Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Front Genet ; 15: 1377716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39135681

RESUMEN

Background: There is inconsistent evidence regarding the accuracy of GNAS mutations identification for the diagnosis of FD/MAS. This study was performed to estimate the prevalence and diagnostic accuracy of GNAS mutations detection and to preliminarily investigate the genotype-phenotype correlation in FD patients. Methods: Five electronic databases were searched from 1995 to 2024 using search terms related to GNAS and fibrous dysplasia. Observational studies of FD patients undergoing GNAS mutation detection in FD were included. Results: A total of 878 FD patients were included. The pooled prevalence of GNAS mutations in FD based on the random effects model was 74% (95% CI = 64%-83%). Regarding diagnostic accuracy, a sensitivity of 0.83 (95% CI, 0.65-0.96), specificity of 0.99 (95% CI, 0.98-1.00) and the area under the receiver operating characteristic curve of 98.38% were found. Additionally, meta-analysis and Fisher's test showed the GNAS mutation types were significantly associated with FD types (OR = 3.51, 95% CI = 1.05 to 11.72; p < 0.05). Conclusion: A high detection rate of GNAS mutations occurred in FD, and its detection is reliable for diagnosing FD. Additionally, GNAS mutation type was types were significantly associated with FD type. Systematic Review Registration: Identifier CRD42024553469.

2.
JCEM Case Rep ; 2(8): luae125, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39104441

RESUMEN

GNAS variants were recently described in 1% of patients not known to have pseudohypoparathyroidism/inactivating PTH/PTHrP signalling disorder 2 in the UK Genetics of Obesity Study. We describe a new missense GNAS variant, c.791A > C, p.(Asp264Thr), in a family with obesity, hyperphagia and mild PTH resistance. A 6-year-old female (body mass index +4.3 SD score [SDS], height +1.9 SDS) presented with hyperphagia and obesity from age 3 years. She had subtle brachydactyly, macrocephaly, and mildly delayed development. The 12-year-old brother (height +2.1 SDS, body mass index +2.9 SDS) had hyperphagia, obesity, mildly delayed development, and autism. He had subtle brachydactyly, as did the affected mother. We assessed the functional effect of the mutant, measuring cAMP production in cells transfected with wild type and mutant GNAS after ligand stimulation. Cells with the mutant GNAS showed impaired cAMP generation through melanocortin receptor 4, GH releasing hormone receptor, and PTH receptor. These cases demonstrate the clinical heterogeneity of monogenic disease, suggesting a need to test for PHP1A in children with obesity even without classical signs of PHP1A.

3.
Cancer Biol Med ; 21(7)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39026438

RESUMEN

Pseudomyxoma peritonei (PMP) is an indolent malignant syndrome. The standard treatment for PMP is cytoreductive surgery combined with intraperitoneal hyperthermic chemotherapy (CRS + HIPEC). However, the high recurrence rate and latent clinical symptoms and signs are major obstacles to further improving clinical outcomes. Moreover, patients in advanced stages receive little benefit from CRS + HIPEC due to widespread intraperitoneal metastases. Another challenge in PMP treatment involves the progressive sclerosis of PMP cell-secreted mucus, which is often increased due to activating mutations in the gene coding for guanine nucleotide-binding protein alpha subunit (GNAS). Consequently, the development of other PMP therapies is urgently needed. Several immune-related therapies have shown promise, including the use of bacterium-derived non-specific immunogenic agents, radio-immunotherapeutic agents, and tumor cell-derived neoantigens, but a well-recognized immunotherapy has not been established. In this review the roles of GNAS mutations in the promotion of mucin secretion and disease development are discussed. In addition, the immunologic features of the PMP microenvironment and immune-associated treatments are discussed to summarize the current understanding of key features of the disease and to facilitate the development of immunotherapies.


Asunto(s)
Inmunoterapia , Neoplasias Peritoneales , Seudomixoma Peritoneal , Microambiente Tumoral , Humanos , Seudomixoma Peritoneal/terapia , Seudomixoma Peritoneal/inmunología , Seudomixoma Peritoneal/genética , Seudomixoma Peritoneal/patología , Microambiente Tumoral/inmunología , Neoplasias Peritoneales/terapia , Neoplasias Peritoneales/inmunología , Neoplasias Peritoneales/genética , Inmunoterapia/métodos , Procedimientos Quirúrgicos de Citorreducción , Mutación , Quimioterapia Intraperitoneal Hipertérmica
4.
Open Life Sci ; 19(1): 20220918, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071491

RESUMEN

Pseudohypoparathyroidism (PHP) type 1a (PHP 1a) is a rare hereditary disorder characterized by target organ resistance to hormonal signaling and the Albright hereditary osteodystrophy (AHO) phenotype, which features round facial features, short fingers, subcutaneous calcifications, short stature, obesity, and intellectual disability. Progressive osseous heteroplasia (POH) is another rare disorder characterized by heterotopic ossification (HO) that progressively affects skin, subcutaneous tissues, and deep skeletal muscle. PHP 1a is inherited maternally due to a GNAS mutation, while pure POH is inherited paternally. This case study presented a Chinese boy with congenital hypothyroidism, tonic-clonic seizures, hypoparathyroidism, AHO, POH, and joint fixation deformity. Sequencing analysis of GNAS-Gsα revealed a heterozygous C.432+2T>C(P.?) variant (NM_000516.7) affecting the canonical splice donor site of intron 5 in the boy and his mother, indicating maternal inheritance of a GNAS mutation. The patient was diagnosed with POH overlap syndrome (POH/PHP 1a). Following calcium and calcitriol supplementation, he experienced a reduction in seizures, and surgery was performed to correct the joint fixation deformity caused by HO. This case report provided valuable insights into the genotype-phenotype correlations of POH overlap syndrome and underscored the significance of genetic testing in diagnosing rare diseases.

5.
J Pediatr Endocrinol Metab ; 37(8): 734-740, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39026465

RESUMEN

OBJECTIVES: Pseudohypoparathyroidism (PHP) comprises a cluster of heterogeneous diseases characterized by hypocalcemia and hyperphosphatemia due to parathyroid hormone (PTH) resistance. PHP type 1B (PHP1B) is caused by heterozygous maternal deletions within GNAS or STX16. STX16 exon 2-6 deletion is commonly observed in autosomal dominant (AD)-PHP1B, while sporadic PHP1B commonly results from methylation abnormalities of maternal differentially methylated regions and remains unclear at the molecular level. CASE PRESENTATION: A 39-year-old male patient with PHP1B, who had his first seizure at 15 years of age, presented to our hospital. The methylation-specific multiplex ligation-dependent probe amplification results showed a half-reduced copy number of STX16 exon 5-7 and loss of methylation at GNAS exon A/B. His mother also had a half-reduced copy number of STX16 exon 5-7 but with normal methylation of GNAS. His father has a normal copy number of STX16 and normal methylation of GNAS. CONCLUSIONS: For the recognition and early diagnosis of this kind of disease, here we report the clinical symptoms, auxiliary examinations, genetic testing characteristics, and treatment of the patient.


Asunto(s)
Exones , Seudohipoparatiroidismo , Sintaxina 16 , Humanos , Masculino , Seudohipoparatiroidismo/genética , Seudohipoparatiroidismo/complicaciones , Adulto , Sintaxina 16/genética , Exones/genética , Eliminación de Secuencia , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Pronóstico , Cromograninas/genética
6.
Mol Cell Endocrinol ; 592: 112318, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908427

RESUMEN

INTRODUCTION: AMPK (AMP-activated protein kinase) is an enzyme that acts as a metabolic sensor and regulates multiple pathways via phosphorylating proteins in metabolic and proliferative pathways. The aim of this work was to study the activated cellular AMPK (phosphorylated-AMPK at Thr172, pAMPK) levels in pituitary tumor samples from patients with sporadic and familial acromegaly, as well as in samples from normal human pituitary gland. METHODS: We studied pituitary adenoma tissue from patients with sporadic somatotroph adenomas, familial acromegaly with heterozygote germline variants in the aryl hydrocarbon receptor interacting protein (AIP) gene (p.Q164*, p.R304* and p.F269_H275dup) and autopsy from normal pituitary glands without structural alterations. RESULTS: Cellular levels of pAMPK were significantly higher in patients with sporadic acromegaly compared to normal pituitary glands (p < 0.0001). Tissues samples from patients with germline AIP mutations also showed higher cellular levels of pAMPK compared to normal pituitary glands. We did not observe a significant difference in cellular levels of pAMPK according to the cytokeratin (CAM5.2) pattern (sparsely or densely granulated) for tumor samples of sporadic acromegaly. CONCLUSION: Our data show, for the first time in human cells, an increase of cellular levels of pAMPK in sporadic somatotropinomas, regardless of cytokeratin pattern, as well as in GH-secreting adenomas from patients with germline AIP mutations.

7.
Exp Dermatol ; 33(6): e15111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840411

RESUMEN

Keloids are pathological scar tissue resulting from skin trauma or spontaneous formation, often accompanied by itching and pain. Although GNAS antisense RNA 1 (GNAS-AS1) shows abnormal upregulation in keloids, the underlying molecular mechanism is unclear. The levels of genes and proteins in clinical tissues from patients with keloids and human keloid fibroblasts (HKFs) were measured using quantitative reverse transcription PCR, western blot and enzyme-linked immunosorbent assay. The features of HKFs, including proliferation and migration, were evaluated using cell counting kit 8 and a wound healing assay. The colocalization of GNAS-AS1 and miR-196a-5p in HKFs was measured using fluorescence in situ hybridization. The relationships among GNAS-AS1, miR-196a-5p and C-X-C motif chemokine ligand 12 (CXCL12) in samples from patients with keloids were analysed by Pearson correlation analysis. Gene interactions were validated by chromatin immunoprecipitation and luciferase reporter assays. GNAS-AS1 and CXCL12 expression were upregulated and miR-196a-5p expression was downregulated in clinical tissues from patients with keloids. GNAS-AS1 knockdown inhibited proliferation, migration, and extracellular matrix (ECM) accumulation of HKFs, all of which were reversed by miR-196a-5p downregulation. Signal transducer and activator of transcription 3 (STAT3) induced GNAS-AS1 transcription through GNAS-AS1 promoter interaction, and niclosamide, a STAT3 inhibitor, decreased GNAS-AS1 expression. GNAS-AS1 positively regulated CXCL12 by sponging miR-196-5p. Furthermore, CXCL12 knockdown restrained STAT3 phosphorylation in HKFs. Our findings revealed a feedback loop of STAT3/GNAS-AS1/miR-196a-5p/CXCL12/STAT3 that promoted HKF proliferation, migration and ECM accumulation and affected keloid progression.


Asunto(s)
Proliferación Celular , Quimiocina CXCL12 , Fibroblastos , Queloide , MicroARNs , ARN Largo no Codificante , Factor de Transcripción STAT3 , Queloide/metabolismo , Queloide/genética , Queloide/patología , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/genética , Fibroblastos/metabolismo , Movimiento Celular , Retroalimentación Fisiológica , Cromograninas/genética , Cromograninas/metabolismo , Masculino , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Transducción de Señal , Adulto , Células Cultivadas , Regulación hacia Arriba
8.
Oncol Res ; 32(6): 1079-1091, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827318

RESUMEN

Approximately 30%-40% of growth hormone-secreting pituitary adenomas (GHPAs) harbor somatic activating mutations in GNAS (α subunit of stimulatory G protein). Mutations in GNAS are associated with clinical features of smaller and less invasive tumors. However, the role of GNAS mutations in the invasiveness of GHPAs is unclear. GNAS mutations were detected in GHPAs using a standard polymerase chain reaction (PCR) sequencing procedure. The expression of mutation-associated maternally expressed gene 3 (MEG3) was evaluated with RT-qPCR. MEG3 was manipulated in GH3 cells using a lentiviral expression system. Cell invasion ability was measured using a Transwell assay, and epithelial-mesenchymal transition (EMT)-associated proteins were quantified by immunofluorescence and western blotting. Finally, a tumor cell xenograft mouse model was used to verify the effect of MEG3 on tumor growth and invasiveness. The invasiveness of GHPAs was significantly decreased in mice with mutated GNAS compared with that in mice with wild-type GNAS. Consistently, the invasiveness of mutant GNAS-expressing GH3 cells decreased. MEG3 is uniquely expressed at high levels in GHPAs harboring mutated GNAS. Accordingly, MEG3 upregulation inhibited tumor cell invasion, and conversely, MEG3 downregulation increased tumor cell invasion. Mechanistically, GNAS mutations inhibit EMT in GHPAs. MEG3 in mutated GNAS cells prevented cell invasion through the inactivation of the Wnt/ß-catenin signaling pathway, which was further validated in vivo. Our data suggest that GNAS mutations may suppress cell invasion in GHPAs by regulating EMT through the activation of the MEG3/Wnt/ß-catenin signaling pathway.


Asunto(s)
Cromograninas , Transición Epitelial-Mesenquimal , Subunidades alfa de la Proteína de Unión al GTP Gs , Adenoma Hipofisario Secretor de Hormona del Crecimiento , Mutación , Invasividad Neoplásica , ARN Largo no Codificante , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Animales , Humanos , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/patología , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Ratones , Cromograninas/genética , Cromograninas/metabolismo , Transición Epitelial-Mesenquimal/genética , ARN Largo no Codificante/genética , Femenino , Masculino , Línea Celular Tumoral , Adenoma/genética , Adenoma/patología , Adenoma/metabolismo , Persona de Mediana Edad , Adulto , Proliferación Celular/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Vía de Señalización Wnt/genética , Regulación Neoplásica de la Expresión Génica
9.
Front Endocrinol (Lausanne) ; 15: 1296886, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828417

RESUMEN

Introduction: The dysregulation of cell fate toward osteoprecursor cells associated with most GNAS-based disorders may lead to episodic de novo extraskeletal or ectopic bone formation in subcutaneous tissues. The bony lesion distribution suggests the involvement of abnormal differentiation of mesenchymal stem cells (MSCs) and/or more committed precursor cells. Data from transgenic mice support the concept that GNAS is a crucial factor in regulating lineage switching between osteoblasts (OBs) and adipocyte fates. The mosaic nature of heterotopic bone lesions suggests that GNAS genetic defects provide a sensitized background for ectopic osteodifferentiation, but the underlying molecular mechanism remains largely unknown. Methods: The effect of GNAS silencing in the presence and/or absence of osteoblastic stimuli was evaluated in the human L88/5 MSC line during osteodifferentiation. A comparison of the data obtained with data coming from a bony lesion from a GNAS-mutated patient was also provided. Results: Our study adds some dowels to the current fragmented notions about the role of GNAS during osteoblastic differentiation, such as the premature transition of immature OBs into osteocytes and the characterization of the differences in the deposed bone matrix. Conclusion: We demonstrated that our cell model partially replicates the in vivo behavior results, resulting in an applicable human model to elucidate the pathophysiology of ectopic bone formation in GNAS-based disorders.


Asunto(s)
Diferenciación Celular , Cromograninas , Subunidades alfa de la Proteína de Unión al GTP Gs , Células Madre Mesenquimatosas , Osteoblastos , Osteogénesis , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Cromograninas/genética , Diferenciación Celular/genética , Osteogénesis/genética , Osteoblastos/metabolismo , Osteoblastos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Silenciador del Gen , Línea Celular
10.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727265

RESUMEN

Fibrous dysplasia (FD) is a rare bone disorder characterized by the replacement of normal bone with benign fibro-osseous tissue. Developments in our understanding of the pathophysiology and treatment options are impeded by the lack of suitable research models. In this study, we developed an in vitro organotypic model capable of recapitulating key intrinsic and phenotypic properties of FD. Initially, transcriptomic profiling of individual cells isolated from patient lesional tissues unveiled intralesional molecular and cellular heterogeneity. Leveraging these insights, we established patient-derived organoids (PDOs) using primary cells obtained from patient FD lesions. Evaluation of PDOs demonstrated preservation of fibrosis-associated constituent cell types and transcriptional signatures observed in FD lesions. Additionally, PDOs retained distinct constellations of genomic and metabolic alterations characteristic of FD. Histological evaluation further corroborated the fidelity of PDOs in recapitulating important phenotypic features of FD that underscore their pathophysiological relevance. Our findings represent meaningful progress in the field, as they open up the possibility for in vitro modeling of rare bone lesions in a three-dimensional context and may signify the first step towards creating a personalized platform for research and therapeutic studies.


Asunto(s)
Displasia Fibrosa Ósea , Organoides , Fenotipo , Humanos , Organoides/patología , Organoides/metabolismo , Displasia Fibrosa Ósea/patología , Displasia Fibrosa Ósea/genética , Displasia Fibrosa Ósea/metabolismo , Masculino , Femenino , Transcriptoma/genética , Adulto
11.
Int J Mol Sci ; 25(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38791144

RESUMEN

Cellular myxoma is a benign soft tissue tumor frequently associated with GNAS mutation that may morphologically resemble low-grade myxofibrosarcoma. This study aimed to identify the undescribed methylation profile of cellular myxoma and compare it to myxofibrosarcoma. We performed molecular analysis on twenty cellular myxomas and nine myxofibrosarcomas and analyzed the results using the methylation-based DKFZ sarcoma classifier. A total of 90% of the cellular myxomas had GNAS mutations (four loci had not been previously described). Copy number variations were found in all myxofibrosarcomas but in none of the cellular myxomas. In the classifier, none of the cellular myxomas reached the 0.9 threshold. Unsupervised t-SNE analysis demonstrated that cellular myxomas form their own clusters, distinct from myxofibrosarcomas. Our study shows the diagnostic potential and the limitations of molecular analysis in cases where morphology and immunohistochemistry are not sufficient to distinguish cellular myxoma from myxofibrosarcoma, particularly regarding GNAS wild-type tumors. The DKFZ sarcoma classifier only provided a valid prediction for one myxofibrosarcoma case; this limitation could be improved by training the tool with a more considerable number of cases. Additionally, the classifier should be introduced to a broader spectrum of mesenchymal neoplasms, including benign tumors like cellular myxoma, whose distinct methylation pattern we demonstrated.


Asunto(s)
Variaciones en el Número de Copia de ADN , Metilación de ADN , Fibrosarcoma , Mixoma , Humanos , Mixoma/genética , Mixoma/diagnóstico , Mixoma/patología , Fibrosarcoma/genética , Fibrosarcoma/patología , Fibrosarcoma/diagnóstico , Fibrosarcoma/metabolismo , Persona de Mediana Edad , Femenino , Anciano , Masculino , Adulto , Mutación , Diagnóstico Diferencial , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Cromograninas/genética , Anciano de 80 o más Años , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/diagnóstico , Neoplasias de los Tejidos Blandos/patología
12.
Diabetes Metab Syndr Obes ; 17: 2021-2026, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38765469

RESUMEN

Pseudohypoparathyroidism (PHP) is a rare genetic disease characterized by hypocalcemia, hyperphosphatemia, and elevated parathyroid hormone (PTH) in serum. Here, we report a case of a patient with pseudohypoparathyroidism type IB (PHPIB) and subclinical hypothyroidism, analyze the clinical and genetic data of his family members, review the relevant literature, and classify and discuss the pathogenesis and clinical characteristics of each subtype. Finally, we discuss the treatment approach to improve clinicians' understanding of the disease.

13.
Heliyon ; 10(9): e29977, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38756592

RESUMEN

Chronic hepatitis (CH) encompasses a prevalent array of liver conditions that significantly contribute to global morbidity and mortality. Yiguanjian (YGJ) is a classical traditional Chinese medicine with a long history of medicinal as a treatment for CH. Although it has been reported that YGJ can reduce liver inflammation, the intricate mechanism requires further elucidation. We used network pharmacology approaches in this work, such as gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and network-based analysis of protein-protein interactions (PPIs), to clarify the pharmacological constituents, potential therapeutic targets, and YGJ signaling pathways associated with CH. Employing the random walk restart (RWR) algorithm, we identified GNAS, GNB1, CYP2E1, SFTPC, F2, MAPK3, PLG, SRC, HDAC1, and STAT3 as pivotal targets within the PPI network of YGJ-CH. YGJ attenuated liver inflammation and inhibited GNAS/STAT3 signaling in vivo. In vitro, we overexpressed the GNAS gene further to verify the critical role of GNAS in YGJ treatment. Our findings highlight GNAS/STAT3 as a promising therapeutic target for CH, providing a basis and direction for future investigations.

14.
Cureus ; 16(3): e56771, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38650765

RESUMEN

Craniofacial fibro-osseous lesions (CFOLs) are a diverse group of relatively rare entities whose etiology ranges from reactive to dysplastic with a potential for malignant transformation. It is distinguished by the replacement of bone with fibrous tissue, that subsequently develops different degrees of calcification. Fibrous dysplasia (FD) is a component of the fibro-osseous lesion spectrum. The clinical spectrum of FD is wide, ranging from minor monostotic lesions affecting a single bone to devastating polyostotic disease involving the entire skeleton. FD produces asymmetry, which impairs face aesthetics. FD leads to bone differentiation, disintegration, and disorganization. It depicts a cellular collagenous stroma lacking mitotic figures and pleomorphism. Blood capillaries are evenly distributed, as are elongated trabeculae of woven or lamellar bone with uneven curves (often referred to as the Chinese letters pattern). Three types of FD patterns can be identified by computed tomography (CT) imaging: a cystic pattern, a homogeneously dense pattern, and a ground-glass pattern. The cornerstone of treatment is surgery, although the method varies depending on the location, size, and symptoms of the lesion. As an alternative to surgery, the use of bisphosphonates to reduce osteoclastic activity is under consideration. In this case series, we present three cases of FD involving the maxilla and mandible. We aim to correlate the clinical presentation, histological features, and radiographic findings, to promote early diagnosis, treatment, and better prognosis of the patient.

15.
Anal Chim Acta ; 1305: 342542, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38677836

RESUMEN

Target discovery of natural products is a key step in the development of new drugs, and it is also a difficult speed-limiting step. In this study, a traditional Chinese medicine microspheres (TCM-MPs) target fishing strategy was developed to discover the key drug targets from complex system. The microspheres are composed of Fe3O4 magnetic nanolayer, oleic acid modified layer, the photoaffinity group (4- [3-(Trifluoromethyl)-3H-diazirin-3-yl] benzoic acid, TAD) layer and active small molecule layer from inside to outside. TAD produces highly reactive carbene under ultraviolet light, which can realize the self-assembly and fixation of drug active small molecules with non-selective properties. Here, taking Shenqi Jiangtang Granules (SJG) as an example, the constructed TCM-MPs was used to fish the related proteins of human glomerular mesangial cells (HMCs) lysate. 28 differential proteins were screened. According to the target analysis based on bioinformatics, GNAS was selected as the key target, which participated in insulin secretion and cAMP signaling pathway. To further verify the interaction effect of GNAS and small molecules, a reverse fishing technique was established based on bio-layer interferometry (BLI) coupled with UHPLC-Q/TOF-MS/MS. The results displayed that 26 small molecules may potentially interact with GNAS, and 7 of them were found to have strong binding activity. In vitro experiments for HMCs have shown that 7 active compounds can significantly activate the cAMP pathway by binding to GNAS. The developed TCM-MPs target fishing strategy combined with BLI reverse fishing technology to screen out key proteins that directly interact with active ingredients from complex target protein systems is significant for the discovery of drug targets for complex systems of TCM.


Asunto(s)
Medicina Tradicional China , Microesferas , Humanos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Descubrimiento de Drogas , Interferometría/métodos
16.
BMC Pediatr ; 24(1): 271, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664677

RESUMEN

BACKGROUND: Pseudohypoparathyroidism (PHP) is caused by loss-of-function mutations at the GNAS gene (as in the PHP type 1A; PHP1A), de novo or inherited at heterozygous state, or by epigenetic alterations at the GNAS locus (as in the PHP1B). The condition of PHP refers to a heterogeneous group of disorders that share common clinical and biological features of PTH resistance. Manifestations related to resistance to other hormones are also reported in many patients with PHP, in association with the phenotypic picture of Albright hereditary osteodystrophy characterized by short stature, round facies, subcutaneous ossifications, brachydactyly, mental retardation and, in some subtypes, obesity. The purpose of our study is to report a new mutation in the GNAS gene and to describe the significant phenotypic variability of three sisters with PHP1A bearing the same mutation. CASE PRESENTATION: We describe the cases of three sisters with PHP1A bearing the same mutation but characterized by a significantly different phenotypic picture at onset and during follow-up in terms of clinical features, auxological pattern and biochemical changes. Clinical exome sequencing revealed a never before described heterozygote mutation in the GNAS gene (NM_000516.5 c.118_139 + 51del) of autosomal dominant maternal transmission in the three siblings, confirming the diagnosis of PHP1A. CONCLUSIONS: This study reported on a novel mutation of GNAS gene and highlighted the clinical heterogeneity of PHP1A characterized by wide genotype-phenotype variability. The appropriate diagnosis has crucial implications for patient care and long-term multidisciplinary follow-up.


Asunto(s)
Cromograninas , Subunidades alfa de la Proteína de Unión al GTP Gs , Seudohipoparatiroidismo , Humanos , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Seudohipoparatiroidismo/genética , Seudohipoparatiroidismo/diagnóstico , Cromograninas/genética , Femenino , Niño , Fenotipo , Linaje , Mutación , Adolescente , Preescolar
17.
Noncoding RNA ; 10(2)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38668383

RESUMEN

A growing number of studies have suggested the involvement of long non-coding RNAs as the key players in not just the initiation and progression of the tumor microenvironment, but also in chemotherapy tolerance. In the present study, generated 5-FU-resistant SW480/DR cells were analyzed via cDNA microarray for its aberrant lncRNAs and mRNAs expression in comparison with the 5-FU-susceptible SW480/DS cells. Among the 126 lncRNAs described, lncRNAs GNAS-AS1, MIR205HG, and LOC102723721 have been identified to be significantly upregulated, while lncRNs lnc-RP11-597K23.2.1-2, LOC100507639, and CCDC144NL-AS1 have been found to be significantly downregulated. In the meantime, bioinformatic analysis through gene ontology studies of aberrantly expressed mRNAs revealed "regulated exocytosis", among others, as the biological process most impacted in SW480/DR cells. To investigate, exosome purification was then carried out and its characterization were validated via transmission electron microscopy and nanoparticle tracking analysis. Interestingly, it was determined that the 5-FU-resistant SW480/DR cells secretes significantly higher concentration of extracellular vesicles, particularly, exosomes when compared to the 5-FU-susceptible SW480/DS cells. Based on the lncRNA-mRNA interaction network analysis generated, lncRNA GNAS-AS1 and MIR205HG have been identified to be potentially involved in the incidence of 5-FU resistance in SW480 colon cancer cells through promoting increased release of exosomes into the intercellular matrix. Our study hopes not only to provide insights on the list of involved candidate lncRNAs, but also to elucidate the role exosomes play in the initiation and development of 5-FU chemotherapy resistance in colon cancer cells.

18.
EBioMedicine ; 103: 105087, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570222

RESUMEN

BACKGROUND: The human adrenal cortex consists of three functionally and structurally distinct layers; zona glomerulosa, zona fasciculata (zF), and zona reticularis (zR), and produces adrenal steroid hormones in a layer-specific manner; aldosterone, cortisol, and adrenal androgens, respectively. Cortisol-producing adenomas (CPAs) occur mostly as a result of somatic mutations associated with the protein kinase A pathway. However, how CPAs develop after adrenocortical cells acquire genetic mutations, remains poorly understood. METHODS: We conducted integrated approaches combining the detailed histopathologic studies with genetic, RNA-sequencing, and spatially resolved transcriptome (SRT) analyses for the adrenal cortices adjacent to human adrenocortical tumours. FINDINGS: Histopathological analysis revealed an adrenocortical nodular structure that exhibits the two-layered zF- and zR-like structure. The nodular structures harbour GNAS somatic mutations, known as a driver mutation of CPAs, and confer cell proliferative and autonomous steroidogenic capacities, which we termed steroids-producing nodules (SPNs). RNA-sequencing coupled with SRT analysis suggests that the expansion of the zF-like structure contributes to the formation of CPAs, whereas the zR-like structure is characterised by a macrophage-mediated immune response. INTERPRETATION: We postulate that CPAs arise from a precursor lesion, SPNs, where two distinct cell populations might contribute differently to adrenocortical tumorigenesis. Our data also provide clues to the molecular mechanisms underlying the layered structures of human adrenocortical tissues. FUNDING: KAKENHI, The Uehara Memorial Foundation, Daiwa Securities Health Foundation, Kaibara Morikazu Medical Science Promotion Foundation, Secom Science and Technology Foundation, ONO Medical Research Foundation, and Japan Foundation for Applied Enzymology.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Hidrocortisona , Humanos , Hidrocortisona/metabolismo , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/metabolismo , Neoplasias de la Corteza Suprarrenal/patología , Mutación , Adenoma Corticosuprarrenal/genética , Adenoma Corticosuprarrenal/metabolismo , Adenoma Corticosuprarrenal/patología , Corteza Suprarrenal/metabolismo , Corteza Suprarrenal/patología , Perfilación de la Expresión Génica , Transcriptoma , Esteroides/biosíntesis , Esteroides/metabolismo , Adenoma/patología , Adenoma/metabolismo , Adenoma/genética , Masculino , Femenino , Persona de Mediana Edad
19.
JBMR Plus ; 8(5): ziae011, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38577521

RESUMEN

G protein-coupled receptors (GPCRs) mediate a wide spectrum of physiological functions, including the development, remodeling, and repair of the skeleton. Fibrous dysplasia (FD) of the bone is characterized by fibrotic, expansile bone lesions caused by activating mutations in GNAS. There are no effective therapies for FD. We previously showed that ColI(2.3)+/Rs1+ mice, in which Gs-GPCR signaling was hyper-activated in osteoblastic cell lineages using an engineered receptor strategy, developed a fibrotic bone phenotype with trabecularization that could be reversed by normalizing Gs-GPCR signaling, suggesting that targeting the Gs-GPCR or components of the downstream signaling pathway could serve as a promising therapeutic strategy for FD. The Wnt signaling pathway has been implicated in the pathogenesis of FD-like bone, but the specific Wnts and which cells produce them remain largely unknown. Single-cell RNA sequencing on long-bone stromal cells of 9-wk-old male ColI(2.3)+/Rs1+ mice and littermate controls showed that fibroblastic stromal cells in ColI(2.3)+/Rs1+ mice were expanded. Multiple Wnt ligands were up- or downregulated in different cellular populations, including in non-osteoblastic cells. Treatment with the porcupine inhibitor LGK974, which blocks Wnt signaling broadly, induced partial resorption of the trabecular bone in the femurs of ColI(2.3)+/Rs1+ mice, but no significant changes in the craniofacial skeleton. Bone fibrosis remained evident after treatment. Notably, LGK974 caused significant bone loss in control mice. These results provide new insights into the role of Wnt and Gs-signaling in fibrosis and bone formation in a mouse model of Gs-GPCR pathway overactivation.

20.
Best Pract Res Clin Endocrinol Metab ; 38(3): 101895, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641464

RESUMEN

GH-secreting tumors represent 15 % to 20 % of all pituitary neuroendocrine tumors (pitNETs), of which 95 % occur in a sporadic context, without an identifiable inherited cause. Recent multi-omic approaches have characterized the epigenomic, genomic, transcriptomic, proteomic and kynomic landscape of pituitary tumors. Transcriptomic analysis has allowed us to discover specific transcription factors driving the differentiation of pituitary tumors and gene expression patterns. GH-secreting, along with PRL- and TSH-secreting pitNETs are driven by POU1F1; ACTH-secreting tumors are determined by TBX19; and non-functioning tumors, which are predominantly of gonadotrope differentiation are conditioned by NR5A1. Upregulation of certain miRNAs, such as miR-107, is associated with tumor progression, while downregulation of others, like miR-15a and miR-16-1, correlates with tumor size reduction. Additionally, miRNA expression profiles are linked to treatment resistance and clinical outcomes, providing insights into potential therapeutic targets. Specific somatic mutations in GNAS, PTTG1, GIPR, HGMA2, MAST and somatic variants associated with cAMP, calcium signaling, and ATP pathways have also been associated with the development of acromegaly. This review focuses on the oncogenic mechanisms by which sporadic acromegaly can develop, covering a complex series of molecular alterations that ultimately alter the balance between proliferation and apoptosis, and dysregulated hormonal secretion.


Asunto(s)
Acromegalia , Neoplasias Hipofisarias , Humanos , Acromegalia/genética , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Neoplasias Hipofisarias/patología , Tumores Neuroendocrinos/genética , Tumores Neuroendocrinos/patología , MicroARNs/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA