Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecology ; 105(9): e4364, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39034659

RESUMEN

Predation's consequences can manifest through either consumptive or nonconsumptive effects, but the prey response may also vary depending on the predator hunting strategy. Considerable attention has been paid to coursing predators, whereas less information is available regarding responses to ambush predators. To remedy this paucity, we utilized a three-dimensional tracking platform to record groups of Daphnia magna under predation risk from the ambush invertebrate predator red-eyed damselfly, Erythromma najas. This design allowed us to test individual antipredator responses in multiple metrics of swimming behaviors. We demonstrate that predation risk was greatest for those that swam at 85% of the available depth and averaged 8.1 mm/s. Examining the swimming behavior of each individual separately showed that predation risk did not affect any of the prey response metrics. Interestingly, however, Daphnia did conform to one of two strategies while under predation risk: either swim fast high up in the water column or swim slowly close to the bottom. Hence, this dichotomous behavior is driven by strategies combining speed and depth in different constellations. In a broader context, our findings highlight the importance of considering both the spatial and temporal dimensions of predation events in order to correctly detect antipredator responses.


Asunto(s)
Daphnia , Conducta Predatoria , Animales , Daphnia/fisiología , Conducta Predatoria/fisiología , Odonata/fisiología , Natación/fisiología , Cadena Alimentaria
2.
Elife ; 112022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36448670

RESUMEN

A predominantly fish-eating diet was envisioned for the sail-backed theropod dinosaur Spinosaurus aegyptiacus when its elongate jaws with subconical teeth were unearthed a century ago in Egypt. Recent discovery of the high-spined tail of that skeleton, however, led to a bolder conjecture that S. aegyptiacus was the first fully aquatic dinosaur. The 'aquatic hypothesis' posits that S. aegyptiacus was a slow quadruped on land but a capable pursuit predator in coastal waters, powered by an expanded tail. We test these functional claims with skeletal and flesh models of S. aegyptiacus. We assembled a CT-based skeletal reconstruction based on the fossils, to which we added internal air and muscle to create a posable flesh model. That model shows that on land S. aegyptiacus was bipedal and in deep water was an unstable, slow-surface swimmer (<1 m/s) too buoyant to dive. Living reptiles with similar spine-supported sails over trunk and tail are used for display rather than aquatic propulsion, and nearly all extant secondary swimmers have reduced limbs and fleshy tail flukes. New fossils also show that Spinosaurus ranged far inland. Two stages are clarified in the evolution of Spinosaurus, which is best understood as a semiaquatic bipedal ambush piscivore that frequented the margins of coastal and inland waterways.


Asunto(s)
Dinosaurios , Animales , Fósiles , Esqueleto , Músculos , Columna Vertebral
3.
Ecology ; 103(10): e3787, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724967

Asunto(s)
Braquiuros , Animales
4.
Ecology ; 101(12): e03172, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32852062

RESUMEN

Predator-prey games emerge when predators and prey dynamically respond to the behavior of one another, driving the outcomes of predator-prey interactions. Predation success is a function of the combined probabilities of encountering and capturing prey, which are influenced by both prey behavior and environmental features. While the relative importance of encounter and capture probabilities have been evaluated in a spatial framework, temporal variation in prey behavior and intrinsic catchability are likely to also affect the distribution of predation events. Using a single-predator-single-prey (puma-vicuña) system, we evaluated which factors predict predation events across both temporal and spatial dimensions of the components of predation by testing the prey-abundance hypothesis (predators select for high encounter probability) and the prey-catchability hypothesis (predators select for high relative capture probability) in time and space. We found that for both temporal and spatial analyses, neither the prey-abundance hypothesis nor the prey-catchability hypothesis alone predicted kill frequency or distribution; puma kill frequency was static throughout the diel cycle and pumas consistently selected a single habitat type when hunting, despite temporal and spatial variation in encounter rates and intrinsic catchability. Our integrated spatiotemporal analysis revealed that an interaction between time of day and habitat influences kill probability, suggesting that trade-offs in the temporal and spatial components of predation drive the probability of predation events. These findings reinforce the importance of examining both the temporal and spatial patterns of the components of predation, rather than unidimensional measures of predator or prey behavior, to comprehensively describe the feedbacks between predator and prey in the predator-prey game.


Asunto(s)
Carnívoros , Conducta Predatoria , Animales , Ecosistema , Análisis Espacio-Temporal
5.
Artículo en Inglés | MEDLINE | ID: mdl-30236912

RESUMEN

The positive relationship between locomotion performance and survival under predation has long been suggested yet seldom demonstrated with direct evidence. We investigate the effects of predator exposure on locomotion capacity (both fast-start escape and critical swimming performance), survival under predation and the relationships between these factors in juvenile Chinese bream (Parabramis pekinensis). This study aims to test whether there is a positive relationship between the above factors and whether such relationships are context dependent (i.e., with or without 20 d of predator exposure). We found that predator-exposed Chinese bream showed higher rates of survival under predation and improved fast-start swimming performance compared with individuals not exposed to predation. At individual level, no relationship was found between survival and any locomotion performance component in the no-predator group, but mean fast-start swimming speed, maneuverability and responsiveness were all positively related to survival in the predator group after 20 d of exposure. This finding indicates that the recognition of and vigilance for predators achieved through predation experience can be crucial preconditions for prey to employ the fast-start escape response, especially to escape ambush predators. Furthermore, a tradeoff was observed between the critical and fast-start swimming performances in the predator group, but not in the no-predator group, which may have been due to the intensified competition throughout the entire locomotion-support system (e.g., energy, proportions of slow- and fast-twitch muscle fibers) between critical and fast-start swimming because the increased demand for fast-start escape capacity constrains (or compromises) critical swimming performance under the threat of predation.


Asunto(s)
Cyprinidae/fisiología , Conducta Predatoria , Natación , Animales
6.
Curr Biol ; 28(4): 588-593.e4, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29429616

RESUMEN

Stereopsis is the ability to estimate distance based on the different views seen in the two eyes [1-5]. It is an important model perceptual system in neuroscience and a major area of machine vision. Mammalian, avian, and almost all machine stereo algorithms look for similarities between the luminance-defined images in the two eyes, using a series of computations to produce a map showing how depth varies across the scene [3, 4, 6-14]. Stereopsis has also evolved in at least one invertebrate, the praying mantis [15-17]. Mantis stereopsis is presumed to be simpler than vertebrates' [15, 18], but little is currently known about the underlying computations. Here, we show that mantis stereopsis uses a fundamentally different computational algorithm from vertebrate stereopsis-rather than comparing luminance in the two eyes' images directly, mantis stereopsis looks for regions of the images where luminance is changing. Thus, while there is no evidence that mantis stereopsis works at all with static images, it successfully reveals the distance to a moving target even in complex visual scenes with targets that are perfectly camouflaged against the background in terms of texture. Strikingly, these insects outperform human observers at judging stereoscopic distance when the pattern of luminance in the two eyes does not match. Insect stereopsis has thus evolved to be computationally efficient while being robust to poor image resolution and to discrepancies in the pattern of luminance between the two eyes. VIDEO ABSTRACT.


Asunto(s)
Percepción de Profundidad/fisiología , Mantódeos/fisiología , Visión Ocular/fisiología , Animales , Femenino , Disparidad Visual/fisiología , Visión Binocular/fisiología
7.
J Fish Biol ; 90(5): 1823-1841, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28220488

RESUMEN

The aim of this study was to determine the dietary characteristics and mouth morphology of Othos dentex and to use these data, together with in situ observations of feeding behaviour, to elucidate how foraging and diet are optimized by this piscivorous serranid. Seasonal spear and line fishing over reefs in south-western Australia yielded 426 O. dentex (total length, LT , 183-605 mm), among which the stomachs of 95 contained food. The food in the stomachs of 76 fish was sufficiently undigested to be seen to contain, almost invariably, a single fish prey, which was typically identifiable to family and often to species. The prey of O. dentex, which were measured (LT ), represented 10 families, of which the Labridae and Pempheridae constituted nearly two-thirds of the prey volume. Two-way crossed analysis of similarities of volumetric data for stomach contents showed that the dietary compositions of the different length classes of O. dentex in the various seasons were significantly related to length class of prey, but not to prey family, length class within the various prey families or season. Furthermore, an inverse (Q-mode) analysis, including one-way analysis of similarities, showed that the patterns in the prey consumed by the different length classes of O. dentex in the various seasons were related more strongly to length class than prey family. The former trend is exemplified in a shade plot, by a marked diagonality of the length classes of prey with increasing predator size. The ingestion of typically a single teleost prey, whose body size increases as that of O. dentex increases, reduces the frequency required for seeking prey, thus saving energy and reducing the potential for intraspecific competition for food. The ability of O. dentex to ingest large prey is facilitated by its possession of a very large gape, prominent recurved teeth, dorsal and independently-moveable eyes, cryptic colouration and effective ambush behaviour. Othos dentex has thus evolved very cost-effective mechanisms for optimizing its foraging and diet.


Asunto(s)
Dieta/veterinaria , Conducta Alimentaria/fisiología , Perciformes/fisiología , Conducta Predatoria/fisiología , Animales , Tamaño Corporal , Tracto Gastrointestinal , Estaciones del Año , Australia del Sur , Diente/anatomía & histología , Australia Occidental
8.
Anim Cogn ; 19(5): 1037-41, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27222150

RESUMEN

Learning abilities are exhibited by many animals, including insects. However, sedentary species are typically believed to have low capacities and requirements for learning. Despite this view, recent studies show that even such inconspicuous organisms as larval antlions, which employ an ambush predation strategy, are capable of learning, although their learning abilities are rather simple, i.e., limited to the association of vibrational cues with the arrival of prey. This study demonstrates, for the first time, that antlion larvae can use vibrational cues for complex modifications of their foraging strategies. Specifically, antlion larvae rapidly learn to differentiate between the vibrational cues associated with prey of different sizes, and they save resources by ignoring smaller prey in favour of larger, more energetically profitable prey. Moreover, antlion larvae can learn to associate vibrational cues with the loss of their prey, and they respond by burying their victims under the sand more often and more rapidly than do individuals with no opportunities to form such associations. These findings provide not only new insights into the cognitive abilities of animals but also support for the optimal foraging strategy concept, suggesting the importance of maximizing fitness output by balancing the costs and benefits of alternative foraging strategies.


Asunto(s)
Señales (Psicología) , Insectos , Conducta Predatoria , Vibración , Animales , Larva , Aprendizaje
9.
Zoology (Jena) ; 119(3): 207-215, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26968523

RESUMEN

The goosefish, Lophius americanus, is a dorso-ventrally compressed marine fish that spends most of its life sitting on the substrate waiting to ambush prey. Species in the genus Lophius have some of the slowest ventilatory cycles recorded in fishes, with a typical cycle lasting more than 90s. They have a large gill chamber, supported by long branchiostegal rays and ending in a siphon-like gill opening positioned underneath and behind the base of the pectoral fin. Our goals were to characterize the kinematics of gill ventilation in L. americanus relative to those of more typical ray-finned fishes, address previous assertions about ventilation in this genus, and describe the anatomy of the gill opening. We found that phase 1 of ventilation (during which both the buccal and gill chamber are expanding) is greatly increased in duration relative to that of typical ray-finned fishes (ranging from 62 to 127s), and during this phase, the branchiostegal rays are slowly expanding. This slow expansion is almost visually imperceptible, especially from a dorsal view. Despite this unusually long phase 1, the pattern of skeletal movements follows that of a typical actinopterygian, refuting previous assertions that Lophius does not use its jaws, suspensorium, and operculum during ventilation. When individuals were disturbed from the sediment, they tended to breathe more rapidly by decreasing the duration of phase 1 (to 18-30s). Dissections of the gill opening revealed a previously undocumented dorsal extension of the adductor hyohyoideus muscle, which passes from between the branchiostegal rays, through the ventro-medial wall of the gill opening, and to the dorsal midline of the body. This morphology of the adductor hyohyoideus shares similarities with that of many Tetraodontiformes, and we suggest that it may be a synapomorphy for Lophiiformes+Tetraodontiformes. The specialized anatomy and function of the gill chamber of Lophius represents extreme modifications that provide insight into the potential limits of the actinopterygian gill ventilatory system.


Asunto(s)
Peces/anatomía & histología , Peces/fisiología , Branquias/anatomía & histología , Branquias/fisiología , Animales , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA