitos/citología , Megacariocitos/efectos de los fármacos , Trombopoyesis/efectos de los fármacos
19.
Results Immunol ; 2: 88-96, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24371571

RESUMEN

HLA/peptide tetramers are frequently used for ex vivo monitoring of disease- or vaccine-induced T cell immune responses and for T cell epitope identification. However, when low-levels HLA/peptide tetramer-positive T cell populations are encountered, it is difficult to ascertain whether this represents a true T cell receptor (TCR)-mediated interaction or background signal. To address this issue, we have developed a method for both HLA class I and class II tetramer assays to confirm tetramer-binding to the TCR/CD3 complex. Preincubation of T cells with anti-CD3 mAb SPV-T3b and subsequent crosslinking interferes with the binding of HLA/peptide tetramers to the TCR/CD3 complex and thereby indicates to what extent HLA/peptide tetramer binds through interaction with TCR/CD3 complex. SPV-T3b pretreatment results in a 2- to 10-fold decrease in tetramer-binding intensity to antigen-specific CD8+ or CD4+ T cells, whereas background reactivity of HLA/peptide tetramers containing HIV-derived peptide in HIV-negative donors remained unchanged. SPV-T3b pretreatment forms a valuable tool to verify tetramer-based detection of antigen-specific T cells during the monitoring of immune responses in clinical studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA