Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 385: 129415, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37390929

RESUMEN

In this work, a green and robust pretreatment which integrated acetic acid-catalyzed hydrothermal and wet mechanical pretreatment, was developed to efficiently produce high yield (up to 40.12%) of xylooligosaccharides and digestible substrates from Caffeoyl Shikimate Esterase down-regulated and control poplar wood. Subsequently, superhigh yield (more than 95%) of glucose and residual lignin were obtained after a moderate enzymatic hydrolysis. The residual lignin fraction exhibited a well-preserved ß-O-4 linkages (42.06/100Ar) and high S/G ratio (6.42). Subsequently, lignin-derived porous carbon was successfully synthesized, and it exhibited a high specific capacitance of 273.8 F g-1 at 1.0 A g-1 and long cycling stability (remained 98.5% after 10,000 cycles at 5.0 A g-1) compared to control poplar wood, demonstrating that special advantage of this genetically-modified poplar in this integrated process. This work developed an energy-saving and eco-friendly pretreatment technology as a waste-free route for converting different lignocellulosic biomass to multiple products.


Asunto(s)
Esterasas , Lignina , Hidrólisis , Madera
2.
Comput Struct Biotechnol J ; 17: 599-610, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31080566

RESUMEN

Genetic engineering is a powerful tool to steer bio-oil composition towards the production of speciality chemicals such as guaiacols, syringols, phenols, and vanillin through well-defined biomass feedstocks. Our previous work demonstrated the effects of lignin biosynthesis gene modification on the pyrolysis vapour compositions obtained from wood derived from greenhouse-grown poplars. In this study, field-grown poplars downregulated in the genes encoding CINNAMYL ALCOHOL DEHYDROGENASE (CAD), CAFFEIC ACID O-METHYLTRANSFERASE (COMT) and CAFFEOYL-CoA O-METHYLTRANSFERASE (CCoAOMT), and their corresponding wild type were pyrolysed in a Py-GC/MS. This work aims at capturing the effects of downregulation of the three enzymes on bio-oil composition using principal component analysis (PCA). 3,5-methoxytoluene, vanillin, coniferyl alcohol, 4-vinyl guaiacol, syringol, syringaldehyde, and guaiacol are the determining factors in the PCA analysis that are the substantially affected by COMT, CAD and CCoAOMT enzyme downregulation. COMT and CAD downregulated transgenic lines proved to be statistically different from the wild type because of a substantial difference in S and G lignin units. The sCAD line lead to a significant drop (nearly 51%) in S-lignin derived compounds, while CCoAOMT downregulation affected the least (7-11%). Further, removal of extractives via pretreatment enhanced the statistical differences among the CAD transgenic lines and its wild type. On the other hand, COMT downregulation caused 2-fold reduction in S-derived compounds compared to G-derived compounds. This study manifests the applicability of PCA analysis in tracking the biological changes in biomass (poplar in this case) and their effects on pyrolysis-oil compositions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA