Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
ACS Biomater Sci Eng ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231535

RESUMEN

Droplets, tiny liquid compartments, are increasingly emerging in the biomedical and biomanufacturing fields due to their unique properties to serve as templates or independent reaction units. Currently, the straightforward and efficient generation of various functional droplets in a biofriendly manner remains challenging. Herein, a novel microfluidic-assisted pneumatic strategy is described for the customizable and high-throughput production of monodispersed droplets, and the droplet size can be precisely controlled via a simplified gas pressure regulation module. In particular, numerous uniform alginate microcarriers can be rapidly fabricated in an all-aqueous manner, wherein the encapsulated islet or liver cells exhibit favorable viability and biological functions. Furthermore, by changing the microchannel configuration, several fluid manipulation functions developed by microfluidic technology, such as mixing and laminar flow, can be successfully incorporated into this platform. The droplet generators with scalable functionality are demonstrated in many biomanufacturing scenarios, including on-demand distribution of cell-mimetic particles, continuous synthesis of biomedical metal-organic framework (MOF), controllable preparation of compartmental microgel, etc. These may provide sustainable inspiration for developing droplet generators and their applications in tissue and organ engineering, biomaterials design, bioprinting nozzles, and other fields.

2.
Microbiol Res ; 289: 127881, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39241502

RESUMEN

Mannitol, one of the most widespread sugar alcohols, has been integral to daily human life for two centuries. Global population growth and competition for freshwater, food, and land have prompted a shift in the fermentation industry from terrestrial to marine raw materials. Mannitol is a readily available carbohydrate in brown seaweed from the ocean and possess a higher reducing power than glucose, making it a promising substrate for biological manufacturing. This has spurred numerous explorations into converting mannitol into high-value chemicals. Researchers have engineered microorganisms to utilize mannitol in various synthetic biological applications, including: (1) employing mannitol as an inducer to control the activation and deactivation of genetic circuits; (2) using mannitol as a carbon source for synthesizing high-value chemicals through biomanufacturing. This review summarizes the latest advances in the application of mannitol in synthetic biology. AIM OF REVIEW: The aim is to present a thorough and in-depth knowledge of mannitol, a marine carbon source, and then use this carbon source in synthetic biology to improve the competitiveness of biosynthetic processes. We outlined the methods and difficulties of utilizing mannitol in synthetic biology with a variety of microbes serving as hosts. Furthermore, future research directions that could alleviate the carbon catabolite repression (CCR) relationship between glucose and mannitol are also covered. EXPECTED CONTRIBUTIONS OF REVIEW: Provide an overview of the current state, drawbacks, and directions for future study on mannitol as a carbon source or genetic circuit inducer in synthetic biology.

3.
Bioresour Technol ; : 131436, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39245064

RESUMEN

Glycyrrhetinicacid (GA) is a high-value pentacyclic triterpenoid with broad applications. However, the industrial production of GA is hindered by low yield and the accumulation of the intermediate product GlycyrrhetinicAcid3-O-Mono-ß-D-Glucuronide (GAMG). This study first identified a novel ß-glucuronidase (AcGUS) from Aspergillus calidoustus CLH-22 through transcriptomic analysis, demonstrating a substrate preference for GAMG. Subsequently, mutant AcGUS3G461C/Q462H/I575K with significantly improved activity (kcat/Km of 11.02-fold) was obtained via computer-aided engineering. Furthermore, the dual-GUS combination strategy was employed for the first timeto construct engineered Pichia pastoris for GA production, offering multiple advantages of enhanced conversion efficiency and reduced fermentation viscosity. Finally, under systematically optimized conditions and employing Glycyrrhizin (GL) as the substrate, the final concentration of GA was 48.73 g/L with a conversion of 97.26 % in a 1000-L fermenter, representing the optimal biocatalytic performance reported to date. This study provides new ideas and insights for industrial GA production.

4.
Trends Biotechnol ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39227240

RESUMEN

Cell-based therapies are revolutionizing medicine by replacing or modifying dysfunctional cells with healthy cells or engineered derivatives, offering disease reversal and cure. One promising approach is using cell-derived extracellular vesicles (EVs), which offer therapeutic benefits similar to cell transplants without the biosafety risks. Although EV applications face challenges like limited production, inadequate therapeutic loading, and poor targeting efficiency, recent advances in bioengineering have enhanced their effectiveness. Herein, we summarize technological breakthroughs in EV bioengineering over the past 5 years, highlighting their improved therapeutic functionalities and potential clinical prospects. We also discuss biomanufacturing processes, regulation, and safety considerations for bioengineered EV therapies, emphasizing the significance of establishing robust frameworks to ensure translation capability, safety, and therapeutic effectiveness for successful clinical adoption.

5.
Bioresour Technol ; : 131415, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233184

RESUMEN

Bacterioruberin is widely used in medicine, food, and cosmetics owing to its prominent characteristics of antioxidants and bioactivities. Bioconversion of methane into bacterioruberin is a promising way to address biomanufacturing substrate costs and greenhouse gas emissions but has not been achieved yet. Herein, this study aimed to upcycle methane to bacterioruberin by microbial consortia. The microbial consortia consist of Methylomonas and Methylophilus capable of synthesizing carotenoids from methane was firstly enriched from paddy soil. Through this microbial community, methane was successfully converted into C50 bacterioruberin for the first time. The bioconversion process was then optimized by the response surface methodology. Finally, the methane-derived bacterioruberin reached a record yield of 280.88 ±â€¯2.94 µg/g DCW. This study presents a cost-effective and eco-friendly approach for producing long-chain carotenoids from methane, offering a significant advancement in the direct conversion of greenhouse gases into value-added products.

6.
Semin Immunopathol ; 46(5): 12, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150566

RESUMEN

Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.


Asunto(s)
Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Inmunoterapia Adoptiva/efectos adversos , Animales , Neoplasias/terapia , Neoplasias/inmunología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Edición Génica , Linfocitos T/inmunología , Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
8.
Bioresour Technol ; 410: 131214, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127361

RESUMEN

Despite its prominence, the ability to engineer Cupriavidus necator H16 for inorganic carbon uptake and fixation is underexplored. We tested the roles of endogenous and heterologous genes on C. necator inorganic carbon metabolism. Deletion of ß-carbonic anhydrase can had the most deleterious effect on C. necator autotrophic growth. Replacement of this native uptake system with several classes of dissolved inorganic carbon (DIC) transporters from Cyanobacteria and chemolithoautotrophic bacteria recovered autotrophic growth and supported higher cell densities compared to wild-type (WT) C. necator in batch culture. Strains expressing Halothiobacillus neopolitanus DAB2 (hnDAB2) and diverse rubisco homologs grew in CO2 similarly to the wild-type strain. Our experiments suggest that the primary role of carbonic anhydrase during autotrophic growth is to support anaplerotic metabolism, and an array of DIC transporters can complement this function. This work demonstrates flexibility in HCO3- uptake and CO2 fixation in C. necator, providing new pathways for CO2-based biomanufacturing.


Asunto(s)
Dióxido de Carbono , Cupriavidus necator , Dióxido de Carbono/metabolismo , Cupriavidus necator/metabolismo , Cupriavidus necator/genética , Bicarbonatos/metabolismo , Ciclo del Carbono/fisiología , Anhidrasas Carbónicas/metabolismo , Procesos Autotróficos , Halothiobacillus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo
9.
Environ Res ; 262(Pt 1): 119856, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39197485

RESUMEN

Artificial biomanufacturing has been developed as a promising biotechnology for water pollution control. Effective bioimmobilization techniques are limited in application because of low productivity and the difficulty in achieving both mechanical strength and biocompatibility. Bioprinting technology, using biomaterials as bioink to enable the rapid on-demand production of bioactive structures, opens a new path for bioimmobilization. In this study, mimicking extracellular polysaccharide and protein of aerobic granular sludge (AGS), sodium alginate (SA) and silk fibroin methacryloyl (SilMA) were developed as the dual-component bioink with a suitable viscosity for bioprinting hydrogel. Interpenetrating network (IPN) hydrogel beads were manufactured using 1.5% (w/v) SA combined with 20% (w/v) SilMA through physical and covalent crosslinking, which exhibited excellent structural stability and bioactivity. The addition of SilMA provided a solution to the poor mechanical stability of SA-Ca hydrogels limited by Ca2+-Na+ ionic exchange. The unique structure of SilMA contributed to the reduction of hydrogel swelling as well as the prevention of SA loss. IPN hydrogels showed a swelling rate of less than 20% compared to the high swelling rate of more than 60% for SA hydrogels. On the other hand, SA controlled the hardening induced by excessive self-assembly of SilMA and improved mass transport in SilMA hydrogels. Compared to IPN hydrogels, SilMA hydrogels experienced a 15% volumetric shrinkage and exhibited a low water content of 92%. Sonication pretreatment of the dual-component bioink not only increased the intermolecular chain entanglement to form IPN, but also led to ß-sheet content in SiMA reaching 46%-48%, which resulted in the formation of stable IPN hydrogels dominated entirely by physical crosslinking. Satisfactory proliferation and viability were achieved for the encapsulated bacteria in IPN hydrogels (µmax 1.49-2.18 d-1). Further, the IPN biohydrogels could maintain structural stability as well as achieve pollutant removal for treating synthetic wastewater with high Na+ concentration of 300 mg/L. The novel SA/SilMA hydrogel bioprinting strategy established in this study offers a new direction for bioimmobilization in water pollution control and other environmental applications.

10.
Biotechnol Biofuels Bioprod ; 17(1): 115, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160588

RESUMEN

Industrial biotechnology heavily relies on the microbial conversion of carbohydrate substrates derived from sugar- or starch-rich crops. This dependency poses significant challenges in the face of a rising population and food scarcity. Consequently, exploring renewable, non-competing carbon sources for sustainable bioprocessing becomes increasingly important. Ethanol, a key C2 feedstock, presents a promising alternative, especially for producing acetyl-CoA derivatives. In this review, we offer an in-depth analysis of ethanol's potential as an alternative carbon source, summarizing its distinctive characteristics when utilized by microbes, microbial ethanol metabolism pathway, and microbial responses and tolerance mechanisms to ethanol stress. We provide an update on recent progress in ethanol-based biomanufacturing and ethanol biosynthesis, discuss current challenges, and outline potential research directions to guide future advancements in this field. The insights presented here could serve as valuable theoretical support for researchers and industry professionals seeking to harness ethanol's potential for the production of high-value products.

11.
Biotechnol J ; 19(8): e2300635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39167554

RESUMEN

Scalable single-use adherent cell-based biomanufacturing platforms are essential for unlocking the full potential of cell and gene therapies. The primary objective of this study is to design and develop a novel fixed bed bioreactor platform tailored specifically for scaling up adherent cell culture. The bioreactor comprises a packed bed of vertically stacked woven polyethylene terephthalate mesh discs, sandwiched between two-fluid guide plates. Leveraging computational fluid dynamics modeling, we optimized bioreactor design to achieve uniform flow with minimal shear stress. Residence time distribution measurements demonstrated excellent flow uniformity with plug flow characteristics. Periodic media sampling coupled with offline analysis revealed minimal gradients of crucial metabolites (glucose, glutamine, lactate, and ammonia) across the bioreactor during cell growth. Furthermore, the bioreactor platform demonstrated high performance in automated cell harvesting, with ≈96% efficiency and ≈98% viability. It also exhibited linear scalability in both operational parameters and performance for cell culture and adeno-associated virus vector production. We developed mathematical models based on oxygen uptake rates to accurately predict cell growth curves and estimate biomass in real-time. This study demonstrates the effectiveness of the developed fixed-bed bioreactor platform in enabling scalable adherent cell-based biomanufacturing with high productivity and process control.


Asunto(s)
Biomasa , Reactores Biológicos , Técnicas de Cultivo de Célula , Técnicas de Cultivo de Célula/métodos , Técnicas de Cultivo de Célula/instrumentación , Animales , Glucosa/metabolismo , Adhesión Celular , Proliferación Celular , Hidrodinámica , Células CHO , Cricetulus , Humanos , Diseño de Equipo
12.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2489-2512, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39174467

RESUMEN

With the rapid development of the medical beauty industry, functional skin care products become increasingly popular. The functions of cosmetics mainly depend on the active ingredients, which are mainly proteins, peptides, polysaccharides, phenolic acids, terpenes, vitamins, and amino acids. These active ingredients endow cosmetics with skin repairing, moistening, whitening, UV protecting, and anti-aging effects. They are mainly obtained through biological extraction and chemical synthesis. In recent years, with the development of biomanufacturing, microbial synthesis of active ingredients in cosmetics has been widely studied and applied. This article reviews the research progresses in the production of natural products including collagens, peptides, hyaluronic acid, polyphenols, terpenes, and vitamins by microbial synthetic biotechnology. Moreover, this article highlighted the synthetic pathways, metabolic regulation, and prospects of the natural products, providing a reference for subsequent microbial synthesis of active ingredients in cosmetics.


Asunto(s)
Cosméticos , Productos Biológicos/metabolismo , Terpenos/metabolismo , Colágeno/biosíntesis , Colágeno/metabolismo , Péptidos/metabolismo , Vitaminas/biosíntesis , Polifenoles/biosíntesis , Polifenoles/metabolismo , Ácido Hialurónico/biosíntesis , Hidroxibenzoatos/metabolismo , Biotecnología , Polisacáridos/biosíntesis , Bacterias/metabolismo
13.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2644-2665, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39174474

RESUMEN

Succinic acid is an important C4 platform compound that serves as a raw material for the production of 1,4-butanediol, tetrahydrofuran, and biodegradable plastics such as polybutylene succinate (PBS). Compared to the traditional petrochemical-based route that uses maleic anhydride as a raw material, the microbial fermentation method for producing succinic acid offers more sustainable economic value and environmental friendliness. Yeasts with good acid tolerance can achieve low-pH fermentation of succinic acid, significantly reducing the cost of product extraction. Therefore, constructing high-yield succinic acid yeast strains through metabolic engineering has garnered increasing attention. This paper systematically introduced the application value and market size of succinic acid, summarized the pathways and key enzymes involved in succinic acid synthesis in microorganisms, and elaborated on the latest research progress in the synthesis of succinic acid using yeast cell factories. It also presented the current status of succinic acid synthesis using non-food raw materials such as glycerol, acetic acid, lignocellulosic hydrolysate, and others as substrates by engineered yeast strains. Finally, the paper provided a prospect for low-pH succinic acid biomanufacturing based on yeast cell factories.


Asunto(s)
Fermentación , Ingeniería Metabólica , Saccharomyces cerevisiae , Ácido Succínico , Ácido Succínico/metabolismo , Ingeniería Metabólica/métodos , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Microbiología Industrial , Butileno Glicoles/metabolismo
14.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2678-2694, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39174476

RESUMEN

Propionic acid as an important C3 platform chemical has been widely used in food, pharmaceutical, and chemical fields. The chemical synthesis of propionic acid from petroleum and other chemical products has serious environmental pollution and is not sustainable. In recent years, the production of propionic acid by microbial transformation of renewable resources has received extensive attention. Focusing on the biomanufacturing of propionic acid, this paper firstly reviews the studies about the metabolic engineering of Propionibacterium and the pathway reconstruction in heterogeneous hosts such as Escherichia coli and Saccharomyces cerevisiae. Secondly, this paper reviews the recent progress in the synthesis of high-purity propionic acid from L-threonine or bio-based 1, 2-propanediol by the design and modification of the pathway of Pseudomonas putida KT2440 based on synthetic biology.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Propionatos , Propionibacterium , Pseudomonas putida , Saccharomyces cerevisiae , Propionatos/metabolismo , Saccharomyces cerevisiae/metabolismo , Propionibacterium/metabolismo , Escherichia coli/metabolismo , Pseudomonas putida/metabolismo , Biología Sintética
15.
Biotechnol Adv ; 76: 108432, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163921

RESUMEN

Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.

16.
Stem Cell Res Ther ; 15(1): 232, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075528

RESUMEN

BACKGROUND: While pluripotent stem cell (PSC) therapies move toward clinical and commercial applications at a rapid rate, manufacturing reproducibility and robustness are notable bottlenecks in regulatory approval. Therapeutic applications of PSCs require large cell quantities to be generated under highly robust, well-defined, and economically viable conditions. Small-scale and short-term process optimization, however, is often performed in a linear fashion that does not account for time needed to verify the bioprocess protocols and analysis methods used. Design of a reproducible and robust bioprocess should be dynamic and include a continuous effort to understand how the process will respond over time and to different stresses before transitioning into large-scale production where stresses will be amplified. METHODS: This study utilizes a baseline protocol, developed for the short-term culture of PSC aggregates in Vertical-Wheel® bioreactors, to evaluate key process attributes through long-term (serial passage) suspension culture. This was done to access overall process robustness when performed with various commercially available media and cell lines. Process output variables including growth kinetics, aggregate morphology, harvest efficiency, genomic stability, and functional pluripotency were assessed through short and long-term culture. RESULTS: The robust nature of the expansion protocol was demonstrated over a six-day culture period where spherical aggregate formation and expansion were observed with high-fold expansions for all five commercial media tested. Profound differences in cell growth and quality were revealed only through long-term serial expansion and in-vessel dissociation operations. Some commercial media formulations tested demonstrated maintenance of cell growth rates, aggregate morphology, and high harvest recovery efficiencies through three bioreactor serial passages using multiple PSC lines. Exceptional bioprocess robustness was even demonstrated with sustained growth and quality maintenance over 10 serial bioreactor passages. However, some commercial media tested proved less equipped for serial passage cultures in bioreactors as cultures led to cell lysis during dissociation, reduction in growth rates, and a loss of aggregate morphology. CONCLUSIONS: This study demonstrates the importance of systematic selection and testing of bioprocess input variables, with multiple bioprocess output variables through serial passages to create a truly reproducible and robust protocol for clinical and commercial PSC production using scalable bioreactor systems.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula , Medios de Cultivo , Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Proliferación Celular , Diferenciación Celular , Línea Celular
17.
Trends Biotechnol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033040

RESUMEN

Bacillus methanolicus is a thermophilic methylotrophic bacterium that grows quickly on methanol in sea water-based media. It has been engineered for chemical bioproduction from methanol, but its efficiency needs improvement for industrialization. Synthetic biology approaches such as metabolic modeling and genome editing can reprogram B. methanolicus for low-carbon biomanufacturing.

18.
Artículo en Inglés | MEDLINE | ID: mdl-39003244

RESUMEN

Growing environmental concerns and the need to adopt a circular economy have highlighted the importance of waste valorization for resource recovery. Microbial consortia-enabled biotechnologies have made significant developments in the biomanufacturing of valuable resources from waste biomass that serve as suitable alternatives to petrochemical-derived products. These microbial consortia-based processes are designed following a top-down or bottom-up engineering approach. The top-down approach is a classical method that uses environmental variables to selectively steer an existing microbial consortium to achieve a target function. While high-throughput sequencing has enabled microbial community characterization, the major challenge is to disentangle complex microbial interactions and manipulate the structure and function accordingly. The bottom-up approach uses prior knowledge of the metabolic pathway and possible interactions among consortium partners to design and engineer synthetic microbial consortia. This strategy offers some control over the composition and function of the consortium for targeted bioprocesses, but challenges remain in optimal assembly methods and long-term stability. In this review, we present the recent advancements, challenges, and opportunities for further improvement using top-down and bottom-up approaches for microbiome engineering. As the bottom-up approach is relatively a new concept for waste valorization, this review explores the assembly and design of synthetic microbial consortia, ecological engineering principles to optimize microbial consortia, and metabolic engineering approaches for efficient conversion. Integration of top-down and bottom-up approaches along with developments in metabolic modeling to predict and optimize consortia function are also highlighted. ONE-SENTENCE SUMMARY: This review highlights the microbial consortia-driven waste valorization for biomanufacturing through top-down and bottom-up design approaches and describes strategies, tools, and unexplored opportunities to optimize the design and stability of such consortia.


Asunto(s)
Biomasa , Consorcios Microbianos , Microbiota , Ingeniería Metabólica , Biotecnología/métodos , Redes y Vías Metabólicas , Bacterias/genética , Bacterias/metabolismo
19.
Biotechnol J ; 19(7): e2400092, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987222

RESUMEN

Continuous manufacturing enables high volumetric productivities of biologics such as monoclonal antibodies. However, it is challenging to maintain both high viable cell densities and productivities at the same time for long culture durations. One of the key controls in a perfusion process is the perfusion rate which determines the nutrient availability and potentially controls the cell metabolism. Cell Specific Perfusion Rate (CSPR) is a feed rate proportional to the viable cell density while Biomass Specific Perfusion Rate (BSPR) is a feed rate proportional to the biomass (cell volume multiply by cell density). In this study, perfusion cultures were run at three BSPRs in the production phase. Low BSPR favored a growth arresting state that led to gradual increase in cell volume, which in turn led to an increase in net perfusion rate proportional to the increase in cell volume. Consequently, at low BSPR, while the cell viability and cell density decreased, high specific productivity of 55 pg per cell per day was achieved. In contrast, the specific productivity was lower in bioreactors operating at a high BSPR. The ability to modulate the cell metabolism by using BSPR was confirmed when the specific productivity increased after lowering the BSPR in one of the bioreactors that was initially operating at a high BSPR. This study demonstrated that BSPR significantly influenced cell growth, metabolism, and productivity in cultures with variable cell volumes.


Asunto(s)
Anticuerpos Monoclonales , Biomasa , Reactores Biológicos , Biosimilares Farmacéuticos , Técnicas de Cultivo de Célula , Cricetulus , Células CHO , Animales , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular/efectos de los fármacos , Recuento de Células , Proliferación Celular/efectos de los fármacos , Perfusión/métodos
20.
J Biomed Opt ; 29(Suppl 2): S22711, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38952688

RESUMEN

Significance: Biomanufacturing utilizes modified microbial systems to sustainably produce commercially important biomolecules for use in agricultural, energy, food, material, and pharmaceutical industries. However, technological challenges related to non-destructive and high-throughput metabolite screening need to be addressed to fully unlock the potential of synthetic biology and sustainable biomanufacturing. Aim: This perspective outlines current analytical screening tools used in industrial cell strain development programs and introduces label-free vibrational spectro-microscopy as an alternative contrast mechanism. Approach: We provide an overview of the analytical instrumentation currently used in the "test" portion of the design, build, test, and learn cycle of synthetic biology. We then highlight recent progress in Raman scattering and infrared absorption imaging techniques, which have enabled improved molecular specificity and sensitivity. Results: Recent developments in high-resolution chemical imaging methods allow for greater throughput without compromising the image contrast. We provide a roadmap of future work needed to support integration with microfluidics for rapid screening at the single-cell level. Conclusions: Quantifying the net expression of metabolites allows for the identification of cells with metabolic pathways that result in increased biomolecule production, which is essential for improving the yield and reducing the cost of industrial biomanufacturing. Technological advancements in vibrational microscopy instrumentation will greatly benefit biofoundries as a complementary approach for non-destructive cell screening.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Vibración , Bacterias/metabolismo , Bacterias/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA