Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.243
Filtrar
1.
Alzheimers Dement ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39262221

RESUMEN

INTRODUCTION: The molecular basis of cognitive resilience (CR) among pathologically confirmed Alzheimer's disease (AD) cases is not well understood. METHODS: Abundance of 13 cell types and neuronal subtypes in brain bulk RNA-seq data from the anterior caudate, dorsolateral prefrontal cortex (DLPFC), and posterior cingulate cortex (PCC) obtained from 434 AD cases, 318 cognitively resilient AD cases, and 188 controls in the Religious Orders Study and Rush Memory and Aging Project was estimated by deconvolution. RESULTS: PVALB+ neuron abundance was negatively associated with cognitive status and tau pathology in the DLPFC and PCC (Padj < 0.001) and the most reduced neuronal subtype in AD cases compared to controls in DLPFC (Padj = 8.4 × 10-7) and PCC (Padj = 0.0015). We identified genome-wide significant association of neuron abundance with TMEM106B single nucleotide polymorphism rs13237518 in PCC (p = 6.08 × 10-12). rs13237518 was also associated with amyloid beta (p = 0.0085) and tangles (p = 0.0073). DISCUSSION: High abundance of PVALB+ neurons may be a marker of CR. TMEM106B variants may influence CR independent of AD pathology. HIGHLIGHTS: Neuron retention and a lack of astrocytosis are highly predictive of Alzheimer's disease (AD) resilience. PVALB+ GABAergic and RORB+ glutamatergic neurons are associated with cognitive status. A TMEM106B single nucleotide polymorphism is related to lower AD risk, higher neuron count, and increased AD pathology.

2.
Am J Primatol ; : e23683, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39267526

RESUMEN

In ecological contexts natural selection might favor individuals with a larger body mass to monopolize resources; however, there is wide variation in body mass within populations and potential factors. In this study, we evaluated whether fruit production limits body mass in one group of Sapajus apella, its effects on behavior, and whether there is a relationship between social status and body mass. We recorded activity patterns using focal follows (20 min), body mass (using a modified Ohaus scale), and community wide fruit production estimates (from 60 fruit traps). Body mass remained relatively stable during periods of food scarcity, but in periods of abundance most individuals gained weight, as indicated by their relative growth rates (RGR). Subordinate subadults showed the highest RGR, as expected by their age. In periods of high fruit production activities as traveling, grooming, and playing were more frequent than during fruit scarcity, suggesting energy maximization and potential energetic constraints. We found differences in behavior within the group, as the alpha male was observed feeding more frequently (and for longer periods of time), was more aggressive (e.g., feeding trees), and received more grooming than other individuals. In addition, the alpha male was 60% heavier than the group's average body mass. Our study supports the hypothesis that body weight gain is related to fruit abundance and that body size is associated with social dominance; however, large individuals (both males and females) seem to incur in high metabolic or reproductive costs, as they do not gain much weight as smaller individuals.

3.
Sci Rep ; 14(1): 21401, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271926

RESUMEN

Current climate projections for mid-latitude regions globally indicate an intensification of wind-driven coastal upwelling due to warming conditions. The dynamics of mid-latitude coastal upwelling are marked by environmental variability across temporal scales, which affect key physiological processes in marine calcifying organisms and can impact their large-scale distribution patterns. In this context, marine invertebrates often exhibit phenotypic plasticity, enabling them to adapt to environmental change. In this study, we examined the physiological performance (i.e., metabolism, Thermal Performance Curves, and biomass and calcification rates) of individuals of the intertidal mollusk Chiton granosus, a chiton found from northern Peru to Cape Horn (5° to 55°S). Our spatial study design indicated a pattern of contrasting conditions among locations. The Talcaruca site, characterized by persistent upwelling and serving as a biogeographic break, exhibited lower pH and carbonate saturation states, along with higher pCO2, compared to the sites located to the north and south of this location (Huasco and Los Molles, respectively). In agreement with the spatial pattern in carbonate system parameters, long-term temperature records showed lower temperatures that changed faster over synoptic scales (1-15 days) at Talcaruca, in contrast to the more stable conditions at the sites outside the break. Physiological performance traits from individuals from the Talcaruca population exhibited higher values and more significant variability, along with significantly broader and greater warming tolerance than chitons from the Huasco and Los Molles populations. Moreover, marked changes in local abundance patterns over three years suggested population-level responses to the challenging environmental conditions at the biogeographic break. Thus, C. granosus from the Talcaruca upwelling zone represents a local population with wide tolerance ranges that may be capable of withstanding future upwelling intensification on the Southern Eastern Pacific coast and likely serving as a source of propagules for less adapted populations.


Asunto(s)
Temperatura , Animales , Ecosistema , Biomasa , Perú , Agua de Mar , Adaptación Fisiológica , Cambio Climático , Calcificación Fisiológica
4.
Water Res ; 266: 122420, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39270504

RESUMEN

Nitrification, a process carried out by aerobic microorganisms that oxidizes ammonia to nitrate via nitrite, is an indispensable step in wastewater nitrogen removal. To facilitate energy and carbon savings, applying low dissolved oxygen (DO) is suggested to shortcut the conventional biological nitrogen removal pathway, however, the impact of low DO on nitrifying communities within activated sludge is not fully understood. This study used genome-resolved metagenomics to compare nitrifying communities under extremely low- and high-DO. Two bioreactors were parallelly operated to perform nitrification and DO was respectively provided by limited gas-liquid mass transfer from the atmosphere (AN reactor, DO < 0.1 mg/L) and by sufficient aeration (AE reactor, DO > 5.0 mg/L). Low DO was thought to limit nitrifiers growth; however, we demonstrated that complete nitrification could still be achieved under the extremely low-DO conditions, but with no nitrite accumulation observed. Kinetic analysis showed that after long-term exposure to low DO, nitrifiers had a higher oxygen affinity constant and could maintain a relatively high nitrification rate, particularly at low levels of DO (<0.2 mg/L). Community-level gene analysis indicated that low DO promoted enrichment of nitrifiers (the genera Nitrosomonas and Nitrospira, increased by 2.3- to 4.3-fold), and also harbored with 2.3 to 5.3 times higher of nitrification functional genes. Moreover, 46 high-quality (>90 % completeness and <5 % contamination) with 3 most abundant medium-quality metagenome-assembled genomes (MAGs) were retrieved using binning methods. Genome-level phylogenetic analysis revealed the species succession within nitrifying populations. Surprisingly, compared to DO-rich conditions, low-DO conditions were found to efficiently suppressed the ordinary heterotrophic microorganisms (e.g., the families Anaerolineales, Phycisphaerales, and Chitinophagales), but selected for the specific candidate denitrifiers (within phylum Bacteroidota). This study provides new microbial insights to demonstrate that low-DO favors the enrichment of autotrophic nitrifiers over heterotrophs with species-level successions, which would facilitate the optimization of energy and carbon management in wastewater treatment.

5.
Sci Total Environ ; 953: 176091, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39244058

RESUMEN

Sediment or soil in wetlands is regarded as an important sink of antibiotic resistance genes (ARGs). However, there are no studies on the effects of sediment changes (which caused changes in soil texture) on soil ARGs in wetland. Here, we collected topsoil samples from 12 study sites that were deposited in early (prior to the 1970s) or recent years to reveal the responses of soil ARGs to the decrease in grain size of sediment discharged into Dongting Lake. The results indicated that it caused significant increases in clay content, soil organic matter (SOM), moisture, and bacterial abundance. The absolute abundance of 38 % ARG subtypes, 62 % ARG types, and the total ARG concentrations showed a significant increase. The composition of ARG profiles also showed significant changes. For mobile genetic elements (MGEs), the levels of plasmid, insertional, and transposase were significantly elevated. Notably, clay content, moisture, SOM, and bacterial abundance presented very strong positive correlation with most ARG and total ARG abundance. The contributions of physicochemical characteristics and bacterial abundance to ARG variations were ranked as follows: 16S rRNA > SOM > moisture > pH > soil texture (clay, sand and silt) > nitrate nitrogen > ammonium nitrogen. Bacterial abundance, SOM, moisture, and soil texture were the primary environmental parameters contributing to the soil ARG variations in this research. These changes of ARGs may pose risks to ecosystems and public health.

6.
Sci Rep ; 14(1): 21019, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251815

RESUMEN

The neighborhood effect has become an important framework with which to study the mechanisms that maintain the coexistence of tree species. Phylogenetic relatedness among neighboring plants directly affects species coexistence and the maintenance of tree diversity. And some studies have reported that seedling performance is negatively correlated with phylogenetic relatedness, which termed phylogenetic negative density dependence. Soil-borne fungal pathogens affected seedling performance of phylogenetically related host species, i.e., phylogenetic Janzen-Connell effect. Seedlings may be particularly vulnerable to habitat and neighbor characteristics. Although previous studies have demonstrated the influence of neighborhood effects, phylogenetic relatedness, and habitat filtering on seedling survival, growth, and mortality, the effect of variation in these factors on seedling abundance remains unclear. To address this question, we used a 4-ha (200 m × 200 m) and monitored four-year (2020-2023) seedling dataset from a mid-montane humid evergreen broad-leaved subtropical forest in the Gaoligong Mountains, Yunnan, Southwestern China, and which consisted of 916 seedlings belonging to 56 species. The results of generalized linear mixed models showed no significant effect of conspecific adult neighbors on seedling abundance at any of the intervals evaluated. In contrast, we found evidence of phylogenetic distance density dependence in the forests of the Gaoligong Mountains. Specifically, there was a significant positive effect of the relative average phylogenetic distance between heterospecific adult neighbors and focal seedlings on focal seedling abundance in 2020; however, the relative average phylogenetic distance between heterospecific seedling neighbors and focal seedlings had a significant negative effect on seedling abundance over the four-year period (2020-2023). Among the habitat factors, only light (canopy opening) had a negative effect on seedling abundance in all four years. Light resources may be a limiting factor for seedlings, and determine seedling dynamics in subtropical forests. Overall, our results demonstrated that phylogenetic density dependence and habitat filtering affected subtropical seedling abundance. Our findings provide new evidence of the impact of phylogenetic density dependence on seedling abundance in a subtropical mid-montane humid evergreen broad-leaved forest and highlight the need to incorporate the neighborhood effect, phylogenetic relatedness, and habitat factors in models assessing seedling abundance.


Asunto(s)
Ecosistema , Bosques , Filogenia , Plantones , Plantones/crecimiento & desarrollo , China , Árboles/crecimiento & desarrollo , Biodiversidad
7.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39256198

RESUMEN

Accurate assessment of fragment abundance within a genome is crucial in clinical genomics applications such as the analysis of copy number variation (CNV). However, this task is often hindered by biased coverage in regions with varying guanine-cytosine (GC) content. These biases are particularly exacerbated in hybridization capture sequencing due to GC effects on probe hybridization and polymerase chain reaction (PCR) amplification efficiency. Such GC content-associated variations can exert a negative impact on the fidelity of CNV calling within hybridization capture panels. In this report, we present panelGC, a novel metric, to quantify and monitor GC biases in hybridization capture sequencing data. We establish the efficacy of panelGC, demonstrating its proficiency in identifying and flagging potential procedural anomalies, even in situations where instrument and experimental monitoring data may not be readily accessible. Validation using real-world datasets demonstrates that panelGC enhances the quality control and reliability of hybridization capture panel sequencing.


Asunto(s)
Composición de Base , Variaciones en el Número de Copia de ADN , Genómica , Humanos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Hibridación de Ácido Nucleico/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Genoma Humano , Reproducibilidad de los Resultados
8.
Infect Dis Poverty ; 13(1): 65, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256885

RESUMEN

BACKGROUND: Combating infectious diseases and halting biodiversity loss are intertwined challenges crucial to ensure global health. Biodiversity can constrain the spread of vector-borne pathogens circulation, necessitating a deeper understanding of ecological mechanisms underlying this pattern. Our study evaluates the relative importance of biodiversity and the abundance of Bulinus truncatus, a major intermediate host for the trematode Schistosoma haematobium on the circulation of this human pathogen at aquatic transmission sites. METHODS: We combined mathematical modelling and a molecular based empirical study to specifically assess the effect of co-infections between S. haematobium and other trematodes within their B. truncatus snail hosts; and B. truncatus abundance at transmission sites, on the production of S. haematobium infective cercariae stages released into the aquatic environment. RESULTS: Our modelling approach shows that more competitive trematode species exploiting B. truncatus as an intermediate host at the transmission site level leads to higher co-infection rates within snail hosts, subsequently reducing the production of S. haematobium cercariae. Conversely, an increase in B. truncatus abundance results in lower co-infection rates, and a higher proportion of S. haematobium cercariae released into the environment. Our empirical data from the field support these findings, indicating a significant negative effect of local trematode species richness (P-value = 0.029; AIC = 14.9) and co-infection rates (P-value = 0.02, AIC = 17.4) on the dominance of S. haematobium based on our GLMM models, while B. truncatus abundance positively influences S. haematobium dominance (P-value = 0.047, AIC = 20.1). CONCLUSIONS: Our study highlights the importance of biodiversity in influencing the transmission of S. haematobium through the effect of antagonistic interactions between trematodes within bulinid snail hosts. This effect intensifies when B. truncatus populations are low, promoting co-infections within snails. In line with the One Health concept, our results suggest that maintaining high level of freshwater biodiversity to sustain global trematode diversity at transmission sites can help reducing the circulation of Schistosoma species locally.


Asunto(s)
Interacciones Huésped-Parásitos , Schistosoma haematobium , Trematodos , Animales , Schistosoma haematobium/fisiología , Trematodos/fisiología , Humanos , Esquistosomiasis Urinaria/transmisión , Esquistosomiasis Urinaria/parasitología , Bulinus/parasitología , Caracoles/parasitología , Biodiversidad , Coinfección/parasitología , Modelos Teóricos , Cercarias/fisiología
9.
Ecol Evol ; 14(9): e70235, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39219570

RESUMEN

Species-environment relationships have been extensively explored through species distribution models (SDM) and species abundance models (SAM), which have become key components to understand the spatial ecology and population dynamics directed at biodiversity conservation. Nonetheless, within the internal structure of species' ranges, habitat suitability and species abundance do not always show similar patterns, and using information derived from either SDM or SAM could be incomplete and mislead conservation efforts. We gauged support for the abundance-suitability relationship and used the combined information to prioritize the conservation of South American dwarf caimans (Paleosuchus palpebrosus and P. trigonatus). We used 7 environmental predictor sets (surface water, human impact, topography, precipitation, temperature, dynamic habitat indices, soil temperature), 2 regressions methods (Generalized Linear Models-GLM, Generalized Additive Models-GAM), and 4 parametric distributions (Binomial, Poisson, Negative binomial, Gamma) to develop distribution and abundance models. We used the best predictive models to define four categories (low, medium, high, very high) to plan species conservation. The best distribution and abundance models for both Paleosuchus species included a combination of all predictor sets, except for the best abundance model for P. trigonatus which incorporated only temperature, precipitation, surface water, human impact, and topography. We found non-consistent and low explanatory power of environmental suitability to predict abundance which aligns with previous studies relating SDM-SAM. We extracted the most relevant information from each optimal SDM and SAM and created a consensus model (2,790,583 km2) that we categorized as low (39.6%), medium (42.7%), high (14.9%), and very high (2.8%) conservation priorities. We identified 279,338 km2 where conservation must be critically prioritized and only 29% of these areas are under protection. We concluded that optimal models from correlative methods can be used to provide a systematic prioritization scheme to promote conservation and as surrogates to generate insights for quantifying ecological patterns.

10.
Bioscience ; 74(8): 509-523, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39229622

RESUMEN

Freshwater ecosystems can serve as model systems that reveal insights into biological invasions. In this article, we summarize nine lessons about aquatic invasive species from the North Temperate Lakes Long-Term Ecological Research program and affiliated projects. The lessons about aquatic invasive species are as follows: Invasive species are more widespread than has been documented; they are usually at low abundance; they can irrupt from low-density populations in response to environmental triggers; they can occasionally have enormous and far-reaching impacts; they can affect microbial communities; reservoirs act as invasive species hotspots; ecosystem vulnerability to invasion can be estimated; invasive species removal can produce long-term benefits; and the impacts of invasive species control may be greater than the impacts of the invasive species. This synthesis highlights how long-term research on a freshwater landscape can advance our understanding of invasions.

11.
Ecology ; : e4389, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39252476

RESUMEN

Global change is affecting the distribution and population dynamics of plant species across the planet, leading to trends such as shifts in distribution toward the poles and to higher elevations. Yet, we poorly understand why individual species respond differently to warming and other environmental changes, or how the trait composition of communities responds. Here we ask two questions regarding plant species and community changes over 42 years of global change in a temperate montane forest in Québec, Canada: (1) How did the trait composition, alpha diversity, and beta diversity of understory vascular plant communities change between 1970 and 2010, a period over which the region experienced 1.5°C of warming and changes in nitrogen deposition? (2) Can traits predict shifts in species elevation and abundance over this time period? For 46 understory vascular species, we locally measured six aboveground traits, and for 36 of those (not including shrubs), we also measured five belowground traits. Collectively, they capture leading dimensions of phenotypic variation that are associated with climatic and resource niches. At the community level, the trait composition of high-elevation plots shifted, primarily for two root traits: specific root length decreased and rooting depth increased. The mean trait values of high-elevation plots shifted over time toward values initially associated with low-elevation plots. These changes led to trait homogenization across elevations. The community-level shifts in traits mirrored the taxonomic shifts reported elsewhere for this site. At the species level, two of the three traits predicting changes in species elevation and abundance were belowground traits (low mycorrhizal fraction and shallow rooting). These findings highlight the importance of root traits, which, along with leaf mass fraction, were associated with shifts in distribution and abundance over four decades. Community-level trait changes were largely similar across the elevational and temporal gradients. In contrast, traits typically associated with lower elevations at the community level did not predict differences among species in their shift in abundance or distribution, indicating a decoupling between species- and community-level responses. Overall, changes were consistent with some influence of both climate warming and increased nitrogen availability.

12.
J Anim Sci Biotechnol ; 15(1): 122, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39244578

RESUMEN

BACKGROUND: The present experiment aimed to evaluate the effects of commercially processed former foodstuffs (cFF) as dietary substitutes of corn, soybean meal and soybean oil on the growth performance, apparent total tract digestibility (ATTD), hematobiochemical profiles, and liver gene abundance in broiler chickens. Two hundred one-day-old male ROSS-308 chicks were assigned to 4 dietary groups (5 replicates of ten birds per replicate) according to their average body weight (BW, 38.0 ± 0.11 g). All groups received a two-phase feeding program: starter, d 1-12 and grower, d 12-33. The control group (cFF0) was fed a standard commercial feed based on corn, soybean meal and soybean oil. The other three groups received diets in which the feed based on corn, soybean meal, and soybean oil was partially replaced with cFF at a substitution level of 6.25% (cFF6.25), 12.5% (cFF12.5) or 25% (cFF25) for the following 33 d. RESULTS: The growth performance data showed no differences in BW or average daily gain among groups, although the average daily feed intake decreased during the grower period (12-33 d) and over entire experimental period (1-33 d) in a linear manner as the cFF inclusion level rose (P = 0.026), positively affecting the gain to feed ratio (P = 0.001). The ATTD of dry matter of the cFF-fed groups were greater with respect to control group and increased throughout the experimental period, whereas the ATTD of ether extract linearly decreased with increasing levels of cFF-fed groups compared with control group and throughout the experimental period (P < 0.05). Additionally, a linear increase in the heterophil to lymphocyte ratio, serum cholesterol, triglycerides and alanine-aminotransferase were observed with increasing dietary levels of cFF (P < 0.05); however, no differences were observed in lipoprotein lipase or sterol regulatory element binding transcription factor gene abundance. CONCLUSIONS: The results of this experiment demonstrate that it is possible to incorporate cFF into nutritionally balanced diets for broiler chickens, even up to 25% substitution levels, for up to 33 d without adversely impacting the overall growth performance of male broiler chickens raised under commercial conditions. Further studies are essential to validate the hematological trait findings.

13.
PeerJ ; 12: e17899, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224826

RESUMEN

Pinus kwangtungensis is an endangered evergreen conifer tree species, and its in situ conservation has been considered one of the most critical issues. However, relative protection is limited by the lack of understanding of its community structure and underlying assembly processes. To study how the species diversity and assembly processes of Pinus kwangtungensis coniferous forest (CF) differed with regional climax community, this study established a series forest dynamic plots both in CF and evergreen deciduous broadleaved mixed forest (EDBM). By performing comparison analysis and PER-SIMPER approaches, we quantified the differences in species diversity and community assembly rules. The results showed that the species α-diversity of CF differed greatly from the EDBM both in species richness and evenness. In addition, the stochastic process acted a more important role in determining species composition, indicating the uncertainty in presence of species. The soil phosphorus and changeable calcium content were the main factors driving the differences in biodiversity, which the importance of soil nutrient factors in driving species composition. Our study highlighted that we should consider the community structure and ecological process when conducting conservation of Pinus kwangtungensis.


Asunto(s)
Biodiversidad , Bosques , Pinus , Procesos Estocásticos , Conservación de los Recursos Naturales , Suelo/química , Fósforo/análisis
14.
Artículo en Inglés | MEDLINE | ID: mdl-39224900

RESUMEN

Species composition and densities of wild ungulate communities in Europe have changed over the last decades. As ungulates play an important role in the life-cycle of the tick species Ixodes ricinus, these changes could affect both the life-cycle of I. ricinus and the transmission of tick-borne pathogens like Borrelia burgdorferi (s.l.) and Anaplasma phagocytophilum. Due to morphological and behavioural differences among the ungulate species, these species might have different effects on the densities of questing I. ricinus, either directly through a bloodmeal or indirectly via the impact of ungulates on rodent numbers via the vegetation. In this study, we aimed to investigate these direct and indirect effects of five different ungulate species, fallow deer (Dama dama), roe deer (Capreolus capreolus), red deer (Cervus elaphus), moose (Alces alces), and wild boar (Sus scrofa), on the presence and abundance of I. ricinus ticks. In the summer of 2019, on 20 1 × 1 km transects in south-central Sweden that differed in ungulate community composition, we collected data on tick presence and abundance (by dragging a cloth), ungulate community composition (using camera traps), vegetation height (using the drop-disc method), temperature above field layer and rodent abundance (by snap-trapping). Using generalized linear mixed models we did not find any associations between vegetation height and tick presence/abundance or ungulate visitation frequencies, or between ungulate visitation frequencies and the presence/abundance of questing I. ricinus. The power of our analyses was, however, low due to very low tick and rodent numbers. We did find a negative association between adult ticks and air temperature, where we were more likely to find adult ticks if temperature in the field layer was lower. We conclude that more elaborate long-term studies are needed to elucidate the investigated associations. Such future studies should differentiate among the potential impacts of different ungulate species instead of treating all ungulate species as one group.

15.
Exp Gerontol ; : 112566, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39226947

RESUMEN

OBJECTIVE: To confirm the causality of gut microbiota pathway abundance and knee osteoarthritis (KOA). METHODS: Microbial metabolic pathways were taken as exposures, with data from the Dutch Microbiome Project (DMP). Data on KOA from the UK Biobank were utilized as endpoints. In addition, we extracted significant and independent single nucleotide polymorphisms as instrumental variables. Two-sample Mendelian randomization (MR) analysis was applied to explore the causal relationship between gut microbiota pathway abundance and KOA, and MR-Egger and weighted median were used as additional validation of the MR results. Meanwhile, Cochran Q, MR-Egger intercept, MR-PRESSO, and leave-one-out were used to perform sensitivity analyses on the MR results. RESULTS: MR results showed that enterobactin biosynthesis, diacylglycerol biosynthesis I, Clostridium acetobutylicum acidogenic fermentation, glyoxylate bypass and tricarboxylic acid cycle were the risk factors for KOA. (OR = 1.13,95%CI = 1.04-1.23;OR = 1.12,95%CI = 1.04-1.20;OR = 1.14,95%CI = 1.04-1.26; OR = 1.06,95%CI = 1.00-1.12) However, adenosylcobalamin salvage from cobinamide I, hexitol fermentation to lactate formate ethanol and acetate, purine nucleotides degradation II aerobic, L tryptophan biosynthesis and inosine 5 phosphate biosynthesis III pathway showed significant protection against KOA. (OR = 0.93,95%CI = 0.86-1.00;OR = 0.94,95%CI = 0.88-1.00;OR = 0.91,95%CI = 0.86-0.97;OR = 0.95,95%CI = 0.92-0.99; OR = 0.91, 95%CI = 0.85-0.98) Further multiplicity and sensitivity analyses demonstrated the robustness of the results. CONCLUSION: Our study identified specific metabolic pathways in gut microbiota that promote or inhibit KOA, which provides the most substantial evidence-based medical evidence for the pathogenesis and prevention of KOA.

16.
Ecol Appl ; : e3029, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256977

RESUMEN

Knowledge of how agricultural management interacts with weed seed banks and emergent weed communities is crucial for proactive weed management. Though studies have detailed how differences in disturbance and nutrient applications between organic and conventional herbicide-based systems affect weed communities, few have focused on these same factors in contrasting organic systems. This study assessed the seed banks and emergent weed communities from the most recent crop rotation cycle (2017-2022) of a long-term experiment, which compared four organic grain and forage cropping systems differing in nutrient inputs and soil disturbance. The high fertility (HF) system received high-rate nutrient applications, low fertility (LF) received low-rate applications, enhanced weed management (EWM) focused on weed control through frequent soil disturbance, and reduced tillage (RT) prioritized soil health with less intense or frequent soil disturbance. Soil samples for greenhouse germination assays were collected at the beginning (2017) and end (2022) of the rotation to explore how these four systems influenced seed bank dynamics over time. Weed community biomass was also sampled in each crop during this time. Treatment effects on weed abundance, taxonomic diversity, and community-weighted means and functional dispersion of weed traits were analyzed with generalized mixed-effect models. The RT system had the highest weed seed bank taxonomic diversity, and EWM had the lowest. RT and LF had higher functional dispersion of traits than HF in the seed bank. Weed seed bank communities in HF and RT were characterized by short, small-seeded, and early germinating weed species. However, seed banks were also labile: Differences between systems in seed density and all other mean trait values were dependent on the crop, which preceded seed bank sampling. Likewise, differences among emergent weed communities in the four systems depended on an interaction between crop species and their planting year. Results suggest that resource availability and intensity of disturbance act as weed community assembly filters in organic cropping systems. Organic growers seeking to design systems that balance weed management and production goals can use relatively low soil disturbance and nutrient application to increase weed community taxonomic or functional diversity without necessarily increasing weed biomass or seed bank density.

17.
Lupus ; : 9612033241281891, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258896

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is a complex autoimmune disease with unclear etiology. Growing evidence suggests the microbiome plays a role in SLE pathogenesis. However, findings are inconsistent across studies due to factors like small sample sizes and geographical variations. A comprehensive meta-analysis is needed to elucidate microbiome alterations in SLE. OBJECTIVE: This study aimed to provide a systematic overview of microbiota dysbiosis across body sites in SLE through a meta-analysis of alpha diversity indices, beta diversity indices, and abundance taxa of microbiome. METHODS: A literature search was conducted across four databases to identify relevant studies comparing SLE patients and healthy controls. Extracted data encompassed alpha and beta diversity metrics, as well as bacterial, fungal, and viral abundance across gut, oral, skin, and other microbiota. Study quality was assessed using the Newcastle-Ottawa Scale. Standardized mean differences and pooled effect sizes were calculated through meta-analytical methods. RESULTS: The analysis showed reduced alpha diversity and distinct beta diversity in SLE, particularly in the gut microbiota. Taxonomic analysis revealed compositional variations in bacteria from the gut and oral cavity. However, results for fungi, viruses, and bacteria from other sites were inconsistent due to limited studies. CONCLUSIONS: This meta-analysis offers a comprehensive perspective on microbiome dysbiosis in SLE patients across diverse body sites and taxa. The observed variations underscore the microbiome's potential role in SLE pathogenesis. Future research should address geographical variations, employ longitudinal designs, and integrate multi-omics approaches.

18.
Ecol Evol ; 14(9): e70230, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39234160

RESUMEN

Abundance estimation is frequently an objective of conservation and monitoring initiatives for threatened and other managed populations. While abundance estimation via capture-mark-recapture or spatially explicit capture-recapture is now common, such approaches are logistically challenging and expensive for species such as boreal caribou (Rangifer tarandus), which inhabit remote regions, are widely dispersed, and exist at low densities. Fortunately, the recently developed 'close-kin mark-recapture' (CKMR) framework, which uses the number of kin pairs obtained within a sample to generate an abundance estimate, eliminates the need for multiple sampling events. As a result, some caribou managers are interested in using this method to generate an abundance estimate from a single, non-invasive sampling event for caribou populations. We conducted a simulation study using realistic boreal caribou demographic rates and population sizes to assess how population size and the proportion of the population surveyed impact the accuracy and precision of single-survey CKMR-based abundance estimates. Our results indicated that abundance estimates were biased and highly imprecise when very small proportions of the population were sampled, regardless of the population size. However, the larger the population size, the smaller the required proportion of the population surveyed to generate both accurate and reasonably precise estimates. Additionally, we also present a case study in which we used the CKMR framework to generate annual female abundance estimates for a small caribou population in Jasper National Park, Alberta, Canada, from 2006 to 2015 and compared them to existing published capture-mark-recapture-based estimates. Both the accuracy and precision of the annual CKMR-based abundance estimates varied across years and were sensitive to the proportion of pairwise kinship comparisons which yielded a mother-offspring pair. Taken together, our study demonstrates that it is possible to generate CKMR-based abundance estimates from a single sampling event for small caribou populations, so long as a sufficient sampling intensity can be achieved.

20.
Environ Pollut ; 360: 124654, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39098638

RESUMEN

Microplastics (MPs) enter lakes through various pathways, including effluents from wastewater treatment plants (WWTPs), surface runoff, and improperly disposed of plastic waste. In this study, the extent of MPs pollution in Uiam Lake in fall of 2022 and spring of 2023 was assessed by determining both the number (n/m3) and mass concentrations (µg/m3) of MPs. Moreover, the correlation between water quality parameters and MP properties was analyzed, and an ecological risk assessment was conducted. MPs abundance was higher in spring than in fall, probably due to the lifting of coronavirus disease-19 restrictions, melting of ice, higher rainfall, and faster wind speed. Fragment was the dominant shape of the MPs collected, while polyvinyl chloride (PVC) and polyester/polyethylene terephthalate were the frequently detected polymer types of MPs in fall and spring, respectively. There was a moderate positive correlation between the number concentration of MPs and the total nitrogen, total phosphorus (T-P), and total organic carbon levels; in contrast, there was no significant relationship between the mass concentration of MPs and all water quality parameters. However, the abundance (µg/m3) of PVC and polymethyl methacrylate MPs were positively correlated with T-P and electrical conductivity. The pollution load index, polymer hazard index, and potential ecological risk index (PERI) were generally higher when the mass unit of MPs was used due to the presence of large-sized MPs composed of highly hazardous polymers (e.g., polyurethane, PVC, and alkyd). For instance, the PERI value of the WWTP effluent was at the very high level (>1200) in both seasons, regardless of the abundance unit of MPs. Therefore, WWTP effluents may have increased the ecological toxicity of MPs pollution in Uiam Lake.


Asunto(s)
Monitoreo del Ambiente , Lagos , Microplásticos , Contaminantes Químicos del Agua , Microplásticos/análisis , Lagos/química , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , Monitoreo del Ambiente/métodos , República de Corea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA