Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.591
Filtrar
1.
Mar Pollut Bull ; 208: 117095, 2024 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-39368149

RESUMEN

This study represents the baseline of estimation of the potential service provided by fishermen as "cleaners of the sea". The amount, composition and depth distribution of marine litter in fishing grounds of the Northern Adriatic seafloor has been investigated through the fishing for litter (FFL) scheme. Passive FFL campaigns were carried out by trawlers from two of the most important fishing ports in the northern Adriatic, Chioggia and Goro, from May 2020 to May 2021. Over the course of 256 days of fishing, over 6 tons of litter were removed from 265 km2 of seafloor. Abandoned, lost and derelict fishing gears (ALDFG) were the most represented litter category (48 % of the total litter), and of these 67 % were plastic ALDFG (mostly mussel socks and fishing nets). Fouling on plastic waste was analyzed to determine the fraction of collected litter items that could be destinated to recycling. Only a small percentage of the plastic litter analyzed was "clean" from adherent and/or encrusting organisms. Approximately 2.4 tons of plastic were recovered, but, due to the biological colonization of surfaces, they cannot be recycled by using the technologies present in the area.

2.
Biofouling ; : 1-21, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39351599

RESUMEN

This research study delves into the hydrodynamic frictional characteristics of fouled panels coated with different types of coatings, investigating how fouling coverage and surface roughness influence drag. The investigation incorporates data on the overall percentage coverage of fouling, as well as roughness measurements obtained through a 3D profilometer. Drag data collected from a flowcell simulation of real-world flow conditions complements these measurements. Notably, the determination of the level of fouling leverages the capabilities of CIE L*a*b as an image analysis method, focusing on the overall coverage rather than individual fouling species. The objective is to illustrate how fouled panels perform under varying flow and coating conditions compared to their clean counterparts. Furthermore, the paper proposes a roughness scaling approach that considers both the percentage coverage and measured areal roughness for each coating type, encompassing both fouled and unfouled areas. This approach provides valuable insights into the combined effects of fouling and surface roughness on hydrodynamic performance, enhancing our understanding of the intricate interplay between these factors.

3.
J Environ Manage ; 370: 122649, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39357446

RESUMEN

Wastewater treatment plant (WWTP) discharges are major contributors to the release of microplastics (MPs) into the environment. This research work aimed to assess the performance of the novel living membrane bioreactor (LMBR), which utilizes a biological layer as a membrane filter for the removal of polyethylene (PE) MPs from wastewater. The impact of an intermittently applied low current density (0.5 mA/cm2) on the reduction of MPs in the electrochemically enhanced LMBR (e-LMBR) has also been examined. The reactors were also compared to a conventional membrane bioreactor (MBR) and an electro-MBR (e-MBR). 1H nuclear magnetic resonance spectroscopy (1H NMR) was implemented for the MPs detection and quantification in terms of mass per volume of sample. The LMBR and MBR achieved comparable mean PE MPs reduction at 95% and 96%, respectively. The MPs mass reduction in the e-LMBR slightly decreased by 2% compared to that achieved in the LMBR. This potentially indicated the partial breakdown of the MPs due to electrochemical processes. Decreasing and inconsistent NH4-N and PO4-P removal efficiencies were observed over time due to the addition of PE MPs in the MBR and LMBR. In contrast, the integration of electric field in the e-MBR and e-LMBR resulted in consistently high values of conventional contaminant removals of COD (99.72-99.77 %), NH4-N (97.96-98.67%), and PO4-P (98.44-100.00%), despite the MPs accumulation. Integrating electrochemical processes in the e-LMBR led to the development of a stable living membrane (LM) layer, as manifested in the consistently low effluent turbidity 0.49 ± 0.33 NTU. Despite the increasing MPs concentration in the mixed liquor, applying electrochemical processes reduced the fouling rates in the e-LMBR. The e-LMBR achieved comparable efficiencies in contaminant reductions as those observed in the e-MBR, while using a low-cost membrane material.

4.
Environ Technol ; : 1-12, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284585

RESUMEN

Thin-film nanocomposite (TFN) membranes with a polyamide (PA) active layer modified with carbon nanotubes (CNTs) hold promise for water desalination and wastewater reuse via forward osmosis (FO). We hypothesise that modifying the PA active layer with hydroxyl-functionalised multi-wall carbon nanotubes (f-MWCNTs) will enhance the water flux of the FO membrane while maximising salt rejection. TFN membranes were modified using in situ interfacial polymerisation, with varying f-MWCNT mass content to minimise agglomeration. These modified FO membranes are designated as CTFN-x, where x represents the mass content of f-MWCNTs, ranging from 0.001%, CTFN-1 to 0.008%, CTFN-8 (w/v). The surface properties of CTFN-x were characterised using electron microscopy, atomic force microscopy, and molecular spectroscopy. IR spectroscopic data confirm the successful adherence of f-MWCNTs as a bridging agent between the 1,3-phenylenediamine (MPD) and trimesoyl chloride (TMC) polymers, preserving FO membrane integrity. The CTFN-4 FO membrane shows the highest water flux (29 LMH) and the lowest reverse salt flux (2.90 gHM), attributed to preferential water flow channels in the f-MWCNTs. The integration of f-MWCNTs into the active layer improved water flux, reduced reverse salt flux, and enhanced the antifouling properties of FO membranes.

5.
J Hazard Mater ; 480: 135832, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278033

RESUMEN

Discharge of improperly treated sulfamethoxazole (SMX) wastewater seriously threats environmental security and public health. Anaerobic dynamic membrane bioreactors (AnDMBRs) technology would be cost-effective for SMX wastewater treatment, considering its low cost and satisfactory treatment efficiency. The performance of AnDMBR, though demonstrated to be excellent in treating many types of wastewaters, was for the first time investigated for treating SMX wastewater. Particular efforts were devoted to elucidating the advantages of dynamic membrane (DM) and the governing mechanism responsible for DM fouling with the presence of SMX. The threshold SMX concentration for AnDMBR was found to be 90 mg/L and the AnDMBR exhibited excellent removal efficiency of COD (90.91 %) and SMX (88.95 %) as well as satisfactory acute toxicity reduction rate (88.84 %). It was noteworthy that the DM made indispensable contributions to the removal of COD (14.26 %) and SMX (22.20 %) as well as the acute reduction of toxicity (25.81 %). The presence of SMX significantly accelerated DM fouling mainly by increasing its specific resistance, which was attributed to the increased content of small particles, high-valence metal ions and EPS content (mainly hydrophobic proteins), resulting in a denser DM structure with lower porosity. Besides, the biofouling-related bacteria (Firmicutes) was found to be enriched in the DM with the presence of SMX.

6.
Water Res ; 266: 122348, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39217642

RESUMEN

Nanofiltration (NF) is being increasingly applied to produce high-quality drinking water; however, its cost-effective operation remains challenging due to the perennial membrane fouling. On account of the low tolerance of common NF membranes to chemical oxidants, this study proposed high-dose UV irradiation as a pretreatment strategy for organic fouling mitigation. Results showed that the permeate flux decline of the membrane with UV-treated feedwater (with a dose of 750 mJ cm-2) was less drastic than that with raw feedwater, but slightly faster as compared to that with UV/Cl2 pretreatment. The final normalized fluxes were 0.69, 0.79, and 0.82, respectively, after 10 h of operation with raw, UV- and UV/Cl2-treated feedwaters. With the characterization of feedwaters and membranes, the fouling was found to be initiated by the adsorption of hydrophilic biopolymers onto the membrane, followed by the deposition of hydrophobic humic substances. Reduction of the "glue" biopolymers was crucial to membrane fouling mitigation. The applicability of UV pretreatment in practice was testified with a pilot-scale UV-NF system where permeate flux of the NF module decreased by 37% after six-week continuous operation. Moreover, UV pretreatment could remove most of the identified pesticides in the feedwater with a removal efficiency over 80% for metolachlor and imidacloprid, but had no or even a negative effect on perfluorinated compounds. This work discloses the efficacy and mechanism of high-dose UV irradiation for NF membrane fouling control, which facilitates future research and application of NF technology.

7.
Water Res ; 266: 122435, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39298893

RESUMEN

Tiny colloids with a size similar to that of membrane pores are responsible for irreversible fouling in the pre-coagulation microfiltration membrane filtration process for drinking water treatment. Such colloidal particles are defined here as meso­colloids, and the charge neutralization of meso­colloids is demonstrated to be a key to controlling irreversible fouling. However, meso­colloids remain negatively charged at neutral pH, the reason for which is still unclear. To increase the efficiency of membrane operation, additional knowledge about the causes and behaviors of meso­colloids during pre-coagulation is indispensable. Therefore, in this study, meso­colloids are fractionated after a series of jar tests, and their exact composition and charge properties are characterized. Two natural water samples, the adjusted water consisting of meso­colloid fraction separated from one of the natural water samples and additional inorganic chemicals, and the adjusted water by the addition of appropriate inorganic chemicals into pure water are used for jar tests, which are conducted with and without the addition of the coagulant polyaluminum chloride (PACl). After the jar tests using two natural water samples, all of the meso­colloids exhibit a negative charge under the conditions applied for the jar tests, indicating that charge neutralization is difficult. The composition of the meso­colloids is found to be completely different depending on the water source used. Organic-rich water tends to generate meso­colloids with a low Al/C (mass ratio of aluminum and organic carbon) ratio. In contrast, organic-poor water tends to produce meso­colloids with a high Al/C ratio. From the results of the jar tests using two kinds of adjusted water samples, it is found challenging to neutralize meso­colloids by PACl at neutral pH, because the overdose and underdose of PACl result in negatively charged biopolymer or negatively charged aluminum species. Therefore, the development of a new coagulant for specific use in the coagulation membrane filtration process is proposed, which can minimize the formation of negatively charged species even at neutral pH.

8.
Water Res ; 266: 122432, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39298900

RESUMEN

Evaporation has been one of the most classic desalination processes on the Earth. When we try to use the power of water flow itself, the evaporation process can perform even better. Here, we report a hydrodynamic solar-driven interfacial evaporation process which water evaporation rate can achieve 6.58 kg·m-2·h-1 (over 100 times higher than natural evaporation). A waterwheel-structure solar interfacial evaporator was designed and assembled by printed filter papers. The evaporator can both rapidly distribute solution on the evaporation interface and be hydraulically driven to rotate continuously to improve the evaporation rate by water flow. The hydrodynamic solar-driven interfacial evaporation process successfully overcomes the problem of slow diffusion of water vapor, but also realizes the day-and-night operation of process and the self-cleaning of salt fouling. Apart from the application in solar desalination, the developed evaporator has great potentials in vapor production and salt recovery for industrial use.

9.
Environ Res ; 263(Pt 1): 119986, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270951

RESUMEN

The membrane fouling induced by algal extracellular organic matter (EOM) remain a bottleneck in restricting ultrafiltration (UF) application during harmful algal-water treatment. In current study, the application of heat-activated peroxydisulfate (PMS) and coagulation (Aluminum chlorohydrate, PACI) on membrane fouling behavior during Chlorella-laden water treatment was investigated. The membrane fouling mechanism was analyzed using the extended Derjaguin-Landau-Verwey-Over-beek (XDLVO) theory. The results revealed that separated heat-activated PMS could enhance the filtration flux of EOM at high PMS does >0.2 mM, whereas the membrane fouling was further alleviated by combined heat-activated PMS (0.2-1.0 mM) and PACI (20 mg/L) treatment, especially at low PMS dose. Combined heat-activated PMS and PACI pretreatment could effectively increase the adhesive repulsion between membrane and foulants and reduce the cohesion free energies between organic foulants than those by separated heat-activated PMS treatment, making the initial filtration flux reduced and the cake layer looser. Moreover, the organic foulants of proteins, polysaccharides, and humic-like organics were removed. Cake formation was the major fouling mechanism when EOM was treated with/without separated heat-activated PMS treatment, whereas the membrane fouling mechanism was changed from cake layer formation to pore blocking after combined heat-activated PMS and PACI treatment. Overall, this research provided a feasible method in membrane fouling control during Chlorella -laden water treatment.

10.
Water Environ Res ; 96(9): e11133, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39276016

RESUMEN

This study explored using ultrafiltration (UF) membranes to treat pulp and paper mill wastewater, implementing a novel Taguchi experimental design to optimize operating conditions for pollutant removal and minimal membrane fouling. Researchers examined four factors: pH, temperature, transmembrane pressure, and volume reduction factor (VRF), each at three levels. Optimal conditions (pH 10, 25°C, 6 bar, VRF 3) led to a 35% reduction in flux due to fouling and high pollutant rejections: total hardness (83%), sulfate (97%), spectral absorption coefficient (SAC254) (95%), and chemical oxygen demand (COD) (89%). Conductivity had a lower rejection rate of 50%. Advanced imaging techniques like atomic force microscopy (AFM) and scanning electron microscopy (SEM) revealed reduced membrane fouling under these conditions. The Taguchi method effectively identified optimal conditions, significantly improving wastewater treatment efficiency and promoting environmental sustainability in the pulp and paper industry. PRACTITIONER POINTS: This study optimized UF membrane conditions for pulp and paper mill wastewater, reducing fouling and enhancing pollutant removal, offering practical strategies for industrial treatment. AFM and SEM provided key insights into membrane fouling and mitigation, promoting real-time diagnosis and optimization for enhanced treatment efficiency. Prioritizing anaerobic fixed-bed systems in wastewater treatment is beneficial for achieving high COD removal efficiency. Optimizing hydraulic retention time (HRT) in these systems can further improve their overall effectiveness and sustainability.


Asunto(s)
Reactores Biológicos , Residuos Industriales , Papel , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Anaerobiosis , Aguas Residuales/química , Aerobiosis , Purificación del Agua/métodos , Ultrafiltración/métodos
11.
Water Res ; 266: 122358, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39255565

RESUMEN

This study investigated a sustainable approach through dielectric barrier discharge (DBD) enhanced Fenton technology coupling nanofiltration (NF) process for landfill leachate treatment. The DBD/Fe(II)/H2O2 system exhibited significant synergistic effects, removing 55.07 % of TOC and 53.79 % of UV254 within 60 min, respectively. Additionally, the DBD/Fe(II)/H2O2 system demonstrated exceptional performance in removing fluorescent substances and large molecular organic compounds, thereby reducing the formation of cake layer on the nanofiltration membrane. Moreover, membrane flux increased by 2.34 times, with reversible and irreversible resistances decreasing by 75.79 % and 81.55 %, respectively. Quenching experiments revealed ·OH as the primary active species for perfluorooctanoic acid (PFOA) degradation in the DBD/Fe(II)/H2O2 process. The degradation pathway of PFOA was also elucidated via capillary electrophoresis-quadrupole time-of-flight mass spectrometry analysis. Correlation analysis indicated that TOC and EEM were the primary fouling factors. Lastly, through an assessment of energy consumption, economic costs, and carbon dioxide emissions, the advantages and practical application potential of the DBD/Fe(II)/H2O2 system were demonstrated. In summary, the DBD/Fe(II)/H2O2 system emerges as a feasible strategy for NF pretreatment, holding immense potential for treating landfill leachate.

12.
J Hazard Mater ; 479: 135709, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39236536

RESUMEN

Ultrafiltration (UF) is widely employed for harmful algae rejection, whereas severe membrane fouling hampers its long-term operation. Herein, calcium peroxide (CaO2) and ferrate (Fe(VI)) were innovatively coupled for low-damage removal of algal contaminants and fouling control in the UF process. As a result, the terminal J/J0 increased from 0.13 to 0.66, with Rr and Rir respectively decreased by 96.74 % and 48.47 %. The cake layer filtration was significantly postponed, and pore blocking was reduced. The ζ-potential of algal foulants was weakened from -34.4 mV to -18.7 mV, and algal cells of 86.15 % were removed with flocs of 300 µm generated. The cell integrity was better remained in comparison to the Fe(VI) treatment, and Fe(IV)/Fe(V) was verified to be the dominant reactive species. The membrane fouling alleviation mechanisms could be attributed to the reduction of the fouling loads and the changes in the interfacial free energies. A membrane fouling prediction model was built based on a long short-term memory deep learning network, which predicted that the filtration volume at J/J0= 0.2 increased from 288 to 1400 mL. The results provide a new routine for controlling algal membrane fouling from the perspective of promoting the generation of Fe(IV)/Fe(V) intermediates.


Asunto(s)
Hierro , Membranas Artificiales , Peróxidos , Hierro/química , Peróxidos/química , Ultrafiltración/métodos , Purificación del Agua/métodos , Incrustaciones Biológicas/prevención & control
13.
Water Res ; 266: 122357, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39241381

RESUMEN

Despite widespread deployment and investigation of ultrafiltration (UF) for secondary effluent purification, the challenge of membrane fouling due to effluent organic matter (EfOM) remains formidable. This study introduced a novel pretreatment method utilizing Co nanoparticles-encapsulated carbon nanotubes activated peroxymonosulfate (Co@CNT/PMS) to degrade EfOM and mitigate membrane fouling. Characterization of Co@CNT revealed the efficient encapsulation of Co nanoparticles within nanotubes, which notably enhanced the catalytic degradation of bisphenol A and typical organics. The tube-encapsulated structure increased the concentration of reactive species within the confined nanoscopic space, thereby improving the probability of collisions with pollutants and promoting their degradation. The Co@CNT/PMS pretreatment led to substantial reductions in aromatic compounds, fluorescent components, and both high and middle molecular weight substances. These changes proved crucial in diminishing the fouling potential in subsequent UF processes, where reversible and irreversible fouling resistances decreased by 97.1 % and 72.8 %, respectively. The transition volume from pore blocking to cake filtration markedly increased, prolonging the formation of a dense fouling layer. Surface properties analysis indicated a significant reduction of pollutants on membrane surfaces after the Co@CNT/PMS pretreatment. This study underscored the efficacy of confinement-based advanced oxidization pretreatment in enhancing UF performance, presenting a viable resolution to membrane fouling.

14.
Membranes (Basel) ; 14(9)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39330533

RESUMEN

To reduce membrane fouling during the processing of highly pulpy fruit juices into clarified beverages, a crossflow Sono-Microfiltration (SMF) system was employed, strategically equipped with an ultrasonic probe for the direct application of low-frequency ultrasound (LFUS) to the juice just before the entrance to the ceramic membrane. Operating conditions were standardized, and the application of LFUS pulses in both corrective and preventive modes was investigated. The effect of SMF on the physicochemical properties and the total soluble phenol (TSP) content of the clarified juice was also evaluated. The distance of ultrasonic energy irradiation guided the selection of the LFUS probe. Amplitude conditions and ultrasonic pulses were more effective in the preventive mode and did not cause membrane damage, reducing the operation time of jackfruit juice by up to 50% and increasing permeability by up to 81%. The SMF did not alter the physicochemical parameters of the clarified juice, and the measured LFUS energy ranges did not affect the TSP concentration during the process. This study is the first to apply LFUS directly to the feed stream in a pilot-scale crossflow microfiltration system to reduce the fouling of ceramic membranes and maintain bioactive compounds in jackfruit juice.

15.
Membranes (Basel) ; 14(9)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39330540

RESUMEN

This comprehensive study looks at how operational conditions affect the performance of a novel seven-channel titania ceramic ultrafiltration membrane for the treatment of produced water. A full factorial design experiment (23) was conducted to study the effect of the cross-flow operating factors on the membrane permeate flux decline and the overall permeate volume. Eleven experimental runs were performed for three important process operating variables: transmembrane pressure (TMP), crossflow velocity (CFV), and filtration time (FT). Steady final membrane fluxes and permeate volumes were recorded for each experimental run. Under the optimized conditions (1.5 bar, 1 m/s, and 2 h), the membrane performance index demonstrated an oil rejection rate of 99%, a flux of 297 L/m2·h (LMH), a 38% overall initial flux decline, and a total permeate volume of 8.14 L. The regression models used for the steady-state membrane permeate flux decline and overall permeate volume led to the highest goodness of fit to the experimental data with a correlation coefficient of 0.999. A Multiple Linear Regression method and an Artificial Neural Network approach were also employed to model the experimental membrane permeate flux decline and analyze the impact of the operating conditions on membrane performance. The predictions of the Gaussian regression and the Levenberg-Marquardt backpropagation method were validated with a determination coefficient of 99% and a Mean Square Error of 0.07.

16.
Membranes (Basel) ; 14(9)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39330543

RESUMEN

Cellulose, a sustainable raw material, holds great promise as an ideal candidate for membrane materials. In this work, we focused on establishing a low-cost route for producing cellulose microfiltration membranes by adopting a co-solvent system comprising the ionic liquid 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc) and acetone. The introduction of acetone as a co-solvent into the casting solution allowed control over the viscosity, thereby significantly enhancing the morphologies and filtration performances of the resulting cellulose membranes. Indeed, applying this co-solvent allowed the water permeability to be significantly increased, while maintaining high rejections. Furthermore, the prepared cellulose membrane demonstrated excellent fouling resistance behavior and flux recovery behavior during a challenging oil-in-water emulsion filtration. These results highlight a promising approach to fabricate high-performance cellulose membranes.

17.
J Environ Manage ; 370: 122544, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39316878

RESUMEN

The traditional anaerobic treatment process for highly concentrated, toxic, and acidic poly (butylene adipate-co-terephthalate) (PBAT) wastewater faces challenges. In contrast, the anaerobic membrane bioreactor (AnMBR) offers the advantage of robust performance, but the influence of start-up modes has not been explored. This study investigated the impact of one-step and stepwise startup (gradual dilution of wastewater) strategies in AnMBR treating PBAT wastewater. The results indicated that the one-step startup group achieved COD removal efficiency of 91.2% ± 2.7% and methane conversion rate of 234.7 ± 8.5 mLCH4/gCOD, which were 21.7% and 81.8 mL CH4/gCOD respectively higher than those achieved by the stepwise start-up group. Furthermore, the one-step startup led to the reduction of startup time by 10 days and the decrease in the average membrane fouling cycle by 6.6 days. Compared to the stepwise start-up group, the one-step startup group exhibited a lower abundance of Bacteroidota (11.3%), and a higher abundance of Proteobacteria (27.1%), Chloroflexi (10.5%), and Actinobacteria (11.8%). The one-step startup strategy facilitated the rapid development of a toxicity-tolerant hydrogenotrophic methanogenic pathway. Consequently, the one-step startup method provided a promising approach for the rapid start-up and excellent performance of AnMBR in PBAT wastewater treatment.

18.
Macromol Rapid Commun ; : e2400596, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39319677

RESUMEN

Biomimetic slippery liquid-infused porous surfaces (SLIPS) have emerged as a promising solution to solve the limitations of superhydrophobic surfaces, such as inadequate durability in corrosion protection and a propensity for frosting. However, the challenge of ensuring strong, lasting adhesion on diverse materials to enhance the durability of the lubricant layer remains. The research addresses this by leveraging amyloid phase-transitioned lysozyme (PTL) as an adhesive interlayer, conferring stable attachment of SLIPS across a variety of substrates, including metals, inorganics, and polymers. The silica-textured interface robustly secures the lubricant with a notably low sliding angle of 1.15°. PTL-mediated adhesion fortifies the silicone oil attachment to the substrate, ensuring the retention of its repellent efficacy amidst mechanical stressors like ultrasonication, water scrubbing, and centrifugation. The integration of robust adhesion, cross-substrate compatibility, and durability under stress affords the PTL-modified SLIPS exceptional anti-fouling, anti-icing, and anti-corrosion properties, marking it as a leading solution for advanced protective applications.

19.
Materials (Basel) ; 17(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39336241

RESUMEN

Superhydrophobic strain sensors are highly promising for human motion and health monitoring in wet environments. However, the introduction of superhydrophobicity inevitably alters the mechanical and conductive properties of these sensors, affecting sensing performance and limiting behavior monitoring. Here, we developed an alkylated MXene-carbon nanotube/microfiber composite material (AMNCM) that is simultaneously flexible, superhydrophobic, and senses properties. Comprising a commercially available fabric substrate that is coated with a functional network of alkylated MXene/multi-walled carbon nanotubes and epoxy-silicone oligomers, the AMNCM offers high mechanical and chemical robustness, maintaining high conductivity and strain sensing properties. Furthermore, the AMNCM strain sensor achieves a gauge factor of up to 51.68 within a strain range of 80-100%, and exhibits rapid response times (125 ms) and long-term stability under cyclic stretching, while also displaying superior direct/indirect anti-fouling capabilities. These properties position the AMNCM as a promising candidate for next-generation wearable devices designed for advanced environmental interactions and human activity monitoring.

20.
Artículo en Inglés | MEDLINE | ID: mdl-39348022

RESUMEN

This study evaluated the effects of electrocoagulation integrated in a laboratory-scale membrane bioreactor (MBR), namely EC-MBR, on the treatment performance, activated sludge morphological characterization, and membrane fouling of MBR treating actual sunflower oil refinery wastewater. The EC-MBR system exhibited significantly higher chemical oxygen demand (COD) and oil and grease (O&G) removal efficiency compared to the MBR system. Additionally, both systems achieved excellent turbidity removal, with a percentage above 99%. The membrane fouling rate was higher in the EC-MBR system compared to the MBR system. Despite the decrease in the soluble microbial product (SMP) and extracellular polymeric substance (EPS) concentration in the EC-MBR system, especially their protein fraction, the significant increase in MLSS and carbohydrates/protein ratio, and the decrease in the mixed liquor and the cake layer particles size were the main membrane fouling factors. The membrane fouling resistance distribution showed that the EC-MBR system had a higher percentage of pore blocking resistance compared to the MBR. FTIR analysis identified a greater proportion of carbohydrate compounds in the cake layer of the EC-MBR system. SEM images revealed dense microbial clusters, mainly rod- and oval-shaped bacteria, in the EC-MBR system. Furthermore, EDX analysis detected elements such as Ca, K, O, Al, and P in both systems, with the EC-MBR system showing a higher Al content. The EC-MBR system showed low energy consumption (0.431 kWh m-3) and total operating costs ($0.90 m-3), showcasing its effectiveness and affordability for sustainable wastewater management.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA