Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Intervalo de año de publicación
1.
Mol Pharm ; 21(7): 3434-3446, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781419

RESUMEN

Chemodynamic therapy (CDT) is a novel antitumor strategy that employs Fenton or Fenton-like reactions to generate highly toxic hydroxyl radical (OH•) from hydrogen peroxide (H2O2) for inducing tumor cell death. However, the antitumor efficacy of the CDT strategy is harshly limited by the redox homeostasis of tumor cells; especially the OH • is easily scavenged by glutathione (GSH) and the intracellular H2O2 level is insufficient in the tumor cells. Herein, we propose the Mn2+-menadione (also known as vitamin K3, MK3) cascade biocatalysis strategy to disrupt the redox homeostasis of tumor cells and induce a OH• storm, resulting in enhanced CDT effect. A nanoliposome encapsulating Mn-MK3 (Mn-MK3@LP) was prepared for the treatment of hepatic tumors in this study. After Mn-MK3@LPs were taken up by tumor cells, menadione could facilitate the production of intracellular H2O2 via redox cycling, and further the cytotoxic OH • burst was induced by Mn2+-mediated Fenton-like reaction. Moreover, high-valent manganese ions were reduced by GSH and the depletion of GSH further disrupted the redox homeostasis of tumor cells, thus achieving synergistically enhanced CDT. Overall, both cellular and animal experiments confirmed that the Mn-MK3@LP cascade biocatalysis nanoliposome exhibited excellent biosafety and tumor suppression efficacy. This study may provide deep insights for developing novel CDT-based strategies for tumor therapy.


Asunto(s)
Glutatión , Peróxido de Hidrógeno , Radical Hidroxilo , Vitamina K 3 , Animales , Radical Hidroxilo/química , Radical Hidroxilo/metabolismo , Humanos , Ratones , Glutatión/metabolismo , Glutatión/química , Vitamina K 3/química , Vitamina K 3/farmacología , Biocatálisis , Línea Celular Tumoral , Manganeso/química , Oxidación-Reducción/efectos de los fármacos , Ratones Endogámicos BALB C , Liposomas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Ratones Desnudos , Células Hep G2 , Antineoplásicos/farmacología , Antineoplásicos/química , Nanopartículas/química , Hierro
2.
Chemistry ; 30(19): e202304081, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38288909

RESUMEN

Optically pure sulfoxides are valuable organosulfur compounds extensively employed in medicinal and organic synthesis. In this study, we present a biocatalytic oxidation-reduction cascade system designed for the preparation of enantiopure sulfoxides. The system involves the cooperation of a low-enantioselective chimeric oxidase SMO (styrene monooxygenase) with a high-enantioselective reductase MsrA (methionine sulfoxide reductase A), facilitating "non-selective oxidation and selective reduction" cycles for prochiral sulfide oxidation. The regeneration of requisite cofactors for MsrA and SMO was achieved via a cascade catalysis process involving three auxiliary enzymes, sustained by cost-effective D-glucose. Under the optimal reaction conditions, a series of heteroaryl alkyl, aryl alkyl and dialkyl sulfoxides in R configuration were synthesized through this "one-pot, one step" cascade reaction. The obtained compounds exhibited high yields of >90 % and demonstrated enantiomeric excess (ee) values exceeding 90 %. This study represents an unconventional and efficient biocatalytic way in utilizing the low-enantioselective oxidase for the synthesis of enantiopure sulfoxides.


Asunto(s)
Metionina Sulfóxido Reductasas , Sulfóxidos , Biocatálisis , Oxidación-Reducción , Catálisis , Estereoisomerismo
3.
Biotechnol Bioeng ; 121(2): 566-579, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37986649

RESUMEN

The inherent complexity of coupled biocatalytic reactions presents a major challenge for process development with one-pot multienzyme cascade transformations. Kinetic models are powerful engineering tools to guide the optimization of cascade reactions towards a performance suitable for scale up to an actual production. Here, we report kinetic model-based window of operation analysis for cellobiose production (≥100 g/L) from sucrose and glucose by indirect transglycosylation via glucose 1-phosphate as intermediate. The two-step cascade transformation is catalyzed by sucrose and cellobiose phosphorylase in the presence of substoichiometric amounts of phosphate (≤27 mol% of substrate). Kinetic modeling was instrumental to uncover the hidden effect of bulk microviscosity due to high sugar concentrations on decreasing the rate of cellobiose phosphorylase specifically. The mechanistic-empirical hybrid model thus developed gives a comprehensive description of the cascade reaction at industrially relevant substrate conditions. Model simulations serve to unravel opposed relationships between efficient utilization of the enzymes and maximized concentration (or yield) of the product within a given process time, in dependence of the initial concentrations of substrate and phosphate used. Optimum balance of these competing key metrics of process performance is suggested from the model-calculated window of operation and is verified experimentally. The evidence shown highlights the important use of kinetic modeling for the characterization and optimization of cascade reactions in ways that appear to be inaccessible to purely data-driven approaches.


Asunto(s)
Celobiosa , Fosforilasas , Celobiosa/química , Glucosiltransferasas/química , Glucosa , Sacarosa , Fosfatos
4.
Biotechnol Bioeng ; 121(2): 580-592, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37983971

RESUMEN

One-pot cascade reactions of coupled disaccharide phosphorylases enable an efficient transglycosylation via intermediary α-d-glucose 1-phosphate (G1P). Such transformations have promising applications in the production of carbohydrate commodities, including the disaccharide cellobiose for food and feed use. Several studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis from sucrose, but the boundaries on transformation efficiency that result from kinetic and thermodynamic characteristics of the individual enzyme reactions are not known. Here, we assessed in a step-by-step systematic fashion the practical requirements of a kinetic model to describe cellobiose production at industrially relevant substrate concentrations of up to 600 mM sucrose and glucose each. Mechanistic initial-rate models of the two-substrate reactions of sucrose phosphorylase (sucrose + phosphate → G1P + fructose) and cellobiose phosphorylase (G1P + glucose → cellobiose + phosphate) were needed and additionally required expansion by terms of glucose inhibition, in particular a distinctive two-site glucose substrate inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with mass action terms accounting for the approach to equilibrium, the kinetic model gave an excellent fit and a robust prediction of the full reaction time courses for a wide range of enzyme activities as well as substrate concentrations, including the variable substoichiometric concentration of phosphate. The model thus provides the essential engineering tool to disentangle the highly interrelated factors of conversion efficiency in the coupled enzyme reaction; and it establishes the necessary basis of window of operation calculations for targeted optimizations toward different process tasks.


Asunto(s)
Celobiosa , Glucosiltransferasas , Glucosiltransferasas/metabolismo , Fosforilasas/metabolismo , Glucosa , Disacáridos , Sacarosa , Cinética , Fosfatos , Especificidad por Sustrato
5.
Food Chem ; 438: 138025, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37983992

RESUMEN

Cascade biocatalytic reactions have a wide range of applications, especially in the filed of food analysis. Herein, a multi-enzyme composite (ZGGPC) was prepared by in-situ synthesis of Zeolite imidazole framework-8 (ZIF-8) on Prussian blue (PB) modified carbon cloth (CC). The composite encapsulated both glucose oxidase and ß-galactosidase simultaneously during the synthesis process. CC and ZIF-8 showed high loading capacity for PB and natural enzymes, respectively. And ZIF-8 also displayed excellent tolerance in protecting enzyme activity under extreme conditions. Based on the cascade biocatalysis, ZGGPC was used to detect glucose and lactose by colorimetric method with detection limits of 1.2 µM and 1.7 mM, respectively. Benefiting from the merits of low cost, easy preparation, and good stability, the sensing system was used to successfully determine glucose and lactose in different milk samples. The present cascade biocatalysis system is hopeful to develop simple and efficient sensing platforms for food analysis.


Asunto(s)
Glucosa , Zeolitas , Animales , Glucosa/análisis , Lactosa , Biocatálisis , Leche/química , Colorimetría , Imidazoles/análisis
6.
Enzyme Microb Technol ; 162: 110122, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36103798

RESUMEN

ß-Nicotinamide mononucleotide (NMN) is an important precursor in the synthesis of nicotinamide adenine dinucleotide (NAD+) and confers multiple health benefits, resulting in the rapid growth of NMN market capacity in the fields of food and health care. To overcome the drawbacks of NMN production by the existing chemical or microbial fermentation method, there is an urgent need to develop a prospective NMN production strategy with low cost, low pollution, and high yield. In this study, we demonstrated an artificial in vitro multi-enzyme cascade biocatalysis using starch and nicotinamide (Nam) as substrates for the synthesis of NMN in one-pot. This multi-enzyme cascade reaction was optimized in terms of pH value, buffer concentration, inorganic phosphate concentration, enzyme composition, and phosphoenolpyruvate concentration. Under optimized conditions, a high molar yield of 87.8% for NMN was achieved using 3.2 mM Nam as substrate, and a molar yield of 55.37% for NMN was also achieved under the initial Nam concentration of 9.21 mM. This in vitro enzymatic platform provides an environmental friendliness biomanufacturing technology for the production of NMN, showing a highly promising alternative approach for NMN production.


Asunto(s)
Niacinamida , Mononucleótido de Nicotinamida , Mononucleótido de Nicotinamida/metabolismo , Biocatálisis , Almidón , Estudios Prospectivos , NAD/metabolismo
7.
Small ; 19(7): e2206606, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461684

RESUMEN

For complex cascade biocatalysis, multienzyme compartmentalization helps to optimize substrate transport channels and promote the orderly and tunable progress of step reactions. Herein, a simple and general synthesis strategy is proposed for the construction of a multienzyme biocatalyst by compartmentalizing glucose oxidase and horseradish peroxidase (GOx and HRP) within core-shell zeolite imidazole frameworks (ZIF)-8@ZIF-8 nanostructures. Owing to the combined effects of biomimetic mineralization and the fine regulation of the ZIF-8 growth process, the uniform shell encloses the seed (core) surface by epitaxial growth, and the bienzyme system is accurately localized in a controlled manner. The versatility of this strategy is also reflected in ZIF-67. Meanwhile, with the ability to covalently bind divalent metal ions, lithocholic acid (LCA) is used as a competitive ligand to improve the pore structure of the ZIF from a single micropore to a hierarchical micro/mesopore network, which greatly increases mass transfer efficiency. Furthermore, the multienzyme cascade reaction is exemplified by the oxidation of o-phenylenediamine (OPD). The findings show that the bienzyme assembly strategy significantly affects the biocatalytic efficiency mainly by influencing the utilization efficiency of the intermediate (Hydrogen peroxide, H2 O2 ) between the step reactions. This study sheds new light on facile synthetic routes to constructing in vitro multienzyme biocatalysts.


Asunto(s)
Nanoestructuras , Zeolitas , Zeolitas/química , Nanoestructuras/química , Peroxidasa de Rábano Silvestre/metabolismo , Biocatálisis , Imidazoles/química
8.
Chembiochem ; 23(11): e202200179, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35384232

RESUMEN

Deacetoxycephalosporin C synthase (DAOCS) catalyzes the transformation of penicillin G to phenylacetyl-7-aminodeacetoxycephalosporanic acid (G-7-ADCA) for which it depends on 2-oxoglutarate (2OG) as co-substrate. However, the low activity of DAOCS and the expense of 2OG restricts its practical applications in the production of G-7-ADCA. Herein, a rational design campaign was performed on a DAOCS from Streptomyces clavuligerus (scDAOCS) in the quest to construct novel expandases. The resulting mutants showed 25∼58 % increase in activity compared to the template. The dominant DAOCS variants were then embedded into a three-enzyme co-expression system, consisting of a catalase and an L-glutamic oxidase for the generation of 2OG, to convert penicillin G to G-7-ADCA in E. coli. The engineered whole-cell enzyme cascade was applied to an up-scaled reaction, exhibiting a yield of G-7-ADCA up to 39.21 mM (14.6 g ⋅ L-1 ) with a conversion of 78.42 mol %. This work highlights the potential of the integrated whole-cell system that may inspire further research on green and efficient production of 7-ADCA.


Asunto(s)
Transferasas Intramoleculares , Biotransformación , Cefalosporinas , Escherichia coli/genética , Escherichia coli/metabolismo , Transferasas Intramoleculares/metabolismo , Penicilina G/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo
9.
ACS Appl Mater Interfaces ; 13(36): 43085-43093, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34478257

RESUMEN

Multiple-enzyme cooperation simultaneously is an effective approach to biomass conversion and biodegradation. The challenge, however, lies in the interference of the involved enzymes with each other, especially when a protease is needed, and thus, the difficulty in reusing the enzymes; while extracting/synthesizing new enzymes costs energy and negative impact on the environment. Here, we present a unique approach to immobilize multiple enzymes, including a protease, on a metal-organic material (MOM) via co-precipitation in order to enhance the reusability and sustainability. We prove our strategy on the degradation of starch-containing polysaccharides (require two enzymes to degrade) and food proteins (require a protease to digest) before the quantification of total dietary fiber. As compared to the widely adopted "official" method, which requires the sequential addition of three enzymes under different conditions (pH/temperature), the three enzymes can be simultaneously immobilized on the surface of our MOM crystals to allow for contact with the large substrates (starch), while MOMs offer sufficient protection to the enzymes so that the reusability and long-term storage are improved. Furthermore, the same biodegradation can be carried out without adjusting the reaction condition, further reducing the reaction time. Remarkably, the simultaneous presence of all enzymes enhances the reaction efficiency by a factor of ∼3 as compared to the official method. To our best knowledge, this is the first experimental demonstration of using aqueous-phase co-precipitation to immobilize multiple enzymes for large-substrate biocatalysis. The significantly enhanced efficiency can potentially impact the food industry by reducing the labor requirement and enhancing enzyme cost efficiency, leading to reduced food cost. The reduced energy cost of extracting enzymes and adjusting reaction conditions minimize the negative impact on the environment. The strategy to prevent protease damage in a multi-enzyme system can be adapted to other biocatalytic reactions involving proteases.


Asunto(s)
Amilasas/química , Biomasa , Enzimas Inmovilizadas/química , Glucano 1,4-alfa-Glucosidasa/química , Estructuras Metalorgánicas/química , Péptido Hidrolasas/química , Biocatálisis , Hidrólisis , Prueba de Estudio Conceptual , Proteínas/química , Almidón/química
10.
Appl Microbiol Biotechnol ; 105(5): 1913-1924, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33544214

RESUMEN

D-Mannitol (hereinafter as mannitol) is a six-carbon sugar alcohol with diverse applications in food and pharmaceutical industries. To overcome the drawbacks of the chemical hydrogenation method commonly used for mannitol production at present, there is a need to search for novel prospective mannitol production strategies that are of high yield and low cost. In this study, we present a novel approach for the stoichiometric synthesis of mannitol via an in vitro synthetic enzymatic biosystem using the low-cost starch as substrate. By dividing the overall reaction pathway into three modules which could be executed sequentially in one pot, our design aimed at the stoichiometric conversion of starch-based materials into mannitol in an ATP-independent and cofactor-balanced manner. At optimized conditions, high product yields of around 95-98% were achieved using both 10 g/L and 50 g/L maltodextrin as substrate, indicating the potential of our designed system for industrial applications. This study not only provides a high-efficient strategy for the synthesis of mannitol but also expands the product scope of sugar alcohols by the in vitro synthetic enzymatic biosystems using low-cost starch-based materials as the input. KEY POINTS : • We described a design-build-test-learn pipeline to construct in vitro biosystems. • The designed system comprised six key enzymes and another three enzymes. • The system converted maltodextrin stoichiometrically to mannitol in one pot.


Asunto(s)
Manitol , Almidón , Estudios Prospectivos , Alcoholes del Azúcar
11.
Sheng Wu Gong Cheng Xue Bao ; 37(12): 4231-4242, 2021 Dec 25.
Artículo en Chino | MEDLINE | ID: mdl-34984870

RESUMEN

2-Hydroxybutyric acid (2-HBA) is an important intermediate for synthesizing biodegradable materials and various medicines. Chemically synthesized racemized 2-HBA requires deracemization to obtain optically pure enantiomers for industrial application. In this study, we designed a cascade biosynthesis system in Escherichia coli BL21 by coexpressing L-threonine deaminase (TD), NAD-dependent L-lactate dehydrogenase (LDH) and formate dehydrogenase (FDH) for production of optically pure (S)-2-HBA from bulk chemical L-threonine (L-Thr). To coordinate the production rate and the consumption rate of the intermediate 2-oxobutyric acid in the multi-enzyme cascade catalytic reactions, we explored promoter engineering to regulate the expression levels of TD and FDH, and developed a recombinant strain P21285FDH-T7V7827 with a tunable system to achieve a coordinated multi-enzyme expression. The recombinant strain P21285FDH-T7V7827 was able to efficiently produce (S)-2-HBA with the highest titer of 143 g/L and a molar yield of 97% achieved within 16 hours. This titer was approximately 1.83 times than that of the highest yield reported to date, showing great potential for industrial application. Our results indicated that constructing a multi-enzyme-coordinated expression system in a single cell significantly contributed to the biosynthesis of hydroxyl acids.


Asunto(s)
Formiato Deshidrogenasas , Hidroxibutiratos , Escherichia coli/genética , Treonina Deshidratasa
12.
Chinese Journal of Biotechnology ; (12): 4231-4242, 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-921501

RESUMEN

2-Hydroxybutyric acid (2-HBA) is an important intermediate for synthesizing biodegradable materials and various medicines. Chemically synthesized racemized 2-HBA requires deracemization to obtain optically pure enantiomers for industrial application. In this study, we designed a cascade biosynthesis system in Escherichia coli BL21 by coexpressing L-threonine deaminase (TD), NAD-dependent L-lactate dehydrogenase (LDH) and formate dehydrogenase (FDH) for production of optically pure (S)-2-HBA from bulk chemical L-threonine (L-Thr). To coordinate the production rate and the consumption rate of the intermediate 2-oxobutyric acid in the multi-enzyme cascade catalytic reactions, we explored promoter engineering to regulate the expression levels of TD and FDH, and developed a recombinant strain P21285FDH-T7V7827 with a tunable system to achieve a coordinated multi-enzyme expression. The recombinant strain P21285FDH-T7V7827 was able to efficiently produce (S)-2-HBA with the highest titer of 143 g/L and a molar yield of 97% achieved within 16 hours. This titer was approximately 1.83 times than that of the highest yield reported to date, showing great potential for industrial application. Our results indicated that constructing a multi-enzyme-coordinated expression system in a single cell significantly contributed to the biosynthesis of hydroxyl acids.


Asunto(s)
Escherichia coli/genética , Formiato Deshidrogenasas , Hidroxibutiratos , Treonina Deshidratasa
13.
Bioresour Technol ; 323: 124551, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33360113

RESUMEN

Enzyme cascades are efficient tools to perform multi-step synthesis in one-pot in a green and sustainable manner, enabling non-natural synthesis of valuable chemicals from easily available substrates by artificially combining two or more enzymes. Bioproduction of many high-value chemicals such as chiral and highly functionalised molecules have been achieved by developing new enzyme cascades. This review summarizes recent advances on engineering and application of enzyme cascades to produce high-value chemicals (alcohols, aldehydes, ketones, amines, carboxylic acids, etc) from simple starting materials. While 2-step enzyme cascades are developed for versatile enantioselective synthesis, multi-step enzyme cascades are engineered to functionalise basic chemicals, such as styrenes, cyclic alkanes, and aromatic compounds. New cascade reactions have also been developed for producing valuable chemicals from bio-based substrates, such as ʟ-phenylalanine, and renewable feedstocks such as glucose and glycerol. The challenges in current process and future outlooks in the development of enzyme cascades are also addressed.


Asunto(s)
Alcoholes , Ácidos Carboxílicos , Aldehídos , Alcanos , Biocatálisis
14.
Chembiochem ; 22(1): 124-128, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32789939

RESUMEN

Optically active ß-amino alcohols are very useful chiral intermediates frequently used in the preparation of pharmaceutically active substances. Here, a novel cyclohexylamine oxidase (ArCHAO) was identified from the genome sequence of Arthrobacter sp. TYUT010-15 with the R-stereoselective deamination activity of ß-amino alcohol. ArCHAO was cloned and successfully expressed in E. coli BL21, purified and characterized. Substrate-specific analysis revealed that ArCHAO has high activity (4.15 to 6.34 U mg-1 protein) and excellent enantioselectivity toward the tested ß-amino alcohols. By using purified ArCHAO, a wide range of racemic ß-amino alcohols were resolved, (S)-ß-amino alcohols were obtained in >99 % ee. Deracemization of racemic ß-amino alcohols was conducted by ArCHAO-catalyzed enantioselective deamination and transaminase-catalyzed enantioselective amination to afford (S)-ß-amino alcohols in excellent conversion (78-94 %) and enantiomeric excess (>99 %). Preparative-scale deracemization was carried out with 50 mM (6.859 g L-1 ) racemic 2-amino-2-phenylethanol, (S)-2-amino-2-phenylethanol was obtained in 75 % isolated yield and >99 % ee.


Asunto(s)
Amino Alcoholes/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Transaminasas/metabolismo , Amino Alcoholes/química , Arthrobacter/enzimología , Biocatálisis , Estructura Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Estereoisomerismo , Transaminasas/genética
15.
Bioresour Bioprocess ; 8(1): 97, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-38650191

RESUMEN

Chiral phenylglycinol is a very important chemical in the pharmaceutical manufacturing. Current methods for synthesis of chiral phenylglycinol often suffered from unsatisfied selectivity, low product yield and using the non-renewable resourced substrates, then the synthesis of chiral phenylglycinol remain a grand challenge. Design and construction of synthetic microbial consortia is a promising strategy to convert bio-based materials into high value-added chiral compounds. In this study, we reported a six-step artificial cascade biocatalysis system for conversion of bio-based L-phenylalanine into chiral phenylglycinol. This system was designed using a microbial consortium including two engineered recombinant Escherichia coli cell modules, one recombinant E. coli cell module co-expressed six different enzymes (phenylalanine ammonia lyase/ferulic acid decarboxylase/phenylacrylic acid decarboxylase/styrene monooxygenase/epoxide hydrolase/alcohol dehydrogenase) for efficient conversion of L-phenylalanine into 2-hydroxyacetophenone. The second recombinant E. coli cell module expressed an (R)-ω-transaminase or co-expressed the (S)-ω-transaminase, alanine dehydrogenase and glucose dehydrogenase for conversion of 2-hydroxyacetophenone into (S)- or (R)-phenylglycinol, respectively. Combining the two engineered E. coli cell modules, after the optimization of bioconversion conditions (including pH, temperature, glucose concentration, amine donor concentration and cell ratio), L-phenylalanine could be easily converted into (R)-phenylglycinol and (S)-phenylglycinol with up to 99% conversion and > 99% ee. Preparative scale biotransformation was also conducted on 100-mL scale, (S)-phenylglycinol and (R)-phenylglycinol could be obtained in 71.0% and 80.5% yields, > 99% ee, and 5.19 g/L d and 4.42 g/L d productivity, respectively. The salient features of this biocatalytic cascade system are good yields, excellent ee, mild reaction condition and no need for additional cofactor (NADH/NAD+), provide a practical biocatalytic method for sustainable synthesis of (S)-phenylglycinol and (R)-phenylglycinol from bio-based L-phenylalanine.

16.
J Agric Food Chem ; 68(32): 8557-8567, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32687709

RESUMEN

Short-chain cello-oligosaccharides (COS; degree of polymerization, DP ≤ 6) are promising water-soluble dietary fibers. An efficient approach to their bottom-up synthesis is from sucrose and glucose using glycoside phosphorylases. Here, we show the intensification and scale up (20 mL; gram scale) of COS production to 93 g/L product and in 82 mol % yield from sucrose (0.5 M). The COS were comprised of DP 3 (33 wt %), DP 4 (34 wt %), DP 5 (24 wt %), and DP 6 (9 wt %) and involved minimal loss (≤10 mol %) to insoluble fractions. After isolation (≥95% purity; ≥90% yield), the COS were examined for growth promotion of probiotic strains. Benchmarked against inulin, trans-galacto-oligosaccharides, and cellobiose, COS showed up to 4.1-fold stimulation of cell density for Clostridium butyricum, Lactococcus lactis subsp. lactis, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus but were less efficient with Bifidobacterium sp. This study shows the COS as selectively functional carbohydrates with prebiotic potential and demonstrates their efficient enzymatic production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bifidobacterium/metabolismo , Lacticaseibacillus rhamnosus/metabolismo , Lactobacillus/metabolismo , Oligosacáridos/metabolismo , Fosforilasas/metabolismo , Probióticos/metabolismo , Bifidobacterium/enzimología , Bifidobacterium/crecimiento & desarrollo , Lactobacillus/enzimología , Lactobacillus/crecimiento & desarrollo , Lacticaseibacillus rhamnosus/enzimología , Lacticaseibacillus rhamnosus/crecimiento & desarrollo , Oligosacáridos/química , Prebióticos/análisis , Sacarosa/metabolismo
17.
J Colloid Interface Sci ; 580: 365-376, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32688126

RESUMEN

The one-pot cascade reaction of naturally occurring enzymes is exciting for highly selective complex reaction and biodegradable approaches. Tamoxifen is the main drug against breast cancer for decades and induces an anticancerous effect upon metabolic activation by cytochrome P450 (CYP450). Herein, bi-enzymatic nanoreactors (NRs) are developed as a multimodality platform for smart action against breast tumors. CYPBM3 of Bacillus magaterium (CYP) is co-confined with glucose oxidase (GOx) where GOx produces H2O2 in the presence of glucose that elicits the CYP-mediated transformation of tamoxifen. The scintillating and mesoporous LaF3:Tb as nanocarrier showed advantages like a wide range of pore size and positive surface charge for efficient loading of enzyme couple, while the smallest pores were available for substrate/product diffusion. The obtained NRs were camouflaged with human serum albumin (HSA) to overcome premature enzyme leaching and provide active stealth properties. The nanocomposite was characterized for physicochemical properties and glucose-mediated sequential catalysis. The in vitro studies demonstrated the cell internalization of NRs in both ER+ and triple-negative breast cancer cell lines and showed significant cytotoxicity. The developed NRs not only improve the outcomes of endocrine therapy in ER+ cells but also synergistically act with oxidation therapy for enhanced therapeutic effect. Importantly, inhibition of triple-negative cells was also achieved. Thus, the development of the new multimodal nanomedicine of the present work should afford new tools towards the theranosis of breast cancer with minimized adverse effects.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Bacillus , Neoplasias de la Mama/tratamiento farmacológico , Catálisis , Sistema Enzimático del Citocromo P-450 , Femenino , Humanos , Peróxido de Hidrógeno
18.
Artículo en Inglés | MEDLINE | ID: mdl-32478043

RESUMEN

In vitro synthetic enzymatic biosystem is considered to be the next generation of biomanufacturing platform. This biosystem contains multiple enzymes for the implementation of complicated biotransformatiom. However, the hard-to-reuse and instability of multiple enzymes limit the utilization of this biosystem in industrial process. Multi-enzyme immobilization might be a feasible alternative to address these problems. Herein, porous microspheres are used as carriers to co-immobilize multiple enzymes for producing inositol from starch. At first, all the enzymes (i.e., α-glucan phosphorylase aGP, phosphoglucose mutase PGM, inositol 1-phosphate synthase IPS, and inositol monophosphatase IMP) for converting starch to inositol were immobilized on porous microspheres individually to check the effect of immobilization, then all the enzymes are co-immobilized on porous microspheres. Compared to reaction system containing all the individual immobilized enzymes, the reaction system containing the co-immobilized enzymes exhibit ∼3.5 fold of reaction rate on producing inositol from starch. This reaction rate is comparable to that by free enzyme mixture. And the co-immobilized multi-enzyme system show higher thermal stability and recovery stability than free enzyme mixture. After 7 batches, the immobilized enzymes retain 45.6% relative yield, while the free enzyme mixture only retain 13.3% relative yield after 3 batches. Co-immobilization of multiple enzymes on porous microspheres for biomanufacturing would shed light on the application of in vitro synthetic enzymatic biosystem in industrial scale.

19.
Trends Biotechnol ; 38(7): 766-778, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31983463

RESUMEN

Metabolic engineering efforts that harness living organisms to produce natural products and other useful chemicals face inherent difficulties because the maintenance of life processes often runs counter to our desire to maximize important production metrics. These challenges are particularly problematic for commodity chemical manufacturing where cost is critical. A cell-free approach, where biochemical pathways are built by mixing desired enzyme activities outside of cells, can obviate problems associated with cell-based methods. Yet supplanting cell-based methods of chemical production will require the creation of self-sustaining, continuously operating systems where input biomass is converted into desired products at high yields, productivities, and titers. We call the field of designing and implementing reliable and efficient enzyme systems that replace cellular metabolism, synthetic biochemistry.


Asunto(s)
Bioquímica/tendencias , Sistema Libre de Células , Ingeniería Metabólica , Biología Sintética/tendencias , Biomasa
20.
Appl Microbiol Biotechnol ; 103(19): 7953-7969, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31407037

RESUMEN

Two sustainable and cost-effective cascade enzymatic systems were developed to regenerate uridine diphosphate (UDP)-α-D-glucose and UDP-ß-L-rhamnose from sucrose. The systems were coupled with the UDP generating glycosylation reactions of UDP sugar-dependent glycosyltransferase (UGT) enzymes mediated reactions. As a result, the UDP generated as a by-product of the GT-mediated reactions was recycled. In the first system, YjiC, a UGT from Bacillus licheniformis DSM 13, was used for transferring glucose from UDP-α-D-glucose to naringenin, in which AtSUS1 from Arabidopsis thaliana was used to synthesize UDP-α-D-glucose and fructose as a by-product from sucrose. In the second system, flavonol 7-O-rhamnosyltransferase (AtUGT89C1) from A. thaliana was used to transfer rhamnose from UDP-ß-L-rhamnose to quercetin, in which AtSUS1 along with UDP-ß-L-rhamnose synthase (AtRHM1), also from A. thaliana, were used to produce UDP-ß-L-rhamnose from the same starter sucrose. The established UDP recycling system for the production of naringenin glucosides was engineered and optimized for several reaction parameters that included temperature, metal ions, NDPs, pH, substrate ratio, and enzymes ratio, to develop a highly feasible system for large-scale production of different derivatives of naringenin and other natural products glucosides, using inexpensive starting materials. The developed system showed the conversion of about 37 mM of naringenin into three different glucosides, namely naringenin, 7-O-ß-D-glucoside, naringenin, 4'-O-ß-D-glucoside, and naringenin, 4',7-O-ß-D-diglucoside. The UDP recycling (RCmax) was 20.10 for naringenin glucosides. Similarly, the conversion of quercetin to quercetin 7-O-α-L-rhamnoside reached a RCmax value of 10.0.


Asunto(s)
Flavanonas/metabolismo , Glucósidos/metabolismo , Glucuronosiltransferasa/metabolismo , Hexosiltransferasas/metabolismo , Quercetina/metabolismo , Sacarosa/metabolismo , Arabidopsis/enzimología , Bacillus licheniformis/enzimología , Biocatálisis , Glucuronosiltransferasa/aislamiento & purificación , Hexosiltransferasas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA