Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202409963, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934220

RESUMEN

Herein we have evidenced the formation of favorable π-hole Br···metal noncovalent interactions (NCIs) involving elements from groups 9, 11 and 12. More in detail, M (M = Co2+, Ni2+, Cu2+ and Zn2+) containing porphyrins have been synthesized and their supramolecular assemblies structurally characterized by means of single crystal X-ray diffraction and Hirshfeld surface analyses, revealing the formation of directional Br···M contacts in addition to ancillary hydrogen bond and lone pair-π bonds. Computations at the PBE0-D3/def2-TZVP level of theory revealed the π-hole nature of the Br···M interaction. In addition, the physical nature of these NCIs was studied using Quantum Chemistry methodologies, providing evidence of π-hole Spodium and Regium bonds in Zn2+ and Cu2+ porphyrins, in addition to unveiling the presence of  a π-hole for group 9 (Co2+). On the other hand, group 10 (Ni2+) acted as both electron donor and acceptor moiety without showing an electropositive π-hole. Owing to the underexplored potential of π-hole interactions in transition metal chemistry, we believe the results reported herein will be useful in supramolecular chemistry, organometallics, and solid-state chemistry by i) putting under the spotlight the π-hole chemistry involving first row transition metals and ii) unlocking a new tool to direct the self-assembly of metalloporphyrins.

2.
Chem Biodivers ; : e202400668, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763894

RESUMEN

The cytochrome P450 is a superfamily of hemoproteins mainly present in the liver and are versatile biocatalysts. They participate in the primary metabolism and biosynthesis of various secondary metabolites. Chemical catalysts are utilized to replicate the activities of enzymes. Metalloporphyrins and Salen complexes can contribute to the products' characterization and elucidate biotransformation processes, which are investigated during pre-clinical trials. These catalysts also help discover biologically active compounds and get better yields of products of industrial interest. This review aims to investigate which natural product classes are being investigated by biomimetic chemical models and the functionalities applied in the use of these catalysts. A limited number of studies were observed, with terpenes and alkaloids being the most investigated natural product classes. The research also revealed that Metalloporphyrins are still the most popular in the studies, and the identity and yield of the products obtained depend on the reaction system conditions.

3.
Chemistry ; 30(42): e202401028, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38797703

RESUMEN

Cationic Mn(III)-meso-tetraarylporphyrin derivatives, substituted in para position with different size alkyl chains, were investigated to function as antioxidants in free-radical degradation of high-molar-mass hyaluronan by the methods of rotational viscometry and oximetry. The results of rotational viscometry showed that MnTM-4-PyP5+, MnTE-4-PyP5+, MnTPr-4-PyP5+, MnTPen-4-PyP5+ and MnTHep-4-PyP5+ showed high efficiency in decomposing H2O2, and reducing of peroxidized hyaluronan. When using oxygen electrode, MnTE-4-PyP5+, MnTPr-4-PyP5+, MnTPen-4-PyP5+, and MnTHep-4-PyP5+ applied to function as protective antioxidants in hyaluronan degradation, the uptake of dissolved oxygen from the reaction milieu was rapid, followed by continual increase in oxygen concentration up to the end of the measurement. However, when especially MnTE-4-PyP5+, MnTPr-4-PyP5+, and MnTPen-4-PyP5+ were examined as hyaluronan chain-breaking antioxidants, after short-term dissolved oxygen uptake, almost no increase in oxygen concentration was shown.

4.
Nanomaterials (Basel) ; 14(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38470729

RESUMEN

Metal-organic frameworks and supramolecular metal-organic frameworks (SMOFs) exhibit great potential for a broad range of applications taking advantage of the high surface area and pore sizes and tunable chemistry. In particular, metalloporphyrin-based MOFs and SMOFs are becoming of great importance in many fields due to the bioessential functions of these macrocycles that are being mimicked. On the other hand, during the last years, proton-conducting materials have aroused much interest, and those presenting high conductivity values are potential candidates to play a key role in some solid-state electrochemical devices such as batteries and fuel cells. In this way, using metalloporphyrins as building units we have obtained a new crystalline material with formula [H(bipy)]2[(MnTPPS)(H2O)2]·2bipy·14H2O, where bipy is 4,4'-bipyidine and TPPS4- is the meso-tetra(4-sulfonatephenyl) porphyrin. The crystal structure shows a zig-zag water chain along the [100] direction located between the sulfonate groups of the porphyrin. Taking into account those structural features, the compound was tested for proton conduction by complex electrochemical impedance spectroscopy (EIS). The as-obtained conductivity is 1 × 10-2 S·cm-1 at 40 °C and 98% relative humidity, which is a remarkably high value.

5.
Braz J Microbiol ; 55(1): 11-24, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38051456

RESUMEN

In this manuscript, we report the photo-inactivation evaluation of new tetra-cationic porphyrins with peripheral Pt(II) complexes ate meta N-pyridyl positions in the antimicrobial photodynamic therapy (aPDT) of rapidly growing mycobacterial strains (RGM). Four different metalloderivatives were synthetized and applied. aPDT experiments in the strains of Mycobacteroides abscessus subsp. Abscessus (ATCC 19977), Mycolicibacterium fortuitum (ATCC 6841), Mycobacteroides abscessus subsp. Massiliense (ATCC 48898), and Mycolicibacterium smegmatis (ATCC 700084) conducted with adequate concentration of photosensitizers (PS) under white-light conditions at 90 min (irradiance of 50 mW cm-2 and a total light dosage of 270 J cm-2) showed that the Zn(II) derivative is the most effective PS significantly reduced the concentration of viable mycobacteria. The effectiveness of the molecule as PS for PDI studies is also clear with mycobacteria, which is strongly related with the porphyrin peripheral charge and coordination platinum(II) compounds and consequently about the presence of metal center ion. This class of PS may be promising antimycobacterial aPDT agents with potential applications in medical clinical cases and bioremediation.


Asunto(s)
Mycobacterium , Porfirinas , Platino (Metal)/farmacología , Luz , Fármacos Fotosensibilizantes/farmacología , Porfirinas/farmacología , Antibacterianos
6.
Photodiagnosis Photodyn Ther ; 44: 103795, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37696319

RESUMEN

The World Health Organization has reported that antimicrobial resistance is one of the top 10 health threats that humanity faces today. Due to this, alternative therapies to the common antimicrobials are being explored and among these is photodynamic antimicrobial chemotherapy, where a combination of light, a photosensitizer and reactive oxygen species can be used to target microbial cells. In this research, free base, tin (IV) and indium (III) tetramethoxyporphyrins photosensitizers are adsorbed onto inorganic titanium dioxide nanofibers in an effort to create reusable fibers that are effective against Staphylococcus aureus. The photodynamic antimicrobial chemotherapy studies indicate that the metalloporphyrin adsorbed nanofibers exhibit good photodynamic antimicrobial activity against Staphylococcus aureus where the Cl2Sn(IV) tetramethoxyporphyrin dyed TiO2 exhibited 100% bacterial inhibition after a 30 min irradiation period.


Asunto(s)
Antiinfecciosos , Nanofibras , Fotoquimioterapia , Porfirinas , Porfirinas/farmacología , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Agua , Antiinfecciosos/farmacología , Staphylococcus aureus , Antibacterianos/farmacología
7.
Biomimetics (Basel) ; 8(3)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504212

RESUMEN

Confined catalytic realms and synergistic catalysis sites were constructed using bimetallic active centers in two-dimensional metal-organic frameworks (MOFs) to achieve highly selective oxygenation of cycloalkanes and alkyl aromatics with oxygen towards partly oxygenated products. Every necessary characterization was carried out for all the two-dimensional MOFs. The selective oxygenation of cycloalkanes and alkyl aromatics with oxygen was accomplished with exceptional catalytic performance using two-dimensional MOF Co-TCPPNi as a catalyst. Employing Co-TCPPNi as a catalyst, both the conversion and selectivity were improved for all the hydrocarbons investigated. Less disordered autoxidation at mild conditions, inhibited free-radical diffusion by confined catalytic realms, and synergistic C-H bond oxygenation catalyzed by second metal center Ni employing oxygenation intermediate R-OOH as oxidant were the factors for the satisfying result of Co-TCPPNi as a catalyst. When homogeneous metalloporphyrin T(4-COOCH3)PPCo was replaced by Co-TCPPNi, the conversion in cyclohexane oxygenation was enhanced from 4.4% to 5.6%, and the selectivity of partly oxygenated products increased from 85.4% to 92.9%. The synergistic catalytic mechanisms were studied using EPR research, and a catalysis model was obtained for the oxygenation of C-H bonds with O2. This research offered a novel and essential reference for both the efficient and selective oxygenation of C-H bonds and other key chemical reactions involving free radicals.

8.
Biometals ; 36(6): 1257-1272, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37344742

RESUMEN

Photodynamic therapy (PDT) is a promising technique for the treatment of various diseases. In this sense, the singlet oxygen quantum yield (Φ∆) is a physical-chemical property that allows to stablish the applicability of a potential photosensitizers (PS) as a drug for PDT. In the herein report, the Φ∆ of three photosensitizers was determined: metal-free tetrahydroxyphenyl porphyrin (THPP), THPP-Zn and the THPP-V metal complexes. Their biological application was also evaluated. Therefore, the in vitro study was carried out to assess their biological activity against Escherichia coli. The metal-porphyrin complexes exhibited highest activities against the bacterial strain Escherichia coli. at the highest concentration (175 µg/mL) and show better activity than the free base ligand (salts and blank solution). Results indicated a relation between Φ∆ and the inhibitory activity against Escherichia coli, thus, whereas higher is the Φ∆, higher is the inhibitory activity. The values of the Φ∆ and the inhibitory activity follows the tendency THPP-Zn > THPP > THPP-V. Furthermore, quantum chemical calculations allowed to gain deep insight into the electronic and optical properties of THPP-Zn macrocycle, which let to verify the most probable energy transfer pathway involved in the singlet oxygen generation.


Asunto(s)
Complejos de Coordinación , Fotoquimioterapia , Porfirinas , Porfirinas/farmacología , Porfirinas/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Oxígeno Singlete/metabolismo , Complejos de Coordinación/farmacología , Escherichia coli/metabolismo , Zinc/farmacología
9.
J Inorg Biochem ; 246: 112298, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37379767

RESUMEN

Over the last decades, much effort has been devoted to the construction of protein and peptide-based metalloporphyrin catalysts capable of promoting difficult transformations with high selectivity. In this context, mechanistic studies are fundamental to elucidate all the factors that contribute to catalytic performances and product selectivity. In our previous work, we selected the synthetic peptide-porphyrin conjugate MnMC6*a as a proficient catalyst for indole oxidation, promoting the formation of a 3-oxindole derivative with unprecedented selectivity. In this work, we have evaluated the role of the metal ion in affecting reaction outcome, by replacing manganese with iron in the MC6*a scaffold. Even though product selectivity is not altered upon metal substitution, FeMC6*a shows a lower substrate conversion and prolonged reaction times with respect to its manganese analogue. Experimental and theoretical studies have enabled us to delineate the reaction free energy profiles for both catalysts, indicating different thermodynamic limiting steps, depending on the nature of the metal ion.


Asunto(s)
Metaloporfirinas , Manganeso , Metales , Oxidación-Reducción , Péptidos , Catálisis
10.
Small ; 19(42): e2301596, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37329205

RESUMEN

Porphyrins, a type of heterocyclic aromatic compounds consisting of tetrapyrroles connected by four substituted methine groups, are appealing building blocks for solar energy applications. However, their photosensitization capability is limited by their large optical energy gap, which results in a mismatch in absorption toward efficient harvesting of the solar spectrum. Porphyrin π-extension by edge-fusing with nanographenes can be employed for narrowing their optical energy gap from 2.35 to 1.08 eV, enabling the development of porphyrin-based panchromatic dyes with an optimized energy onset for solar energy conversion in dye-sensitized solar fuel and solar cell configurations. By combining time-dependent density functional theory with fs transient absorption spectroscopy, it is found that the primary singlets, which are delocalized across the entire aromatic part, are transferred into metal centred triplets in only 1.2 ps; and subsequently, relax toward ligand-delocalized triplets. This observation implies that the decoration of the porphyrin moiety with nanographenes, while having a large impact on the absorption onset of the novel dye, promotes the formation of a ligand-centred lowest triplet state of large spatial extension, potentially interesting for boosting interactions with electron scavengers. These results reveal a design strategy for broadening the applicability of porphyrin-based dyes in optoelectronics.

11.
Small ; 19(33): e2301818, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37010014

RESUMEN

Electrochemical conversion of carbon dioxide (CO2 ) into value-added products is promising to alleviate greenhouse gas emission and energy demands. Metalloporphyrin-based covalent organic frameworks (MN4 -Por-COFs) provide a platform for rational design of electrocatalyst for CO2 reduction reaction (CO2 RR). Herein, through systematic quantum-chemical studies, the N-confused metallo-Por-COFs are reported as novel catalysts for CO2 RR. For MN4 -Por-COFs, among the ten 3d metals, M = Co/Cr stands out in catalyzing CO2 RR to CO or HCOOH; hence, N-confused Por-COFs with Co/CrN3 C1 and Co/CrN2 C2 centers are designed. Calculations indicate CoNx Cy -Por-COFs exhibit lower limiting potential (-0.76 and -0.60 V) for CO2 -to-CO reduction than its parent CoN4 -Por-COFs (-0.89 V) and make it feasible to yield deep-reduction degree C1 products CH3 OH and CH4 . Electronic structure analysis reveals that substituting CoN4 to CoN3 C1 /CoN2 C2 increases the electron density on Co-atom and raises the d-band center, thus stabilizing the key intermediates of the potential determining step and lowering the limiting potential. For similar reason, changing the core from CrN4 to CrN3 C1 /CrN2 C2 lowers the limiting potential for CO2 -to-HCOOH reduction. This work predicts N-confused Co/CrNx Cy -Por-COFs to be high-performance CO2 RR catalyst candidates. Inspiringly, as a proof-of-concept study, it provides an alternative strategy for coordination regulation and theoretical guidelines for rational design of catalysts.

12.
Chemistry ; 29(33): e202300608, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-36929530

RESUMEN

A series of dynamic metalloporphyrin [2]rotaxane molecular shuttles comprising of bis-functionalised Zn(II) porphyrin axle and pyridyl functionalised macrocycle components are prepared in high yield via active metal template synthetic methodology. Extensive variable temperature 1 H NMR and quantitative UV-Vis spectroscopic titration studies demonstrate dynamic macrocycle translocation is governed by an inter-component co-ordination interaction between the macrocycle pyridyl and axle Zn(II) metalloporphyrin, which serves to bias a 'resting state' co-conformation. The dynamic shuttling behaviour of the interlocked structures is dramatically inhibited by the addition of a neutral Lewis base such as pyridine, but can also be tuned via post-synthetic rotaxane demetallation of the porphyrin axle core to give free-base, or upon subsequent metallation, Ni(II) [2]rotaxane analogues. Importantly, the Lewis acidic Zn(II) porphyrin axle component is also capable of coordinating anions which induces mechanical bond shuttling behaviour resulting in a novel optical sensing response.


Asunto(s)
Metaloporfirinas , Porfirinas , Rotaxanos , Modelos Moleculares , Rotaxanos/química , Bases de Lewis , Aniones/química
13.
Nanomaterials (Basel) ; 12(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36364562

RESUMEN

Hydrogen, considered to be an alternative fuel to traditional fossil fuels, can be generated by splitting water molecules into hydrogen and oxygen via the use of electrical energy, in a process whose efficiency depends directly on the employed catalytic material. The current study takes part in the relentless search for suitable and low-cost catalysts relevant to the water-splitting field by investigating the electrocatalytic properties of the O2 and H2 evolution reactions (OER and HER) of two metalloporphyrins: Zn(II) 5,10,15,20-tetrakis(4-pyridyl)-porphyrin and Co(II) 5,10,15,20-tetrakis(3-hydroxyphenyl)-porphyrin. The TEM/STEM characterisation of the porphyrin samples obtained using different organic solvents revealed several types of self-assembled aggregates. The HER and OER experiments performed on porphyrin-modified graphite electrodes in media with different pH values revealed the most electrocatalytically active specimens. For the OER, this specimen was the electrode manufactured with one layer of Co-porphyrin applied from dimethylsulfoxide, exhibiting an overpotential of 0.51 V at i = 10 mA/cm2 and a Tafel slope of 0.27 V/dec. For the HER, it was the sample obtained by drop casting one layer of Zn-porphyrin from N,N-dimethylformamide that displayed a HER overpotential of 0.52 V at i = -10 mA/cm2 and a Tafel slope of 0.15 V/dec.

14.
Angew Chem Int Ed Engl ; 61(49): e202211877, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36200438

RESUMEN

Ru-porphyrins act as convenient pedestals for the assembly of N-heterocyclic carbenes (NHCs) on solid surfaces. Upon deposition of a simple NHC ligand on a close packed Ru-porphyrin monolayer, an extraordinary phenomenon can be observed: Ru-porphyrin molecules are transferred from the silver surface to the next molecular layer. We have investigated the structural features and dynamics of this portering process and analysed the associated binding strengths and work function changes. A rearrangement of the molecular layer is induced by the NHC uptake: the NHC selective binding to the Ru causes the ejection of whole porphyrin molecules from the molecular layer on silver to the layer on top. This reorganisation can be reversed by thermally induced desorption of the NHC ligand. We anticipate that the understanding of such mass transport processes will have crucial implications for the functionalisation of surfaces with carbenes.

15.
Molecules ; 27(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956867

RESUMEN

The emergence of metal-organic frameworks (MOFs) in recent years has stimulated the interest of scientists working in this area as one of the most applicable archetypes of three-dimensional structures that can be used as promising materials in several applications including but not limited to (photo-)catalysis, sensing, separation, adsorption, biological and electrochemical efficiencies and so on. Not only do MOFs have their own specific versatile structures, tunable cavities, and remarkably high surface areas, but they also present many alternative procedures to overcome emerging obstacles. Since the discovery of such highly effective materials, they have been employed for multiple uses; additionally, the efforts towards the synthesis of MOFs with specific properties based on planned (template) synthesis have led to the construction of several promising types of MOFs possessing large biological or bioinspired ligands. Specifically, metalloporphyrin-based MOFs have been created where the porphyrin moieties are either incorporated as struts within the framework to form porphyrinic MOFs or encapsulated inside the cavities to construct porphyrin@MOFs which can combine the peerless properties of porphyrins and porous MOFs simultaneously. In this context, the main aim of this review was to highlight their structure, characteristics, and some of their prominent present-day applications.


Asunto(s)
Estructuras Metalorgánicas , Metaloporfirinas , Porfirinas , Adsorción , Catálisis , Estructuras Metalorgánicas/química , Metaloporfirinas/química
16.
Molecules ; 27(13)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35807296

RESUMEN

The photophysical properties of two classes of porphyrins and metalloporphyrins linked to N-heterocyclic carbene (NHC) Au(I) complexes have been investigated by means of density functional theory and its time-dependent extension for their potential application in photodynamic therapy. For this purpose, the absorption spectra, the singlet-triplet energy gaps, and the spin-orbit coupling (SOC) constants have been determined. The obtained results show that all the studied compounds possess the appropriate properties to generate cytotoxic singlet molecular oxygen, and consequently, they can be employed as photosensitizers in photodynamic therapy. Nevertheless, on the basis of the computed SOCs and the analysis of the metal contribution to the involved molecular orbitals, a different influence in terms of the heavy atom effect in promoting the intersystem crossing process has been found as a function of the identity of the metal center and its position in the center of the porphyrin core or linked to the peripheral NHC.


Asunto(s)
Metaloporfirinas , Fotoquimioterapia , Porfirinas , Oro , Metaloporfirinas/uso terapéutico , Metano/análogos & derivados , Fotoquimioterapia/métodos , Oxígeno Singlete
17.
Food Chem ; 388: 132898, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35436634

RESUMEN

This study constructed a novel biomimetic enzyme electrochemical biosensor based on tetraphenyl metalloporphyrins functionalized multi-walled carbon nanotubes (MWCNTs). The effect of central metal ions on the catalytic activity of tetraphenyl metalloporphyrin biomimetic enzyme was investigated. It was found that the change of central metal ions had a significant effect on the catalytic performance of metalloporphyrin and Zinc(II) tetraphenylporphyrin (ZnTPP) had the most excellent catalytic property. The electrochemical behaviors of tert-butylhydroquinone (TBHQ) on ZnTPP/MWCNTs modified electrode were investigated. It was found that the redox peak current was increased significantly, which was attributed to the redox peak current to the electrocatalytic activity of ZnTPP and the synergistic effect between ZnTPP and MWCNTs. A strong linear relationship was shown in the concentration range of 0.01 to 1000 µM. This electrochemical sensor also had excellent repeatability, storage, and interference resistance. This work provided a simple and sensitive method for the determination of TBHQ.


Asunto(s)
Metaloporfirinas , Nanotubos de Carbono , Antioxidantes , Biomimética , Técnicas Electroquímicas , Electrodos , Hidroquinonas , Nanotubos de Carbono/química , Oxidorreductasas , Aceites de Plantas
18.
Biometals ; 35(1): 159-171, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34993713

RESUMEN

In this report 5 compounds were synthesized and structural and their photophysical characterization was performed (ΦΔ and Φf). Furthermore, in this in vitro study, their biological activity against Leishmania panamensis was evaluated. The photophysical behavior of these compounds was measured and high ΦΔ and low Φf was observed. Besides, DFT quantum calculations on the electronic structures were performed. Finally, the biological activity was determined by means of the compounds capacity to inhibit the viability of parasites using the MTT assay. The inclusion of the metal ions substantially modified the photophysical and biological properties in comparison with the free metal porphyrin (1). In fact, Zn2+ porphyrin derivative (2) showed a marked decrease of Φf and increase of ΦΔ. In this sense, using TDDFT approaches, a luminescent process for Sn4+ derivative (3) was described, where emissive states involve the ML-LCT transition. So, this led to a decrease in the singlet oxygen production (0.82-0.67). Biological results showed that all compounds inhibit the viability of L. panamensis with high efficiency; the decrease in the viability was greater as the concentration of exposure increased. Finally, under light irradiation the IC50 of L. panamensis against the Zn(II)-porphyrin (2) and V(IV)-porphyrin (5) was lower than the IC50 of the Glucantime control (IC50 = 2.2 and 6.95 µM Vs IC50 = 12.7 µM, respectively). We showed that the use of porphyrin and metalloporphyrin-type photosensitizers with exceptional photophysical properties can be successful in photodynamic therapy (PDT) against L. panamensis, being the diamagnetic ion Zn2+ a candidate for the preparation of metalloporphyrins with high singlet oxygen production.


Asunto(s)
Leishmania , Metaloporfirinas , Fotoquimioterapia , Porfirinas , Metaloporfirinas/química , Metaloporfirinas/farmacología , Metales , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Porfirinas/química , Porfirinas/farmacología , Oxígeno Singlete/química , Zinc/farmacología
19.
Chemistry ; 28(8): e202103892, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34981568

RESUMEN

Both geometric architecture and electronic configurations of heme proteins contribute to its activity. In this work we designed and synthesized a series of four copper(II) porphyrin complexes (4-, 3-, 2- and 1-Cu) where the molecular conformations are modulated by a pair of stepwise shortened straps on the same porphyrin side (cis-ortho) to give double bow-shaped skeletons. Single crystal structures demonstrate that the straps gradually increase the saddle deformation and the deviation of the metal centers, which is in accordance with two, unusual d-orbital reconstructions of two different ground states, as revealed by 4 K EPR and DFT calculations. In the study of the electrocatalytic hydrogen evolution reaction (HER), 1-Cu, with the shortest straps, showed the most apparent improvement of activity. Second coordination sphere (SCS) effects created by the double bow-shaped architecture and the strong saddle porphyrin core in 1-Cu are found to play key roles in proton trapping during the catalytic process. The work contributes a novel strategy to improve the catalytic performance of heme analogs through ligand geometric modulation.


Asunto(s)
Hemoproteínas , Porfirinas , Cobre , Hemo , Hidrógeno , Conformación Molecular
20.
Catalysts ; 12(8)2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37123089

RESUMEN

Iron porphyrin molecules such as hemin and iron(III) 4,4',4″,4‴-(porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (FeTBAP) have previously been shown to influence insulin signaling and glucose metabolism. We undertook this study to determine whether a catalytic action of iron porphyrin compounds would be related to their stimulation of insulin signaling and glucose uptake in C2C12 myotubes. FeTBAP did not display nitrite reductase activity or alter protein S-nitrosylation in myotubes, eliminating this as a candidate mode by which FeTBAP could act. FeTBAP displayed peroxynitrite decomposition catalytic activity in vitro. Additionally, in myotubes FeTBAP decreased protein nitration. The peroxynitrite decomposition catalyst Fe(III)5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato chloride (FeTPPS) also decreased protein nitration in myotubes, but the iron porphyrin Fe(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachlorideporphyrin pentachloride (FeTMPyP) did not. FeTBAP and FeTPPS, but not FeTMPyP, showed in vitro peroxidase activity. Further, FeTBAP and FeTPPs, but not FeTMPyP, increased Akt phosphorylation and stimulated glucose uptake in myotubes. These findings suggest that iron porphyrin compounds with both peroxynitrite decomposition activity and peroxidase activity can stimulate insulin signaling and glucose transport in skeletal muscle cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA