Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Materials (Basel) ; 17(13)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38998266

RESUMEN

Without the addition of silicon and aluminum sources, a pure-phase KNaLSX zeolite was successfully synthesized from the residue (lithium slag), which was produced from spodumene in the production process of lithium carbonate. The KNaLSX samples were characterized by an X-ray Diffractometer (XRD), Scanning Electron Microscope (SEM), X-ray Fluorescence Spectrometer (XRF), Thermogravimetric Differential Thermal Analysis (TG-DTA), Fourier Transform Infrared Spectrometer (FT-IR), and N2 adsorption measurement. The ion exchange capacity and the ion exchange rate of calcium and magnesium ions were measured as used for a detergent builder, and the results were compared with the standard zeolites (KNaLSX and 4A). The experimental results show that the pure-phase KNaLSX synthSynthesis and characterization of co-crystalline zeolite composite of LSX/esized from lithium slag has a SiO2/Al2O3 ratio of 2.01 with a grain size of 3~4 µm, which is close to the commercial KNaLSX sample of a SiO2/Al2O3 ratio of 2.0. The BET-specific surface area of KNaLSX is 715 m2/g, which is larger than the low-silicon X-type zeolite (LSX) synthesized from waste residue reported in the literature. The ion exchange rate constant of calcium and magnesium ions in KNaLSX is 5 times and 3 times that of 4A zeolite, respectively. KNaLSX also has a high ion exchange capacity for magnesium ion of 191 mgMgCO3/g, which is 2 times than that of 4A zeolite, and a high ion exchange capacity for calcium ion of 302 mgCaCO3/g, which meets the first-grade standard of zeolite for detergent builders in China. The work provides the basis for high-value resource utilization of lithium slag and the development of a detergent builder for rapid washing.

2.
BMC Vet Res ; 20(1): 21, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200552

RESUMEN

BACKGROUND: Acidification of equine urine to promote dissociation of ion complexes is a common practice for urine ion concentration measurements. The objective of this study was to evaluate the effect of acidification and storage after acidification on calcium (Ca), magnesium (Mg) and phosphate (P) concentrations and on fractional excretion (FE) of these electrolytes. Thirty-two fresh equine urine samples were analysed between December 2016 and July 2020. Complete urinalysis (stick and sediment) was performed on all samples. Ca, Mg, P and creatinine concentrations were measured in supernatant of centrifuged native urine, urine directly centrifuged after acidification and urine centrifuged 1 hour after acidification. Urine was acidified with hydrochloric acid to reach a pH of 1-2. Ca, Mg, P and creatinine concentrations were also measured in blood plasma, and fractional excretion of each electrolyte was calculated. Equality of medians was tested with Friedman tests and Bland-Altman bias plots were used to show the agreement between conditions. RESULTS: Acidification had a statistically significant effect on Ca and Mg concentrations, FECa and FEMg. Bland-Altman plot revealed a strong positive proportional bias between Ca concentration in native and acidified urine with a mean bias of 17.6 mmol/l. For Mg concentration, the difference between native and acidified urine was small with a mean bias of 1.8 mmol/l. The increase in FECa was clinically relevant. Storage of acidified urine had no effect on any of the measured ion concentrations. All P concentrations in native urine samples were below the detection limit of the assay and statistical analysis and calculation of FEP was not possible. CONCLUSIONS: Urine acidification is essential for accurate measurement of Ca and Mg concentrations and therefore FE calculations in equine urine. Storage time of 1 hour after acidification does not significantly change Ca and Mg concentrations.


Asunto(s)
Líquidos Corporales , Calcio , Animales , Caballos , Magnesio , Creatinina , Concentración de Iones de Hidrógeno
3.
Environ Geochem Health ; 46(2): 45, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227264

RESUMEN

In order to study the influence of water-rock interaction on the mass time-varying characteristics of coal rocks, coal was selected as the research object and subjected to chemical immersion tests with different pH aqueous solutions for 12 days. By experiment, the time-varying patterns of mass change fraction in coal samples, pH value in solution, and ions concentration of calcium and magnesium were obtained. Based on the gray correlation theory, the correlation degree between the mass change fraction and four influencing factors was analyzed. The gray prediction models for the mass time-varying characteristics of coal rocks have been established. The research shows that: (1) the influence ways and degree of different pH aqueous solutions on the mass changes of coal rocks are different, (2) during the process of water-rock interaction, the change law of pH value, ions concentration of calcium and magnesium in solution are obvious, (3) the multiple regression models can be used to predict the mass change of coal rocks accurately under water-rock interaction.


Asunto(s)
Calcio , Magnesio , Carbón Mineral , Agua
4.
Plant Physiol Biochem ; 206: 108280, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103337

RESUMEN

Soil calcium (Ca) and magnesium (Mg) mineral states in rain-fed arid regions of Northwest China are inefficient, and their levels of substitution and water-soluble states are far below the lowest threshold required for maize growth, resulting in frequent physiological diseases, restricting synthesis of kernel protein (CRP). Our study set up different levels of foliar spraying of Ca and Mg fertilizers before maize pollination to examine the response characteristics of physiological and biochemical indicators in kernel, and the driving process of CRP synthesis. The main findings were: (1) Ca and Mg significantly increased the levels of CRP and endogenous hormones, and the activities of defense enzymes and CRP synthesis enzymes, which decreased significantly and stabilized at the maturity stage of maize. (2) The synthesis and accumulation of CRP were synergistically regulated by endogenous hormones, defense enzymes, and CRP synthase enzymes, with the degree of regulation varying with the level of Ca and Mg supplementation. Indole-3-acetic acid (IAA), gibberellin (GA), zeatin riboside (ZR), catalase (CAT), malondialdehyde (MDA), and glutamate dehydrogenase (GDH) were the primary physiological driving indicators of CRP synthesis, with CRP having a significant synergistic relationship with CAT and a remarkable trade-off with other driving indicators. (3) The dominant driving pathway of CRP synthesis was "Ca, Mg-IAA or GA or ZR-CAT-GDH-CRP". Ca and Mg positively affected IAA and GA levels, and IAA and GA positively regulated CAT activity. However, CAT negatively regulated GDH levels, causing GDH to negatively influence the synthesis and accumulation of CRP and its components. The findings provide theoretical support for further study of inter-root endogenous hormones and soil microbe-driven processes in the regulation of maize quality by Ca and Mg.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Zea mays , Reguladores del Crecimiento de las Plantas/metabolismo , Zea mays/metabolismo , Magnesio/metabolismo , Hormonas/metabolismo , Suelo
5.
Toxicol Rep ; 10: 281-292, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876026

RESUMEN

It has previously been found that, compared with cigarette smoke, the aerosols generated by heated tobacco products contain fewer and lower harmful and potentially harmful constituents (HPHCs) and elicit lower biological activity in in vitro models and lower smoking-related exposure biomarker levels in clinical studies. It is important to accumulate such scientific evidences for heated tobacco products with a novel heating system, because different heating system may affect the quantitative aspect of the amount of HPHCs and the qualitative aspect of the biological activity of the aerosol generated. Here, the chemical properties of, and toxicological responses to aerosols emitted by DT3.0a, a new heated tobacco product with a novel heating system, and cigarette smoke (CS) were compared, using chemical analyses, in vitro battery (standardized genotoxicity and cytotoxicity) assays, and mechanistic (ToxTracker and two-dimensional cell culture) assays. Regular- and menthol-flavored DT3.0a and standard 1R6F reference cigarettes were tested. Selected HPHC yields were lower in DT3.0a aerosol than 1R6F CS. The genotoxicity-related assays indicated that DT3.0a aerosol was not genotoxic, regardless of metabolic activation. The other biological assays indicated that less cytotoxicity induction and oxidative stress response were elicited by DT3.0a aerosol compared with 1R6F CS. Similar results were found for both regular and menthol DT3.0a. Like previous reports for heated tobacco products with other heating systems, the results of this study indicated that DT3.0a aerosols have chemical and biological properties less likely to be harmful than 1R6F CS.

6.
Plants (Basel) ; 12(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36771646

RESUMEN

Calcium and magnesium are major nutrient elements of plants, and both play an important role in plant growth and development. Pinus massoniana and P. hwangshanensis are important afforestation tree species in barren mountains in China. However, observation and research on calcium and magnesium nutrition of dominant forest species in China are still limited. This study determined the concentration of calcium and magnesium in needles for two species from five sites in East China by inductively coupled plasma optical emission spectrometry (ICP-OES). We then explored the inter- and intra-population variation pattern of calcium and magnesium and their relationship with environmental factors. There were significant differences in traits among populations. The strongest factors, which impacted the variation of calcium and magnesium concentration, were elevation and individual differences, respectively. Element concentration was correlated to environmental factors such as longitude, latitude, elevation, and mean annual temperature. The results of this study can be helpful for a better understanding of tree growth, population survival, and forest succession.

7.
Sci Total Environ ; 867: 161588, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36642280

RESUMEN

The hygroscopicities of calcium and magnesium salts strongly affect the environment and climate, but the aging products of these salts at high relative humidities (RHs) are still poorly understood. In this study, surface plasmon resonance microscopy (SPRM) was used to determine the hygroscopic growth factors (GFs) of Ca(NO3)2 and Mg(NO3)2 separately or mixed with galactose at different mass ratios at different RHs before and after aging. For all particles, the measured GFs showed no indication of deliquescence across the range of RHs tested, and overall hygroscopicity was clearly lower after than before aging. The Ca(NO3)2 and Mg(NO3)2 GFs at 90 % RH were 1.80 and 1.66, respectively, before aging and 1.33 and 1.42, respectively, after 4 h aging, meaning aging decreased the GFs by 26.11 % and 14.46 %, respectively. Aging decreased the hygroscopicity because insoluble or sparingly soluble substances (CaSO3, CaSO4, MgSO3) formed and strongly changed the overall hygroscopicity. For bicomponent aerosols with different mass ratios, the GFs (calculated using the Zdanovskii-Stokes-Robinson method) of the other components except galactose at 90 % RH after 1 h aging were all lower, respectively, than the measured GFs of pure Ca(NO3)2 and Mg(NO3)2 after aging for 1 h, especially with the mass ratio of 1:2, their GFs have decreased by 14.63 % and 7.50 %, respectively. Subsequently, Ion chromatograms indicated that the peak area ratio of SO42- to NO3- ratios were higher for the aged bicomponent particles than aged single-component particles, possibly because adding galactose improved the gas-liquid state stability during drying after the aging process and therefore promoted nitrate consumption and sulfate formation. The results indicated that organic components may play important roles in heterogeneous reactions between trace gases and multicomponent aerosols and should be considered in evaluating the impacts on submicron aerosol composition of high atmospheric SO2 concentrations at high humidities.

8.
Environ Geochem Health ; 45(6): 3447-3464, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36342636

RESUMEN

Calcium (Ca) and magnesium (Mg) in drinking water and the relevant health effects have been ignored for too long. This study aims to reveal the concentrations, spatial distributions, origins and contributions to the daily estimated average requirements of Ca and Mg in public drinking water. Using hydrochemical data of collected samples of public drinking water in 314 cities across China, the contributions of Ca and Mg intakes from public drinking water to their daily estimated average requirements (EARs) were assessed. And the significance of Ca/Mg ratio and total hardness (TH) was evaluated as well. The Ca and Mg concentrations of the samples were in the range of 2.5-155.1 mg/L and 0.2-81.9 mg/L, with an average of 40.4 mg/L and 12.4 mg/L, respectively. There exist obvious differences in Ca and Mg concentrations in different regions, under the impact of climate conditions and water-rock interactions. The intake of Ca via the consumption of public drinking water for adults may be twice as much as that for other age groups. In cities with high Ca levels in public drinking water, the Ca contributions to EAR could reach up to 51.59% for adults. By contrast, Mg in drinking water is an important and even the main pathway to ingest Mg for infants and children. Therefore, public drinking water is critical for Ca and Mg intake among urban residents of China. Besides, attention should be paid to the health effects of high Ca/Mg ratio and low TH in public drinking water, especially in southern China. This research is the first systematic and comprehensive national scale study of Ca and Mg in public drinking water and can provide an important reference to improve healthy public drinking water standards around the world.


Asunto(s)
Agua Potable , Adulto , Niño , Humanos , Agua Potable/análisis , Calcio/análisis , Magnesio/análisis , Abastecimiento de Agua , China
9.
Front Plant Sci ; 14: 1332517, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38259946

RESUMEN

The content of kernel starch (STC), which is a fundamental indicator of the nutritional value of maize, is directly correlated with the grain's taste and aroma. Both calcium (Ca) and magnesium (Mg) are critical nutrients that play a significant role in the growth and development of maize, as well as in the synthesis of STC. To determine the physiological driving mechanisms of Ca and Mg effects on the accumulation of STC synthesis in maize kernels and the characteristics of their effects on endogenous hormones and enzymes of STC synthesis in maize leaves, our study applied foliar Ca and Mg fertilizers at various levels to maize prior to pollination. (1) The levels of Ca, Mg, indole-3-acetic acid (IAA), gibberellin (GA), and zeatin riboside (ZR) in maize leaves increased and then decreased after the supplementation of Ca and Mg. They peaked on the 32nd day after pollination. In contrast, the levels of abscisic acid (ABA) initially decreased and then increased. Ca and Mg had a negative correlation with ABA and a positive correlation with IAA, GA, and ZR. (2) As the levels of Ca and Mg increased, correspondingly rose the activities of enzymes responsible for STC synthesis and the content of STC and its components. Principally influencing the synthesis of STC were ABA, IAA, uridine diphosphate-glucose pyrophosphorylase (UDPG), granule-bound starch synthase (GBSS), and soluble starch synthase (SSS). (3) "IAA-UDPG or GBSS-STC" was the predominant physiological regulation pathway of Ca on kernel STC, whereas "IAA-GBSS-STC" was the dominant physiological regulation pathway of Mg on kernel STC. The regulatory impact of STC by UDPG and GBSS was positive, as were the effects of IAA on UDPG and GBSS. In conclusion, the accumulation of kernel starch was significantly enhanced by Ca and Mg supplementation via the modulation of endogenous hormone levels and key enzyme activities. This research identifies a viable approach to improve the nutritional composition of maize.

10.
J Family Med Prim Care ; 11(4): 1489-1492, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35516708

RESUMEN

Background: Single donor platelet products are preferred over random donor platelet products due to several advantages. However, safety issues with regard to post procedure hematological decrements and serum calcium and magnesium levels in donors undergoing plateletpheresis have been explored minimally. Aims: This prospective study was done to analyze the effects of plateletpheresis on donor's hematological parameters and serum calcium and magnesium levels. Settings and Design: It is a prospective, cross-sectional study conducted in the department of immunohematology and blood transfusion. Material and Methods: This study was undertaken on 150 healthy plateletpheresis donors over a period of 1 year. Blood samples were collected from each donor before and after the procedure, one in ethylenediaminetetraacetic acid (EDTA) vial for estimation of hematological parameters and another in plain vial for serum calcium and magnesium levels. Statistical Analysis Used: Paired t-test was used to analyze the data. Results: This study included donors in the age group of 18 to 60 years who underwent plateletpheresis on Haemonetics model of a machine (MCS) + intermittent flow cell separator. A statistically significant increase was observed in mean post procedural Hb (0.95%), Hct (0.7%), and red blood cell (RBC) count (1.3%). There was a decrease in mean post procedural platelet count (27.5%), white blood cell (WBC) count (4.02%), mean serum calcium (1.5%), and serum magnesium (5.1%), which was statistically highly significant (P < 0.001). No significant change was observed in post procedural mean platelet volume (MPV) and platelet distribution width (PDW). Conclusion: Amid the need of increased demand for plateletpheresis, donor safety must be ensured. Failing to do so can be detrimental to blood supply chain, hence stringent programs for post donation screening of plateletpheresis donors need to be established.

11.
JBMR Plus ; 6(2): e10563, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35229059

RESUMEN

The role of dietary factors in osteoporotic fractures in men is underinvestigated. We examined the associations of dietary intakes of calcium, magnesium, and soy isoflavones with risk of osteoporotic fractures in the Shanghai Men's Health Study. Included in this prospective study were 61,025 men aged 40 to 74 years at study enrollment (2002-2006). The cohort was followed up via in-person surveys for occurrence of bone fractures, major diseases, and survival status. Multivariable Cox regression was applied to evaluate the associations of variables under study (ie, dietary intakes of calcium, magnesium, and soy isoflavones) with incidence of osteoporotic and non-osteoporotic fractures, measured by hazard ratio (HR) and 95% confidence interval (CI). During a median follow-up of 9.5 years, 1.2% and 3.4% of participants experienced osteoporotic or non-osteoporotic fractures, respectively. Dietary calcium intake was inversely associated with risk of osteoporotic fractures with adjusted HRs of 0.78 (95% CI 0.60-1.02) and 0.27 (95% CI 0.13-0.56), respectively, for intake levels of 401 mg/d and >1000 mg/d versus ≤400 mg/d. Higher magnesium intake was associated with increased risk of osteoporotic fractures after adjusting for dietary calcium intake, with HRs of 1.27 (95% CI 0.97-1.66) and 2.21 (95% CI 1.08-4.50), respectively, for intakes of 251 mg/d and >450 mg/d versus intake ≤250 mg/d. High soy isoflavone intake was associated with a 25% reduction of osteoporotic fracture risk (HR = 0.73, 95% CI 0.56-0.97 for soy isoflavone intake >45.2 mg/d versus <21.7 mg/d). Dietary intakes of calcium, magnesium, or soy isoflavones were unrelated to the risk of non-osteoporotic fractures. Our study added to the evidence that dietary calcium intake was inversely associated with a reduced risk of osteoporotic fractures in a dose-response fashion, while high magnesium intake was associated with an increased risk. Our study also revealed a novel association between higher soy isoflavone consumption and osteoporotic fractures in men. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

12.
Polymers (Basel) ; 13(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34883608

RESUMEN

Seawater treated with lime and sodium carbonate in different proportions to reduce magnesium and calcium contents is used in flocculation and sedimentation tests of artificial quartz and kaolin tailings. Solid complexes were separated from water by vacuum filtration, and factors such as lime/sodium carbonate ratio, kaolin content, flocculation time, and flocculant dose are evaluated. The growth of the aggregates was captured in situ by a focused beam reflectance measurement (FBRM) probe. Solid magnesium and calcium complexes are formed in raw seawater at pH 11, impairing the performance of flocculant polymers based on polyacrylamides. The results show that the settling rate improved when the treatment's lime/sodium carbonate ratio increased. That is, when a greater removal of magnesium is prioritized over calcium. The amount of magnesium required to be removed depends on the mineralogy of the system: more clay will require more significant removal of magnesium. These results respond to the structural changes of the flocs, achieving that the more magnesium is removed, the greater the size and density of the aggregates. In contrast, calcium removal does not significantly influence flocculant performance. The study suggests the necessary conditions for each type of tailing to maximize water recovery, contributing to the effective closure of the water cycle in processes that use seawater with magnesium control.

13.
J Environ Manage ; 296: 113357, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34351291

RESUMEN

Calcium (Ca) and magnesium (Mg) are essential for growth of sugarcane leaves and roots, as well as respiration and nitrogen metabolism, respectively. To assist farmers decide suitable application rates of lime and Mg fertiliser, respectively, the Australian sugarcane industry established the Six-Easy-Steps nutrient management guidelines based on topsoil (0-0.3 m) Ca (cmol(+) kg-1) and Mg (cmol(+) kg-1). Given the heterogeneous nature of soil, digital soil mapping (DSM) methods can be employed to allow for the precise application rate to be determined. In this study, we examine statistical models (i.e., ordinary kriging [OK], linear mixed model [LMM], quantile regression forests [QRF], support vector machine [SVM], and Cubist regression kriging [CubistRK]) to predict topsoil and subsoil (0.6-0.9) Ca and Mg, employing digital data in combination (i.e., proximal sensing electromagnetic induction (EMI) [e.g., 1mPcon, 1mHcon, etc.], gamma-ray [γ-ray] spectrometry [i.e., TC, K, U and Th] and digital elevation model [DEM] derivatives). We also investigate various sampling designs (i.e., spatial coverage [SCS], feature space coverage [FSCS], conditioned Latin hypercube [cLHS] and simple random sampling [SRS]) and calibration sample size (i.e., n = 180, 150, 120, 90, 60 and 30). The predictions are assessed using Lin's concordance correlation coefficient (LCCC) and ratio of performance to interquartile distance (RPIQ) with an independent validation dataset (i.e., n = 40). The best results were for prediction of subsoil Mg, utilising CubistRK (LCCC = 0.82) with the largest calibration sample size (n = 180), followed by LMM (0.79), SVM (0.76), QRF (0.70) and OK (0.65). This was generally the case for topsoil and subsoil Ca. We also conclude that no single sampling design was universally better, and 180 samples were necessary for predicting topsoil Ca and Mg with moderate agreement (0.65 < LCCC < 0.80). However, with FSCS, a minimum of 120 samples were enough to calibrate a CubistRK model and achieve substantial (LCCC > 0.80) agreement for predicting subsoil Ca and Mg. With respect to soil use and management according to the Six-Easy-Steps, the sandy soil in the north and south require large application rate of lime (3.5 t/ha) and Mg (125 kg/ha), respectively. Conversely, varying amounts of fertiliser rates of lime (2.0, 1.5 and 1 t/ha) and Mg (50 kg/ha) were recommended where Vertosols were previously mapped.


Asunto(s)
Saccharum , Suelo , Australia , Compuestos de Calcio , Calibración , Magnesio , Óxidos , Análisis Espectral
14.
Regen Ther ; 15: 236-242, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33426224

RESUMEN

INTRODUCTION: Growth factors are crucial bioactive molecules in vitro and in vivo. Among them, basic fibroblast growth factor (bFGF) has been used widely for various applications such as cell culture and regenerative medicine. However, bFGF has extremely poor stability in aqueous solution; thus, it is difficult to maintain its high local concentration. Heparin-conjugated materials have been studied recently as promising scaffold-immobilizing growth factors for biological and medical applications. The previous studies have focused on the local concentration maintenance and sustained release of the growth factors from the scaffold. METHODS: In this paper, we focused on the biological stability of bFGF immobilized on the heparin-conjugated collagen (hep-col) scaffold. The stability of the immobilized bFGF was quantitatively evaluated at physiological temperature (37 °C) using cell culture and ELISA. RESULTS: The immobilized bFGF had twice higher stability than the bFGF solution. Furthermore, the hep-col scaffold was able to immobilize not only bFGF but also other growth factors (i.e., vascular endothelial growth factor and hepatocyte growth factor) at high efficiency. CONCLUSIONS: The hep-col scaffold can localize several kinds of growth factors as well as stabilize bFGF under physiological temperature and is a promising potent scaffold for regenerative medicine.

15.
EFSA J ; 17(6): e05722, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32626344

RESUMEN

Following a request from the European Commission, the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) was asked to deliver a scientific opinion on aluminosilicate of sodium, potassium, calcium and magnesium as a feed additive for pigs. The additive, that contains at least 66% of aluminosilicate of sodium, potassium, calcium and magnesium as main component, is intended for use as a technological additive (functional groups: (i) anticaking agents) in premixtures and feedingstuffs for pigs at a maximum inclusion level of 30,000 mg/kg. In the absence of data, the FEEDAP Panel could not conclude on the safety of the additive for the target species and the users. The additive is considered safe for the consumer and the environment at the proposed conditions of use. The additive has the potential to act as an anticaking agent in complete feed of pigs at a concentration of 30,000 mg/kg feed.

16.
Cell Mol Gastroenterol Hepatol ; 6(2): 163-180, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30003123

RESUMEN

BACKGROUND & AIMS: The diarrheagenic pathogen, enteropathogenic Escherichia coli (EPEC), uses a type III secretion system to deliver effector molecules into intestinal epithelial cells (IECs). While exploring the basis for the lateral membrane separation of EPEC-infected IECs, we observed infection-induced loss of the desmosomal cadherin desmoglein-2 (DSG2). We sought to identify the molecule(s) involved in, and delineate the mechanisms and consequences of, EPEC-induced DSG2 loss. METHODS: DSG2 abundance and localization was monitored via immunoblotting and immunofluorescence, respectively. Junctional perturbations were visualized by electron microscopy, and cell-cell adhesion was assessed using dispase assays. EspH alanine-scan mutants as well as pharmacologic agents were used to evaluate impacts on desmosomal alterations. EPEC-mediated DSG2 loss, and its impact on bacterial colonization in vivo, was assessed using a murine model. RESULTS: The secreted virulence protein EspH mediates EPEC-induced DSG2 degradation, and contributes to desmosomal perturbation, loss of cell junction integrity, and barrier disruption in infected IECs. EspH sequesters Rho guanine nucleotide exchange factors and inhibits Rho guanosine triphosphatase signaling; EspH mutants impaired for Rho guanine nucleotide exchange factor interaction failed to inhibit RhoA or deplete DSG2. Cytotoxic necrotizing factor 1, which locks Rho guanosine triphosphatase in the active state, jasplakinolide, a molecule that promotes actin polymerization, and the lysosomal inhibitor bafilomycin A, respectively, rescued infected cells from EPEC-induced DSG2 loss. Wild-type EPEC, but not an espH-deficient strain, colonizes mouse intestines robustly, widens paracellular junctions, and induces DSG2 re-localization in vivo. CONCLUSIONS: Our studies define the mechanism and consequences of EPEC-induced desmosomal alterations in IECs. These perturbations contribute to the colonization and virulence of EPEC, and likely related pathogens.

17.
Environ Technol ; 36(24): 3194-200, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26017669

RESUMEN

The interchange of the protons with the cell wall-bound calcium and magnesium ions at the interface of solution/bacterial cell surface in the biosorption system at various concentrations of protons has been studied in the present work. A mathematical model for establishing the correlation between concentration of protons and active sites was developed and optimized. The sporadic limited residence time reactor was used to titrate the calcium and magnesium ions at the individual data point. The accuracy of the proposed mathematical model was estimated using error functions such as nonlinear regression, adjusted nonlinear regression coefficient, the chi-square test, P-test and F-test. The values of the chi-square test (0.042-0.017), P-test (<0.001-0.04), sum of square errors (0.061-0.016), root mean square error (0.01-0.04) and F-test (2.22-19.92) reported in the present research indicated the suitability of the model over a wide range of proton concentrations. The zeta potential of the bacterium surface at various concentrations of protons was observed to validate the denaturation of active sites.


Asunto(s)
Bacterias/metabolismo , Calcio/metabolismo , Pared Celular/metabolismo , Magnesio/metabolismo , Protones , Adsorción , Intercambio Iónico , Modelos Teóricos
18.
Rev. cuba. farm ; 49(1)Jan.-Mar. 2015. tab
Artículo en Español | CUMED | ID: cum-61925

RESUMEN

Introducción: el calcio es un nutriente esencial que se requiere en cantidades sustanciales, pero muchas dietas son deficientes de calcio, lo que hace necesario suplementar el mismo. Por otro lado, el secado por aspersión es una tecnología importante usada en la industria farmacéutica. Con este proceso de secado se obtiene un producto final que obedece a los estándares de calidad necesarios. Objetivo: este estudio se realizó para evaluar el secado por aspersión del citrato de calcio y magnesio y su comparación con el método tradicional de secado. Métodos: se obtuvieron lotes de citrato de calcio y magnesio a escala de banco a partir de dolomita y se suspendieron en agua en una proporción 1:10 (masa/volumen). Posteriormente fueron secados mediante secado por aspersión. Se evaluaron los lotes obtenidos mediante métodos de análisis químicos y tecnológicos. Resultados: los resultados mostraron que el contenido de calcio, magnesio, ácido cítrico y cenizas totales eran similares independiente del método de secado empleado. El contenido de humedad residual en las muestras secadas por aspersión fue superior al de las muestras secadas por el método tradicional. No obstante, los resultados obtenidos en ambos casos estaban por debajo del límite máximo permisible. Las propiedades físicas de las muestras para cada método de secado estudiado fueron similares, excepto para la densidad, dónde se observó que las muestras secadas por aspersión tienen valores de densidad menores que las muestras secadas por el método tradicional. Conclusiones: los resultados demuestran que las condiciones de secado por aspersión estudiadas son adecuadas para el secado del citrato de calcio y magnesio obtenido a partir de dolomita(AU)


Introduction: calcium is an essential nutrient required in substantial amounts, but many diets are deficient in calcium making supplementation necessary or desirable. On the other hand, spray drying is an important technology used in the pharmaceutical industry. In this process the end-product must comply with precise quality standards. Objective: To evaluate the spray drying of calcium and magnesium citrate and to make comparison with the traditional method of drying. Methods: calcium and magnesium citrate salt was obtained at bench scale from dolomite and suspended in water in a proportion 1:10 (w/v) and spray-dried. The final batches were evaluated by chemical and technological analysis methods Results: the results showed that calcium, magnesium, citric acid and total ash content have similar concentrations regardless of the used drying method. Residual moisture content of the dried product by spray drying method was higher than that of the dried sample by traditional method. Nevertheless, all the results were below the maximum allowable limit. The physical properties of the samples for each drying method were similar except for density because the spray-dried samples showed values lower than those of traditionally dried samples. Conclusions: the results indicate that the tested spray drying conditions are suitable for drying of calcium and magnesium citrate from dolomite(AU)


Asunto(s)
Carbonato de Calcio y Magnesio , Riego por Aspersión/métodos
19.
Rev. cuba. farm ; 49(1)ene.-mar. 2015. tab
Artículo en Inglés | LILACS, CUMED | ID: lil-770993

RESUMEN

Introduction: calcium is an essential nutrient required in substantial amounts, but many diets are deficient in calcium making supplementation necessary or desirable. On the other hand, spray drying is an important technology used in the pharmaceutical industry. In this process the end-product must comply with precise quality standards. Objective: To evaluate the spray drying of calcium and magnesium citrate and to make comparison with the traditional method of drying. Methods: calcium and magnesium citrate salt was obtained at bench scale from dolomite and suspended in water in a proportion 1:10 (w/v) and spray-dried. The final batches were evaluated by chemical and technological analysis methods Results: the results showed that calcium, magnesium, citric acid and total ash content have similar concentrations regardless of the used drying method. Residual moisture content of the dried product by spray drying method was higher than that of the dried sample by traditional method. Nevertheless, all the results were below the maximum allowable limit. The physical properties of the samples for each drying method were similar except for density because the spray-dried samples showed values lower than those of traditionally dried samples(AU)


Introducción: el calcio es un nutriente esencial que se requiere en cantidades sustanciales, pero muchas dietas son deficientes de calcio, lo que hace necesario suplementar el mismo. Por otro lado, el secado por aspersión es una tecnología importante usada en la industria farmacéutica. Con este proceso de secado se obtiene un producto final que obedece a los estándares de calidad necesarios. Objetivo: este estudio se realizó para evaluar el secado por aspersión del citrato de calcio y magnesio y su comparación con el método tradicional de secado. Métodos: se obtuvieron lotes de citrato de calcio y magnesio a escala de banco a partir de dolomita y se suspendieron en agua en una proporción 1:10 (masa/volumen). Posteriormente fueron secados mediante secado por aspersión. Se evaluaron los lotes obtenidos mediante métodos de análisis químicos y tecnológicos. Resultados: los resultados mostraron que el contenido de calcio, magnesio, ácido cítrico y cenizas totales eran similares independiente del método de secado empleado. El contenido de humedad residual en las muestras secadas por aspersión fue superior al de las muestras secadas por el método tradicional. No obstante, los resultados obtenidos en ambos casos estaban por debajo del límite máximo permisible. Las propiedades físicas de las muestras para cada método de secado estudiado fueron similares, excepto para la densidad, dónde se observó que las muestras secadas por aspersión tienen valores de densidad menores que las muestras secadas por el método tradicional. Conclusiones: los resultados demuestran que las condiciones de secado por aspersión estudiadas son adecuadas para el secado del citrato de calcio y magnesio obtenido a partir de dolomita(AU)


Asunto(s)
Carbonato de Calcio y Magnesio , Tecnología Farmacéutica/métodos , Riego por Aspersión/métodos
20.
Rev. cuba. farm ; 48(4): 636-645, Oct.-Dec. 2014. ilus
Artículo en Español | CUMED | ID: cum-61936

RESUMEN

Introducción: las sales de calcio y magnesio son utilizadas como suplementos nutricionales y se obtienen a partir de fuentes naturales, dentro de las cuales se encuentra la dolomita, que es un complejo doble de carbonato de calcio y magnesio. En la búsqueda de una materia prima de calcio con mayor biodisponibilidad, ha sido desarrollado un proceso de obtención de sales de citrato de calcio y magnesio a partir de dolomitas. Objetivo: evaluar el citrato de calcio y magnesio obtenido a partir de dolomita. Métodos: se emplearon métodos de análisis químicos y tecnológicos, difracción de rayos X, reflexión total atenuada en el infrarrojo medio con transformada de Fourier, calorimetría diferencial de barrido y análisis termogravimétrico. Resultados: los resultados del análisis químico demostraron la presencia de calcio (superior al 10 por ciento) y magnesio (entre 4,5 y 5 por ciento), mientras que el contenido de ácido cítrico fue menor al 3 por ciento. Los niveles de metales tóxicos estaban por debajo de los límites máximos permisibles para productos farmacéuticos. Los valores de densidades fueron inferiores a las densidades de la dolomita, con la presencia de un elevado porcentaje de porosidad y deficiente flujo. El análisis por difracción de rayos X demostró que la dolomita fue transformada en sales de citrato de calcio y magnesio, mientras que los espectros infrarrojos mostraron que las principales absorciones se corresponden con las de los grupos COO¯, -OH y -CH2, características todas de citratos. Los estudios por calorimetría diferencial de barrido indicaron que la sal presentaba tres transiciones endotérmicas a 101,7 ºC, 167,1 ºC y 194,6 ºC, y el análisis termogravimétrico corroboró que a temperaturas menores de 295 ºC ocurre una pérdida de masa que representa el 30,9 por ciento de la masa total. Conclusiones: se corrobora la presencia de sal de citrato de calcio y magnesio(AU)


Introduction: calcium and magnesium salts are used as nutritional supplements obtained from natural sources such as dolomite, which is a double complex of calcium and magnesium carbonate. In search of a calcium raw material with greater bioavailability, a process of obtaining calcium and magnesium citrate salt from dolomite deposits was developed. Objective: to evaluate calcium and magnesium citrate from dolomite. Methods: chemical and technological analysis, Powder X-ray Diffractometry attenuated total reflection-Fourier transform infrared spectrometry (ATR-FTIR), differential scanning calorimetry and thermogravimetric analysis were all used. Results: the chemical analysis confirmed the existence of calcium (over 10 percent), and of magnesium (4.5 and 5 percent) whereas citric acid content was under 3 percent, The levels of toxic metals were below the maximum allowable limits for pharmaceutical products. The density values were below those of the dolomite, with high porosity and flow deficit. The X-ray diffractomery indicated that dolomite was transformed into calcium and magnesium citrate salts whereas, the infrared spectra showed the presence of characteristic COO¯, -OH and -CH2 groups of citrates. The differential scanning calorimetry showed that salt had three endothermic peaks at 101.7 ºC, 167.1 ºC y 194.6 ºC and on the other hand, termogravimetry analysis confirmed that 30.9 percent of the total mass is lost at temperatures lower than 295 ºC. Conclusions: the presence of calcium and magnesium citrate salt is corroborated(AU)


Asunto(s)
Humanos , Citratos , Suplementos Dietéticos , Carbonato de Calcio y Magnesio , Cuba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA