Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
1.
Neurocrit Care ; 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358503

RESUMEN

In the management of traumatic brain injury (TBI), intracranial pressure monitoring (ICPm) is crucial for the timely management of severe cases that show rapid neurological deterioration. External ventricular drains (EVDs) and intraparenchymal pressure monitors (IPMs) are the primary methods used in this setting; however, the debate over their comparative efficacy persists, primarily because of reliance on observational study data. This underscores the need for a meta-analysis to guide clinical decision-making. This study-level meta-analysis aims to assess and compare the efficacy and safety of EVDs versus IPMs in the management of TBI. A database search was conducted until February 13, 2024, to identify studies reporting clinical outcomes of patients with TBI who underwent ICPm with either EVD or IPM. Primary outcomes included mortality, ICPm duration, length of stay, and complications. From an initial pool of 537 articles, eight studies (six retrospective cohort studies and two prospective cohort studies), encompassing 7080 patients, met our inclusion criteria. Mortality rates showed no significant difference between groups (risk ratio 1.11 [95% confidence interval (CI) 0.86 to 1.42], p = 0.42). Patients monitored with IPM had shorter intensive care unit length of stay (mean difference 0.90 [95% CI 0.21 to 1.59], p = 0.01) and ICPm duration (mean difference 0.79 [95% CI 0.33 to 1.24], p = 0.0007), with a higher risk of requiring surgical decompression. Monitoring-related complications were similar across the two groups. Our findings suggest that EVD and IPM provide similar outcomes in terms of mortality. However, IPM may offer significant advantages in reducing the duration of ICPm and intensive care unit length of stay. EVD may be preferable for certain mid-term to long-term monitoring. The predominance of observational studies in the current literature highlights the need for further clinical trials to compare these interventions.

2.
World J Crit Care Med ; 13(3): 97205, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39253313

RESUMEN

BACKGROUND: Neuromonitoring in medical intensive care units is challenging as most patients are unfit for invasive intracranial pressure (ICP) modalities or unstable to transport for imaging. Ultrasonography-based optic nerve sheath diameter (ONSD) is an attractive option as it is reliable, repeatable and easily performed at the bedside. It has been sufficiently validated in traumatic brain injury (TBI) to be incorporated into the guidelines. However, currently the data for non-TBI patients is inconsistent for a scientific recommendation to be made. AIM: To compile the existing evidence for understanding the scope of ONSD in measuring ICP in adult non-traumatic neuro-critical patients. METHODS: PubMed, Google Scholar and research citation analysis databases were searched for studies in adult patients with non-traumatic causes of raised ICP. Studies from 2010 to 2024 in English languages were included. RESULTS: We found 37 articles relevant to our search. The cutoff for ONSD in predicting ICP varied from 4.1 to 6.3 mm. Most of the articles used cerebrospinal fluid opening pressure followed by raised ICP on computed tomography/magnetic resonance imaging as the comparator parameter. ONSD was also found to be a reliable outcome measure in cases of acute ischaemic stroke, intracerebral bleeding and intracranial infection. However, ONSD is of doubtful utility in septic metabolic encephalopathy, dysnatremias and aneurysmal subarachnoid haemorrhage. CONCLUSION: ONSD is a useful tool for the diagnosis of raised ICP in non-traumatic neuro-critically ill patients and may also have a role in the prognostication of a subset of patients.

3.
Biomed Eng Online ; 23(1): 87, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210335

RESUMEN

This review presents an in-depth examination of implantable antennas for various biomedical purposes. The development of implantable antennas, including their designs, materials, and operating principles, are introduced at the beginning of the discussion. An overview of the many kinds of implantable antennas utilized in implantable medical devices (IMDs) are presented in this study. The article then discusses the important factors to consider when developing implantable antennas for biomedical purposes, including implant placement, frequency range, and power needs. This investigation additionally examines the challenges and limitations encountered with implantable antennas, including the limited space available within the human body, the requirement for biocompatible materials, the impact of surrounding tissue on antenna performance, tissue attenuation, and signal interference. This review also emphasizes the most recent advances in implanted antenna technology, such as wireless power transmission, multiband operation, and miniaturization. Furthermore, it offers illustrations of several biomedical uses for implantable antennas, including pacemaker, capsule endoscopy, intracranial pressure monitoring, retinal prostheses, and bone implants. This paper concludes with a discussion of the future of implantable antennas and their possible use in bioelectronic medicine and novel medical implants. Overall, this survey offers a thorough analysis of implantable antennas in biomedical applications, emphasizing their importance in the development of implantable medical technology.


Asunto(s)
Prótesis e Implantes , Humanos , Materiales Biocompatibles , Diseño de Equipo/tendencias , Prótesis e Implantes/tendencias , Tecnología Inalámbrica/instrumentación , Tecnología Inalámbrica/tendencias
4.
Brain Spine ; 4: 102860, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149423

RESUMEN

Introduction: Intracranial pressure (ICP) monitoring is a very commonly performed neurosurgical procedure but there is a wide variation in how it is reported, hindering analysis of it. The current study sought to generate consensus on the reporting of ICP monitoring recording data. Research question: "What should be included in an ICP monitoring report?" Material and methods: The exercise was completed via a modified eDelphi survey. An expert panel discussion was held from which themes were identified and used to produce a code to annotate the transcript of the discussion. Statements were generated for a further two rounds of electronic questionnaires distributed via the REDcap platform. A Likert scale was used to grade agreement with each statement in the survey. A statement was accepted if more than 70% agreement was achieved between respondents. Data was collated using Microsoft Excel and analysed using R. Results: 149 relevant statements were identified from the transcript and categorised into recording parameters, waveform characteristics or reporting. A total of 22 statements were generated for the first round of the survey which was answered by 39 respondents. Following the electronic round of surveys consensus was achieved for all but one statement regarding the acceptability of automating ICP reporting. This was put forward to a second round after which 79% agreement was reached. Discussion and conclusion: The themes and statements from this eDelphi can be used as a framework to allow the standardisation of the reporting of intracranial pressure monitoring data.

5.
J Neurosurg Pediatr ; : 1-9, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178478

RESUMEN

OBJECTIVE: Hydrocephalus is a challenging neurosurgical condition due to nonspecific symptoms and complex brain-fluid pressure dynamics. Typically, the assessment of hydrocephalus in children requires radiographic or invasive pressure monitoring. There is usually a qualitative focus on the ventricular spaces even though stress and shear forces extend across the brain. Here, the authors present an MRI-based vector approach for voxelwise brain and ventricular deformation visualization and analysis. METHODS: Twenty pediatric patients (mean age 7.7 years, range 6 months-18 years; 14 males) with acute, newly diagnosed hydrocephalus requiring surgical intervention for symptomatic relief were randomly identified after retrospective chart review. Selection criteria included acquisition of both pre- and posttherapy paired 3D T1-weighted volumetric MRI (3D T1-MRI) performed on 3T MRI systems. Both pre- and posttherapy 3D T1-MRI pairs were aligned using image registration, and subsequently, voxelwise nonlinear transformations were performed to derive two exemplary visualizations of compliance: 1) a whole-brain vector map projecting the resulting deformation field on baseline axial imaging; and 2) a 3D heat map projecting the volumetric changes along ventricular boundaries and the brain periphery. RESULTS: The patients underwent the following interventions for treatment of hydrocephalus: endoscopic third ventriculostomy (n = 6); external ventricular drain placement and/or tumor resection (n = 10); or ventriculoperitoneal shunt placement (n = 4). The mean time between pre- and postoperative imaging was 36.5 days. Following intervention, the ventricular volumes decreased significantly (mean pre- and posttherapy volumes of 151.9 cm3 and 82.0 cm3, respectively; p < 0.001, paired t-test). The largest degree of deformation vector changes occurred along the lateral ventricular spaces, relative to the genu and splenium. There was a significant correlation between change in deformation vector magnitudes within the cortical layer and age (p = 0.011, Pearson), as well as between the ventricle size and age (p = 0.014, Pearson), suggesting higher compliance among infants and younger children. CONCLUSIONS: This study highlights an approach for deformation analysis and vector mapping that may serve as a topographic visualizer for therapeutic interventions in patients with hydrocephalus. A future study that correlates the degree of cerebroventricular deformation or compliance with intracranial pressures could clarify the potential role of this technique in noninvasive pressure monitoring or in cases of noncompliant ventricles.

6.
Brain Spine ; 4: 102859, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105102

RESUMEN

Introduction: Intracranial pressure (ICP) monitoring is commonly used in investigating the aetiology of chronic paediatric neurological conditions. A series of high-amplitude spikes has been observed in overnight ICP recordings of some children, many of whom have hydrocephalus or craniosynostosis. Research question: This clinical evaluation aimed to define the spike pattern, describe the patient group in which it is most likely to occur, and conduct high-resolution waveform analysis. Material and methods: ICP waveforms from 40 patients aged 0-5 years (inclusive), recorded between 2017 and 2021 at the Royal Hospital for Children Glasgow, were retrospectively analysed. The pattern was defined through visual inspection of regions of interest by two reviewers. Patients were stratified using demographic and clinical data. R software was used to perform regression and high-resolution waveform analyses. Results: The spike pattern was defined as the presence of 2 consecutive spikes with an amplitude of at least 8 mmHg, with a gap of at least 30 min between spikes. In the adjusted Poisson regression, age was significantly associated with the number of spikes (IRR 0.8, 95% CI 0.70 to 0.92, p-value 0.001). Discussion and conclusion: Younger age was significantly associated with an increased number of spikes in this cohort. Investigation of clinical consequences of the spikes is warranted.

7.
Asian J Neurosurg ; 19(3): 402-407, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39205879

RESUMEN

Introduction Knowledge of preoperative and intraoperative intracranial pressure (ICP) enables the neuroanesthesiologist to optimize cerebral perfusion pressure. However, ICP is rarely monitored during the intraoperative period. In this report, subdural site ICP measurement is validated with intraventricular ICP measurement, and the feasibility of subdural ICP monitoring during the intraoperative period is discussed. Materials and Methods In this prospective pilot study, ICP measurement at the subdural site was achieved with an intravenous cannula and the ventricular site with a ventricular cannula. Both were transduced using a fluid-filled pressure transducer and connected to the monitor for display of the number and the waveforms. Monitoring of intraoperative ICP using both the techniques was done in all patients recruited into the study. The correlation between the two modalities of measurement was studied by the Spearman correlation test and their limits of agreement were studied using the Bland-Altman plot. A case series describing the perioperative management based on the subdural ICP values are also described. Results Subdural ICP showed a strong correlation with intraventricular ICP ( r s = 0.93, p = 0.01). Agreement analysis using the Bland-Altman plot showed that the mean difference of ICP between the modalities was 1.44 mm Hg (95% confidence interval, -0.6 to 3.49, p = 0.122). Discussion This study validates the ICP values measured at the subdural site with the intraventricular site. Subdural site ICP monitoring can be achieved rapidly with readily available systems and helps in making intraoperative clinical decisions. Conclusion Cannula-based subdural ICP is a satisfactory alternative to intraventricular ICP monitoring in the intraoperative period.

8.
World Neurosurg ; 189: 447-455.e4, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38972383

RESUMEN

OBJECTIVE: To describe the potential effects of Intracranial pressure monitoring on the outcome of patients with spontaneous intracerebral hemorrhage (ICH). METHODS: This study is a systematic review with meta-analysis. Patients with spontaneous ICH treated with intracranial pressure monitoring were included. The primary outcome was mortality at 6 months and in-hospital mortality. The secondary outcome was poor neurological function outcome at 6 months. RESULTS: This analysis compares in-hospital and 6-month mortality rates between patients with intracranial pressure monitoring (ICPm) and those without (no ICPm). Although the ICPm group had a lower in-hospital mortality rate, it was not statistically significant (24.9% vs. 34.1%; OR 0.51, 95% CI 0.20 to 1.31, P = 0.16). Excluding patients with intraventricular hemorrhage revealed a significant reduction in in-hospital mortality for the ICPm group (23.5% vs. 43%; OR 0.39, 95% CI 0.29 to 0.53, P < 0.00001). For 6-month mortality, the ICPm group showed a significant reduction (32% vs. 39.6%; OR 0.76, 95% CI 0.61 to 0.94, P = 0.01), with the effect being more pronounced after excluding intraventricular hemorrhage patients (29.1% vs. 47.2%; OR 0.45, 95% CI 0.34 to 0.60, P < 0.0001). However, there were no statistically significant differences in 6-month functional outcomes between the groups. Increased ICP was associated with higher 3-month mortality (OR 1.12, 95% CI 1.07 to 1.18, P < 0.00001) and lower likelihood of good functional outcomes (OR 1.11, 95% CI 1.04 to 1.18, P < 0.00001). CONCLUSIONS: Elevated ICP is associated with increased mortality and poor prognosis in ICH patients. Although continuous intracranial pressure monitoring may reduce short-term mortality rates in specific subgroups of ICH patients, it does not improve neurological functional outcomes. While potential patient populations may benefit from ICP monitoring, more research is needed to screen suitable populations for ICP monitoring.


Asunto(s)
Hemorragia Cerebral , Mortalidad Hospitalaria , Presión Intracraneal , Humanos , Presión Intracraneal/fisiología , Hemorragia Cerebral/mortalidad , Hemorragia Cerebral/fisiopatología , Hemorragia Cerebral/diagnóstico , Monitoreo Fisiológico/métodos , Hipertensión Intracraneal/mortalidad , Hipertensión Intracraneal/fisiopatología , Hipertensión Intracraneal/diagnóstico
9.
Surg Neurol Int ; 15: 208, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974553

RESUMEN

Background: Intracranial pressure (ICP) monitoring is essential in severe traumatic brain injury (sTBI) cases; yet, the frequency of high ICP occurrences remains debated. This study presents a 9-year analysis of ICP monitoring using intraventricular catheters among sTBI patients. Methods: A retrospective review of 1760 sTBI patients (Glasgow Coma Score <9) admitted between January 2011 and December 2019 was conducted. Of these, 280 patients meeting monitoring criteria were included based on Brain Trauma Foundation (BTF) Guidelines. ICP was monitored using intraventricular catheters through right frontal burr holes. Initial ICP readings were recorded intraoperatively, followed by continuous monitoring. Patients with ICP >20 mmHg for 10-15 min during 72 h were categorized with high ICP. Data collected included demographics, computed tomography (CT) findings, intra- and post-operative ICP, and complications. Results: Of 273 patients, 228 were male and 45 females, aged 18-80 (71.30% aged 18-45). Traffic accidents were the primary cause (90.48%). Fifty-two-point seventy-five percent experienced high ICP, correlating significantly with subdural hematoma (P < 0.001), intraventricular hemorrhage (P < 0.013), and compressed basal cisterns (P = 0.046) on initial CT. Twenty patients (7.3%) developed meningitis. Lower mortality rates and improved outcomes were observed in the low ICP group across discharge 3-and 6-month follow-ups. Conclusion: Adherence to BTF guidelines yielded a 52.75% high ICP rate. Significant correlations were found between high ICP and specific CT abnormalities. This study underscores the benefits of ICP monitoring in selected sTBI cases, suggesting a need to review criteria for initiating monitoring protocols.

10.
World Neurosurg ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39069132

RESUMEN

INTRODUCTION: Extracranial complications occur commonly in patients with traumatic brain injury (TBI) and can have implications for patient outcome. Patient-specific risk factors for developing these complications are not well studied, particularly in low and middle-income countries (LMIC). The study objective was to determine patient-specific risk factors for development of extracranial complications in TBI. METHODS: We assessed the relationship between patient demographic and injury factors and incidence of extracranial complications using data collected September 2008-October 2011 from the BEST TRIP trial, a randomized controlled trial assessing TBI management protocolized on intracranial pressure (ICP) monitoring versus imaging and clinical exam, and a companion observational patient cohort. RESULTS: Extracranial infections (55%), respiratory complications (19%), hyponatremia (27%), hypernatremia (27%), hospital acquired pressure ulcers (6%), coagulopathy (9%), cardiac arrest (10%), and shock (5%) occurred at a rate of ≥5% in our study population; overall combined rate of these complications was 82.3%. Tracheostomy in the intensive care unit (P < 0.001), tracheostomy timing (P = 0.025), mannitol and hypertonic saline doses (P < 0.001), brain-specific therapy days and brain-specific therapy intensity (P < 0.001), extracranial surgery (P < 0.001), and neuroworsening with pupil asymmetry (P = 0.038) were all significantly related to the development of one of these complications by univariable analysis. Multivariable analysis revealed ICP monitor use and brain-specific therapy intensity to be the most common factors associated with individual complications. CONCLUSIONS: Extracranial complications are common following TBI. ICP monitoring and treatment are related to extra-cranial complications. This supports the need for reassessing the risk-benefit balance of our current management approaches in the interest of improving outcome.

11.
Clin Neurol Neurosurg ; 244: 108356, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025020

RESUMEN

INTRODUCTION: Early mobilization benefits critically ill patients, but concerns persist, especially in neurologic intensive care unit patients with acute brain injuries. This study assesses early mobility's impact on cerebrovascular autoregulation (CA) and systemic hemodynamics. METHODS: This single-center retrospective study focused on adult neurologic intensive care unit patients undergoing passive cycle ergometry. Data were collected from December 2020 to April 2022. Physical therapists conducted sessions using a standardized protocol, monitoring mean arterial blood pressure (MAP) and intracranial pressure (ICP). The Pressure Reactivity Index (PRx) was calculated as a measure of CA. Statistical analysis included mixed models and repeated measures ANOVA. RESULTS: Eleven patients undergoing continuous physiologic monitoring and early mobility were included, primarily with subarachnoid hemorrhage or intracranial hemorrhage. Median time to protocol initiation was 4 days, with two patients discontinuing due to hemodynamic disturbances. Over a total of 11-hours of neuromonitoring data, passive cycling demonstrated a significant reduction in heart rate (HR), MAP, and ICP across different rotations per minute (RPM) settings compared to baseline. No significant alterations in PRx or cerebral perfusion pressure (CPP) were noted at various RPM levels. However, a significant difference in PRx emerged between patients who completed the protocol and those who did not, particularly at 10 RPM. DISCUSSION: This study offers preliminary insights into the impact of early mobility on CA in acute brain injured patients. While passive cycling demonstrates promise in preserving cerebral hemodynamics, its tolerability may not be uniform across all brain-injured patients. These findings highlight the need to determine optimal early mobilization timing and intensity in this population, emphasizing the necessity for larger prospective studies to validate these findings and inform clinical practice. DETAILS: This manuscript complies with all instructions to the authors. All coauthors meet the authorship requirements and have reviewed and approved the contents of the manuscript. The manuscript has not been published totally or partly, accepted for publication, or under editorial review for publication elsewhere. We have no conflicts of interest to disclose. STROBE checklist was reviewed prior to the submission of this paper. The manuscript adheres to ethical guidelines and was approved by Cleveland Clinic's institutional research board for retrospective study. There is no funding to disclose for this study.


Asunto(s)
Lesiones Encefálicas , Circulación Cerebrovascular , Humanos , Proyectos Piloto , Masculino , Femenino , Persona de Mediana Edad , Circulación Cerebrovascular/fisiología , Estudios Retrospectivos , Adulto , Lesiones Encefálicas/fisiopatología , Lesiones Encefálicas/terapia , Anciano , Presión Intracraneal/fisiología , Ambulación Precoz/métodos , Homeostasis/fisiología , Hemodinámica/fisiología , Monitoreo Fisiológico/métodos
12.
Acta Neurochir (Wien) ; 166(1): 240, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38814348

RESUMEN

BACKGROUND: Intracranial pressure (ICP) monitoring plays a key role in patients with traumatic brain injury (TBI), however, cerebral hypoxia can occur without intracranial hypertension. Aiming to improve neuroprotection in these patients, a possible alternative is the association of Brain Tissue Oxygen Pressure (PbtO2) monitoring, used to detect PbtO2 tension. METHOD: We systematically searched PubMed, Embase and Cochrane Central for RCTs comparing combined PbtO2 + ICP monitoring with ICP monitoring alone in patients with severe or moderate TBI. The outcomes analyzed were mortality at 6 months, favorable outcome (GOS ≥ 4 or GOSE ≥ 5) at 6 months, pulmonary events, cardiovascular events and sepsis rate. RESULTS: We included 4 RCTs in the analysis, totaling 505 patients. Combined PbtO2 + ICP monitoring was used in 241 (47.72%) patients. There was no significant difference between the groups in relation to favorable outcome at 6 months (RR 1.17; 95% CI 0.95-1.43; p = 0.134; I2 = 0%), mortality at 6 months (RR 0.82; 95% CI 0.57-1.18; p = 0.281; I2 = 34%), cardiovascular events (RR 1.75; 95% CI 0.86-3.52; p = 0.120; I2 = 0%) or sepsis (RR 0.75; 95% CI 0.25-2.22; p = 0.604; I2 = 0%). The risk of pulmonary events was significantly higher in the group with combined PbtO2 + ICP monitoring (RR 1.44; 95% CI 1.11-1.87; p = 0.006; I2 = 0%). CONCLUSIONS: Our findings suggest that combined PbtO2 + ICP monitoring does not change outcomes such as mortality, functional recovery, cardiovascular events or sepsis. Furthermore, we found a higher risk of pulmonary events in patients undergoing combined monitoring.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Presión Intracraneal , Ensayos Clínicos Controlados Aleatorios como Asunto , Humanos , Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/mortalidad , Lesiones Traumáticas del Encéfalo/terapia , Lesiones Traumáticas del Encéfalo/fisiopatología , Hipertensión Intracraneal/etiología , Hipertensión Intracraneal/diagnóstico , Presión Intracraneal/fisiología , Monitoreo Fisiológico/métodos , Monitorización Neurofisiológica/métodos , Oxígeno/análisis , Oxígeno/metabolismo
13.
Brain Spine ; 4: 102771, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560043

RESUMEN

Introduction: Positional changes in intracranial pressure (ICP) have been described in humans when measured over minutes or hours in a static posture, with ICP higher when lying supine than when sitting or standing upright. However, humans are often ambulant with frequent changes in position self-generated by active movement. Research question: We explored how ICP changes during movement between body positions. Material and methods: Sixty-two patients undergoing clinical ICP monitoring were recruited. Patients were relatively well, ambulatory and of mixed age, body habitus and pathology. We instructed patients to move back and forth between sitting and standing or lying and sitting positions at 20 s intervals after an initial 60s at rest. We simultaneously measured body position kinematics from inertial measurement units and ICP from an intraparenchymal probe at 100 Hz. Results: ICP increased transiently during movements beyond the level expected by body position alone. The amplitude of the increase varied between participants but was on average ∼5 mmHg during sit-to-stand, stand-to-sit and sit-to-lie movements and 10.8 mmHg [95%CI: 9.3,12.4] during lie-to-sit movements. The amplitude increased slightly with age, was greater in males, and increased with median 24-h ICP. For lie-to-sit and sit-to-lie movements, higher BMI was associated with greater mid-movement increase (ß = 0.99 [0.78,1.20]; ß = 0.49 [0.34,0.64], respectively). Discussion and conclusion: ICP increases during movement between body positions. The amplitude of the increase in ICP varies with type of movement, age, sex, and BMI. This could be a marker of disturbed ICP dynamics and may be particularly relevant for patients with CSF-diverting shunts in situ.

14.
World Neurosurg ; 187: e210-e219, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38641242

RESUMEN

OBJECTIVE: To compare the differences in postoperative complications and prognosis between patients treated with neuroendoscopy versus conventional craniotomy surgery for hypertensive intracerebral hemorrhage (HICH). METHODS: In this retrospective study, a total of 107 patients with HICH were included. Among them, 58 underwent neuroendoscopy (Group A), while 49 underwent conventional craniotomy under microscopic guidance (Group B). Intracranial pressure monitoring was applied in both groups. The clinical data, incidence of postoperative complications, preoperative and postoperative intracranial pressure values, and rate of favorable prognosis were compared between the 2 groups. RESULTS: No significant difference in baseline clinical data upon admission was observed between the 2 groups (P > 0.05). The preoperative intracranial pressure did not differ between the 2 groups (P > 0.05), but the postoperative intracranial pressure in Group A was significantly lower than that in Group B (P < 0.05). After intervention with the different surgical approaches, Group A showed a significantly lower incidence of postoperative cerebral infarction and a significantly higher rate of favorable prognosis compared with Group B (P < 0.05). CONCLUSIONS: Neuroendoscopy combined with Intracranial pressure monitoring is a safe and reliable approach for the treatment of HICH that reduces the incidence of postoperative cerebral infarction and improves the recovery of neurological function after surgery.


Asunto(s)
Hemorragia Intracraneal Hipertensiva , Presión Intracraneal , Neuroendoscopía , Humanos , Masculino , Neuroendoscopía/métodos , Femenino , Persona de Mediana Edad , Hemorragia Intracraneal Hipertensiva/cirugía , Presión Intracraneal/fisiología , Estudios Retrospectivos , Anciano , Resultado del Tratamiento , Craneotomía/métodos , Complicaciones Posoperatorias/epidemiología , Adulto
15.
Heliyon ; 10(7): e28544, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38601571

RESUMEN

PURPOSE: This study aims to describe the total EEG energy during episodes of intracranial hypertension (IH) and evaluate its potential as a classification feature for IH. NEW METHODS: We computed the sample correlation coefficient between intracranial pressure (ICP) and the total EEG energy. Additionally, a generalized additive model was employed to assess the relationship between arterial blood pressure (ABP), total EEG energy, and the odds of IH. RESULTS: The median sample cross-correlation between total EEG energy and ICP was 0.7, and for cerebral perfusion pressure (CPP) was 0.55. Moreover, the proposed model exhibited an accuracy of 0.70, sensitivity of 0.53, specificity of 0.79, precision of 0.54, F1-score of 0.54, and an AUC of 0.7. COMPARISON WITH EXISTING METHODS: The only existing comparable methods, up to our knowledge, use 13 variables as predictor of IH, our model uses only 3, our model, as it is an extension of the generalized model is interpretable and it achieves the same performance. CONCLUSION: These findings hold promise for the advancement of multimodal monitoring systems in neurocritical care and the development of a non-invasive ICP monitoring tool, particularly in resource-constrained environments.

16.
Acute Crit Care ; 39(1): 155-161, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38476068

RESUMEN

BACKGROUND: Optic nerve sheath diameter (ONSD) is an emerging non-invasive, easily accessible, and possibly useful measurement for evaluating changes in intracranial pressure (ICP). The utilization of bedside ultrasonography (USG) to measure ONSD has garnered increased attention due to its portability, real-time capability, and lack of ionizing radiation. The primary aim of the study was to assess whether bedside USG-guided ONSD measurement can reliably predict increased ICP in traumatic brain injury (TBI) patients. METHODS: A total of 95 patients admitted to the trauma intensive care unit was included in this cross sectional study. Patient brain computed tomography (CT) scans and Glasgow Coma Scale (GCS) scores were assessed at the time of admission. Bedside USG-guided binocular ONSD was measured and the mean ONSD was noted. Microsoft Excel was used for statistical analysis. RESULTS: Patients with low GCS had higher mean ONSD values (6.4±1.0 mm). A highly significant association was found among the GCS, CT results, and ONSD measurements (P<0.001). Compared to CT scans, the bedside USG ONSD had 86.42% sensitivity and 64.29% specificity for detecting elevated ICP. The positive predictive value of ONSD to identify elevated ICP was 93.33%, and its negative predictive value was 45.00%. ONSD measurement accuracy was 83.16%. CONCLUSIONS: Increased ICP can be accurately predicted by bedside USG measurement of ONSD and can be a valuable adjunctive tool in the management of TBI patients.

17.
J Neurotrauma ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38425191

RESUMEN

Severe traumatic brain injury (sTBI) is a prominent contributor to both morbidity and mortality in the elderly population. The monitoring of intracranial pressure (ICP) is crucial in the management of sTBI patients. Nevertheless, the appropriate timing for the placement of ICP monitor in elderly sTBI patients remains uncertain. To determine the optimal timing for the placement of ICP monitor in elderly sTBI patients, in this retrospective cohort study, we collected data from elderly patients (> 65 years) who suffered sTBI and received ICP monitors at Tangdu Hospital, The Fourth Military Medical University, between January 2011 and December 2021. To examine the relationship between the time of ICP monitor placement and in-hospital mortality, we conducted a multi-variate-adjusted restricted cubic spline (RCS) analysis. Additionally, logistic regression analysis was applied to further analyze the influencing factors contributing to early or late ICP monitor placements. A total of 283 eligible elderly TBI patients were included in the current analysis. The in-hospital mortality rate was 73 out of 283 (26%). The RCS analysis demonstrated an inverted U-shaped curve in the relationship between the timing of ICP monitor placement and in-hospital mortality. For the elderly sTBI patient cohort, 6 h was identified as the crucial moment for the treatment strategy. In addition, the protective time window for ICP placement was less than 4.92 h for the GCS 3-5 group, and less than 8.26 h for the GCS 6-8 group. However, the clinical benefit of ICP placement decreased gradually over time. The relationship between ICP placement and in-hospital mortality was non-linear, exhibiting an inverted U-shaped curve in elderly patients with sTBI. For elderly patients with sTBI, early (≤ 6 h) ICP placement was associated with reduced in-hospital mortality. The clinical benefit of ICP placement decreased beyond the optimal time window.

18.
Neurocrit Care ; 41(1): 228-243, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38356077

RESUMEN

Acute bacterial meningitis (ABM) is associated with severe morbidity and mortality. The most prevalent pathogens in community-acquired ABM are Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae. Other pathogens may affect specific patient groups, such as newborns, older patients, or immunocompromised patients. It is well established that ABM is associated with elevated intracranial pressure (ICP). However, the role of ICP monitoring and management in the treatment of ABM has been poorly described.An electronic search was performed in four electronic databases: PubMed, Web of Science, Embase, and the Cochrane Library. The search strategy chosen for this review used the following terms: Intracranial Pressure AND (management OR monitoring) AND bacterial meningitis. The search yielded a total of 403 studies, of which 18 were selected for inclusion. Eighteen studies were finally included in this review. Only one study was a randomized controlled trial. All studies employed invasive ICP monitoring techniques, whereas some also relied on assessment of ICP-based on clinical and/or radiological observations. The most commonly used invasive tools were external ventricular drains, which were used both to monitor and treat elevated ICP. Results from the included studies revealed a clear association between elevated ICP and mortality, and possibly improved outcomes when invasive ICP monitoring and management were used. Finally, the review highlights the absence of clear standardized protocols for the monitoring and management of ICP in patients with ABM. This review provides an insight into the role of invasive ICP monitoring and ICP-based management in the treatment of ABM. Despite weak evidence certainty, the present literature points toward enhanced patient outcomes in ABM with the use of treatment strategies aiming to normalize ICP using continuous invasive monitoring and cerebrospinal fluid diversion techniques. Continued research is needed to define when and how to employ these strategies to best improve outcomes in ABM.


Asunto(s)
Infecciones Comunitarias Adquiridas , Hipertensión Intracraneal , Meningitis Bacterianas , Humanos , Meningitis Bacterianas/terapia , Meningitis Bacterianas/diagnóstico , Meningitis Bacterianas/fisiopatología , Hipertensión Intracraneal/terapia , Hipertensión Intracraneal/fisiopatología , Hipertensión Intracraneal/diagnóstico , Infecciones Comunitarias Adquiridas/terapia , Enfermedad Aguda , Presión Intracraneal/fisiología
19.
Front Pediatr ; 12: 1355771, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38405592

RESUMEN

Background: For management of severe traumatic brain injuries (sTBI) in children, the overall level of evidence to guide diagnostic and therapeutic procedures is low. Since 2016, international guidelines have subsequently suggested invasive intracranial pressure (ICP) monitoring in patients with initial Glasgow Coma Scale (GCS) ≤8. In Germany, ICP monitoring was an individual case decision from 2011 until the 2022 update of the German pediatric TBI guideline. The aim of this study was to evaluate current clinical practice of invasive ICP monitoring in Germany in children <10 years with respect to guideline recommendations. Methods: Anonymized clinical data on sTBI cases <10 years of age were collected in a nationwide prospective surveillance study via the German Pediatric Surveillance Unit ESPED from July 2019 until June 2022. Inclusion criteria for the surveillance study were sTBI (initial GCS ≤8) or neurosurgery following TBI. For this analysis, only cases with GCS ≤8 were subject to the present analysis. Descriptive analyses were performed to assess the proportion of ICP monitored patients and describe the cohort. Results: Out of 217 reported cases, 102 cases met the inclusion criteria and thus qualified for ICP monitoring. Of these, 37 (36%) received ICP monitoring. Monitored patients were older, had lower median GCS values at presentation (4 vs. 5), higher mortality (32% vs. 22%), and were more frequently diagnosed with cerebral edema (68% vs. 37%). Conclusion: In children <10 years with sTBI, the present clinical management regarding ICP monitoring deviates from the current German national and international guidelines. The reasons remain unclear, with the low level of evidence in the field of ICP monitoring and the recency of changes in guideline recommendations as potential contributors. Prospective interventional studies should elucidate the benefit of ICP monitoring and ICP directed therapies to provide evidence-based recommendations on ICP monitoring.

20.
Sensors (Basel) ; 24(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38257592

RESUMEN

The contemporary monitoring of cerebrovascular reactivity (CVR) relies on invasive intracranial pressure (ICP) monitoring which limits its application. Interest is shifting towards near-infrared spectroscopic regional cerebral oxygen saturation (rSO2)-based indices of CVR which are less invasive and have improved spatial resolution. This study aims to examine and model the relationship between ICP and rSO2-based indices of CVR. Through a retrospective cohort study of prospectively collected physiologic data in moderate to severe traumatic brain injury (TBI) patients, linear mixed effects modeling techniques, augmented with time-series analysis, were utilized to evaluate the ability of rSO2-based indices of CVR to model ICP-based indices. It was found that rSO2-based indices of CVR had a statistically significant linear relationship with ICP-based indices, even when the hierarchical and autocorrelative nature of the data was accounted for. This strengthens the body of literature indicating the validity of rSO2-based indices of CVR and potential greatly expands the scope of CVR monitoring.


Asunto(s)
Presión Intracraneal , Espectroscopía Infrarroja Corta , Humanos , Estudios Retrospectivos , Proyectos de Investigación , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA