Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.470
Filtrar
1.
Stat Biosci ; 16(2): 321-346, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39091460

RESUMEN

Estimating sample size and statistical power is an essential part of a good epidemiological study design. Closed-form formulas exist for simple hypothesis tests but not for advanced statistical methods designed for exposure mixture studies. Estimating power with Monte Carlo simulations is flexible and applicable to these methods. However, it is not straightforward to code a simulation for non-experienced programmers and is often hard for a researcher to manually specify multivariate associations among exposure mixtures to set up a simulation. To simplify this process, we present the R package mpower for power analysis of observational studies of environmental exposure mixtures involving recently-developed mixtures analysis methods. The components within mpower are also versatile enough to accommodate any mixtures methods that will developed in the future. The package allows users to simulate realistic exposure data and mixed-typed covariates based on public data set such as the National Health and Nutrition Examination Survey or other existing data set from prior studies. Users can generate power curves to assess the trade-offs between sample size, effect size, and power of a design. This paper presents tutorials and examples of power analysis using mpower.

2.
Toxicol Res (Camb) ; 13(4): tfae114, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39086642

RESUMEN

Hazard and risk assessment of complex petroleum-derived substances has been in a state of continuous improvement since the 1970s, with the development of approaches that continue to be applied and refined. Alternative feeds are defined here as those coming into a refinery or chemical plant that are not hydrocarbons from oil and gas extraction such as biologically derived oils, pyrolysis oil from biomass or other, and recycled materials. These feeds are increasingly being used for production of liquid hydrocarbon streams, and hence, there is a need to assess these alternatives, subsequent manufacturing and refining processes and end products for potential risk to humans and the environment. Here we propose a tiered, problem formulation-driven framework for assessing the safety of hydrocarbon streams and products derived from alternative feedstocks in use. The scope of this work is only focused on petrochemical safety assessment, though the principles may be applicable to other chemistries. The framework integrates combinations of analytical chemistry, in silico and in vitro tools, and targeted testing together with conservative assumptions/approaches to leverage existing health, environmental, and exposure data, where applicable. The framework enables the identification of scenarios where de novo hazard and/or exposure assessments may be needed and incorporates tiered approaches to do so. It can be applied to enable decisions efficiently and transparently and can encompass a wide range of compositional space in both feedstocks and finished products, with the objective of ensuring safety in manufacturing and use.

3.
Forensic Sci Int Genet ; 73: 103099, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39089059

RESUMEN

The validity of a probabilistic genotyping (PG) system is typically demonstrated by following international guidelines for the developmental and internal validation of PG software. These guidelines mainly focus on discriminatory power. Very few studies have reported with metrics that depend on calibration of likelihood ratio (LR) systems. In this study, discriminatory power as well as various calibration metrics, such as Empirical Cross-Entropy (ECE) plots, pool adjacent violator (PAV) plots, log likelihood ratio cost (Cllr and Cllrcal), fiducial calibration discrepancy plots, and Turing' expectation were examined using the publicly-available PROVEDIt dataset. The aim was to gain deeper insight into the performance of a variety of PG software in the 'lower' LR ranges (∼LR 1-10,000), with focus on DNAStatistX and EuroForMix which use maximum likelihood estimation (MLE). This may be a driving force for the end users to reconsider current LR thresholds for reporting. In previous studies, overstated 'low' LRs were observed for these PG software. However, applying (arbitrarily) high LR thresholds for reporting wastes relevant evidential value. This study demonstrates, based on calibration performance, that previously reported LR thresholds can be lowered or even discarded. Considering LRs >1, there was no evidence for miscalibration performance above LR ∼1000 when using Fst 0.01. Below this LR value, miscalibration was observed. Calibration performance generally improved with the use of Fst 0.03, but the extent of this was dependent on the dataset: results ranged from miscalibration up to LR ∼100 to no evidence of miscalibration alike PG software using different methods to model peak height, HMC and STRmix. This study demonstrates that practitioners using MLE-based models should be careful when low LR ranges are reported, though applying arbitrarily high LR thresholds is discouraged. This study also highlights various calibration metrics that are useful in understanding the performance of a PG system.

4.
Int J Pharm Pract ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39121381

RESUMEN

OBJECTIVES: Continuous subcutaneous infusions (CSCIs) are indicated as an alternative therapy when the oral route is not viable. However, despite their widespread use in palliative care, the evidence for admixture compatibility remains a limitation. It is estimated that a significant number of admixtures used in practice are not supported by laboratory studies, which may lead to suboptimal clinical outcomes. The study aimed to determine the frequency of admixtures used in clinical practice without compatibility data generated by laboratory studies, and thereby identifying the most commonly prescribed admixtures that require laboratory data, which can help to guide the prioritization of future testing. METHODS: This study was conducted across five palliative care services (three inpatients and two communities) in Victoria, Australia between May and July 2021. Electronic or paper medication charts of CSCIs were reviewed across all participating sites for all infusions administered. Data collected included medication combinations, dose, diluent, final volume, duration of infusion, reports of infusion-related reactions, and observed incompatibility. KEY FINDINGS: A total of 616 infusions containing two to three medications were assessed. Only 60% of these infusions were validated by laboratory data. Eleven most commonly prescribed admixtures with no laboratory compatibility data were identified over the 3-month period. CONCLUSION: Laboratory testing for the identified admixtures should be advocated to promote the safe and effective use of these medications.

5.
Front Public Health ; 12: 1367644, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39104887

RESUMEN

Introduction: Persistent infections caused by certain viruses and parasites have been associated with multiple diseases and substantial mortality. Heavy metals are ubiquitous environmental pollutants with immunosuppressive properties. This study aimed to determine whether heavy metals exposure suppress the immune system, thereby increasing the susceptibility to persistent infections. Methods: Using data from NHANES 1999-2016, we explored the associations between heavy metals exposure and persistent infections: Cytomegalovirus (CMV), Epstein-Barr Virus (EBV), Hepatitis C Virus (HCV), Herpes Simplex Virus Type-1 (HSV-1), Toxoplasma gondii (T. gondii), and Toxocara canis and Toxocara cati (Toxocara spp.) by performing logistic regression, weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models. Mediation analysis was used to determine the mediating role of host immune function in these associations. Results: Logistic regression analysis revealed positive associations between multiple heavy metals and the increased risk of persistent infections. In WQS models, the heavy metals mixture was associated with increased risks of several persistent infections: CMV (OR: 1.58; 95% CI: 1.17, 2.14), HCV (OR: 2.94; 95% CI: 1.68, 5.16), HSV-1 (OR: 1.25; 95% CI: 1.11, 1.42), T. gondii (OR: 1.97; 95% CI: 1.41, 2.76), and Toxocara spp. (OR: 1.76; 95% CI: 1.16, 2.66). BKMR models further confirmed the combined effects of heavy metals mixture and also identified the individual effect of arsenic, cadmium, and lead. On mediation analysis, the systemic immune inflammation index, which reflects the host's immune status, mediated 12.14% of the association of mixed heavy metals exposure with HSV-1 infection. Discussion: The findings of this study revealed that heavy metals exposure may increase susceptibility to persistent infections, with the host's immune status potentially mediating this relationship. Reducing exposure to heavy metals may have preventive implications for persistent infections, and further prospective studies are needed to confirm these findings.


Asunto(s)
Exposición a Riesgos Ambientales , Metales Pesados , Humanos , Femenino , Masculino , Exposición a Riesgos Ambientales/efectos adversos , Adulto , Persona de Mediana Edad , Modelos Logísticos , Contaminantes Ambientales/toxicidad , Teorema de Bayes , Virosis/inmunología , Animales
6.
Foods ; 13(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39123631

RESUMEN

The antioxidant activities of lycopene (LY), lutein (LU), chlorogenic acid (CA), and delphinidin (DP) were tested in vitro on H9c2 cell-based models. Some indicators, such as the generation of reactive oxygen (ROS), the quantification of cell antioxidant activity (CAA), and the expressions of SOD, GSH-Px, and CAT, were calculated to examine their antioxidant interactions. From our results, the phytochemical mixtures (M1: CA-LU: F3/10, M2: DP-CA: F7/10, M3: DP-LY: F5/10) displayed strong synergistic effects based on the generation of ROS and the quantification of CAA. However, great antagonistic bioactivities were seen in the combinations of LY-LU: F5/10 (M4), CA-LU: F9/10 (M5), and DP-LY: F7/10 (M6). Western blotting analysis indicated that the possible mechanism underlying the synergistic antioxidant interactions among phytochemical combinations was to enhance the accumulation of Nrf2 in the nucleus and the expression of its downstream antioxidant enzymes, HO-1 and GCLC. The combinations (M1-M3 groups) showed significant protection against the loss of mitochondrial membrane potential than individual groups to avoid excessive ROS production. The M4-M6 groups exerted antagonistic protective effects compared with the individual groups. In addition, lutein and lycopene absorption was improved more because of the presence of chlorogenic acid and delphinidin in the M1 and M3 groups, respectively. However, delphinidin significantly reduced the cellular uptake of lycopene in the M6 group. It appeared that antioxidant interactions of phytochemical combinations may contribute to the restoration of cellular redox homeostasis and lead to an improvement in diet quality and collocation.

7.
Molecules ; 29(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125007

RESUMEN

This article presents studies on the sorption of the anionic dyes Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84) from solutions of single dyes and from dye mixtures onto three chitosan sorbents-chitin, chitosan DD75% and chitosan DD95%. In this work, the influence of pH on sorption efficiency, the sorption equilibrium time for the tested anionic dyes and the sorption capacity in relation to the individual dyes and their mixtures were determined. It has been found that the sorption process for both dyes was most effective at pH 3 for chitin and chitosan DD75 and at pH 4 for chitosan DD95%. The obtained results were described by the double Langmuir equation (Langmuir 2). The obtained constants made it possible to determine the affinity of the tested dyes for the three sorbents and the sorption capacity of the sorbents. For RB5, the highest sorption capacity for chitosan DD95% was achieved with sorption from a single solution-of 742 mg/g DM and with sorption from mixed dyes-of 528 mg/g DM. For RY84, the highest efficiency was also achieved for chitosan DD95% and was 760 mg/g DM for a single dye solution and 437 mg/g DM for a mixture of dyes.

8.
Forensic Sci Int Genet ; 73: 103111, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39128429

RESUMEN

This study evaluates the performance of analysing surface DNA samples using massively parallel sequencing (MPS) compared to traditional capillary electrophoresis (CE). A total of 30 samples were collected from various surfaces in an office environment and were analysed with CE and MPS. These were compared against 60 reference samples (office inhabitants). To identify contributors, likelihood ratios (LRs) were calculated for MPS and CE data using the probabilistic genotyping software MPSproto and EuroForMix respectively. Although a higher number of sequences/peaks were observed per DNA profile in MPS compared to CE, LR values were found to be lower for MPS data formats. This might be the result of the increased complexity of MPS data, along with a possible elevation of unknown alleles and/or artefacts. The study highlights avenues for improving MPS data quality and analysis to facilitate more robust interpretation of challenging casework-like samples.

9.
Pest Manag Sci ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096081

RESUMEN

BACKGROUND: Evolution of herbicide-resistant weed populations is a major challenge to world food production. Using different herbicides in rotation and/or using different herbicides together as mixtures are strategies that may delay the selection of resistance. This study used simulation modelling to investigate whether mixtures and rotations can delay the selection of both generalist polygenic and specialist monogenic herbicide resistance, and whether these strategies are more likely to lead to the selection of generalist resistance in weed types with varying biological characteristics. RESULTS: Our simulations suggest that well-designed effective herbicide mixtures should delay evolution of both polygenic and monogenic resistance better than rotations and single herbicides across all weed types. Both mixture and rotation strategies increased the likelihood of polygenic resistance compared to single-herbicide use, and the likelihood of polygenic resistance increased as the fecundity and competitiveness of the weed increased. Whether monogenic or polygenic resistance occurred in each case depended most on the relative initial allele frequencies. We did not find that herbicide mixtures were more likely than rotations to lead to the selection of generalist polygenic resistance. The simulated efficacy of mixtures over rotations decreased if components were used at reduced rates or when individual components had already been used solo. CONCLUSION: Herbicide rotations and particularly well-designed mixtures should delay evolution of both polygenic and monogenic resistance, especially if used as part of an effective integrated weed management programme. However, herbicide mixtures and rotations may also increase the risk that resistance will be generalist polygenic rather than specialist monogenic. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

10.
Pest Manag Sci ; 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39096093

RESUMEN

BACKGROUND: The highland barley, Hordeum vulgare L., is a staple food crop with superior nutritional functions in Xizang, China. It is often damaged by the black cutworm, Agrotis ipsilon (Hufnagel), which is an underground pest and difficult to effectively manage. To introduce a novel insecticide with unique mode of action, broflanilide (BFL) and its binary mixtures with chlorantraniliprole (CAP), fluxametamide, ß-cypermethrin or imidacloprid were screened out as seed treatment to control black cutworm in highland barley in the present study. RESULTS: In the laboratory bioassays, BFL had outstanding insecticidal activity to black cutworm with a median lethal dose (LD50) of 0.07 mg kg-1. The mixture of BFL × CAP at the concentration ratio of 7:40 exhibited the highest synergistic effect with a co-toxicity coefficient of 280.48. In the greenhouse pot experiments, BFL and BFL × CAP seed treatments at 8 g a.i. kg-1 seed could effectively control black cutworm, with a low percentage of injured seedlings <20% and high control efficacies of 93.33-100% during a period of 3-12 days after seed emergence. Moreover, BFL and BFL × CAP seed treatments could promote the seed germination and seedling growth of highland barley at the tested temperatures of 15, 20 and 25 °C. CONCLUSION: Our results indicated that BFL and BFL × CAP were effective and promising insecticides as seed treatment to control black cutworm in highland barley. © 2024 Society of Chemical Industry.

11.
Toxicol Sci ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141488

RESUMEN

Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals known for their environmental persistence and resistance to biodegradation. This study investigated the impact of adolescent exposure to a PFAS mixture on adult ovarian function. Female CD-1 mice were orally exposed to vehicle control or a PFAS mixture (comprised of perfluorooctanoic acid [PFOA], perfluorooctanesulfonic acid [PFOS], undecafluoro-2-methyl-3-oxahexanoic acid [GenX/HFPO-DA], and perfluorobutanesulfonic acid [PFBS]) for 15 days. After a 42-day recovery period, reproductive hormones, ovarian fibrosis, and ovarian gene and protein expression were analyzed using ELISA, Picrosirius red (PSR) staining, qPCR, and immunoblotting, respectively. Results revealed that PFAS exposure did not affect adult body or organ weight, although ovarian weight slightly decreased. PFAS exposed mice exhibited a disturbed estrous cycle, with less time spent in proestrus than control mice. Follicle counting indicated a reduction in primordial and primary follicles. Serum analysis revealed no changes in steroid hormones, follicle-stimulating hormone, or anti-Müllerian hormone, but a significant increase in luteinizing hormone was observed in PFAS-treated mice. Ovaries collected from PFAS treated mice had increased mRNA transcripts for steroidogenic enzymes and fatty acid synthesis-related genes. PFAS exposure also increased collagen content in the ovary. Additionally, serum tumor necrosis factor-α levels were higher in PFAS treated mice. Finally, transcripts and protein abundance for Hippo pathway components were upregulated in the ovaries of the PFAS treated mice. Overall, these findings suggest that adolescent exposure to PFAS can disrupt ovarian function in adulthood.

12.
Microbiol Spectr ; : e0104724, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162494

RESUMEN

Multi-target antimicrobial agents are considered a viable alternative to target-specific antibiotics, resistance to which emerged as a global threat. Used centuries before the discovery of conventional antibiotics, metal(loid)-based antimicrobials (MBAs), which target multiple biomolecules within the bacterial cell, are regaining research interest. However, there is a significant limiting factor-the balance between cost and efficiency. In this article, we utilize a checkerboard assay approach to explore antimicrobial combinations of MBAs with commonly used quaternary ammonium compound (QAC) antiseptics in order to discover novel combinations with more pronounced antimicrobial properties than would be expected from a simple sum of antimicrobial effects of initial components. This phenomenon, called synergy, was herein demonstrated for several mixtures of Al3+with cetyltrimethylammonium bromide (CTAB) and TeO32- with benzalkonium chloride (BAC) and didecyldimethylammonium bromide (DDAB) against planktonic and biofilm growth of Pseudomonas aeruginosa ATCC27853. Biofilm growth of Escherichia coli ATCC25922 was synergistically inhibited by the Cu2 +and benzalkonium chloride (BAC) mixture. Multiple additive mixtures were identified for both organisms. The current study observed unexpected species and growth state specificities for the synergistic combinations. The benefit of synergistic mixtures will be captured in economy/efficiency optimization for antimicrobial applications in which MBAs and QACs are presently used. IMPORTANCE: We are entering the antimicrobial resistance era (AMR), where resistance to antibiotics is becoming more and more prevalent. In order to address this issue, various approaches are being explored. In this article, we explore for synergy between two very different antimicrobials, the antiseptic class of quaternary ammonium compounds and antimicrobial metals. These two antimicrobials have very different actions. Considering a OneHealth approach to the problem, finding synergistic mixtures allows for greater efficacy at lower concentrations, which would also address antimicrobial pollution issues.

13.
Chemosphere ; 364: 143084, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142394

RESUMEN

BACKGROUND: There are a few reports on the associations between fine particulate matter (PM2.5)-bound heavy metals and lung function. OBJECTIVES: To evaluate the associations of single and mixed PM2.5-bound heavy metals with lung function. METHODS: This study included 316 observations of 224 Chinese adults from the Wuhan-Zhuhai cohort over two study periods, and measured participants' personal PM2.5-bound heavy metals and lung function. Three linear mixed models, including the single constituent model, the PM2.5-adjusted constituent model, and the constituent residual model were used to evaluate the association between single metal and lung function. Mixed exposure models including Bayesian kernel machine regression (BKMR) model, weighted quantile sum (WQS) model, and Explainable Machine Learning model were used to assess the relationship between PM2.5-bound heavy metal mixtures and lung function. RESULTS: In the single exposure analyses, significant negative associations of PM2.5-bound lead, antimony, and cadmium with peak expiratory flow (PEF) were observed. In the mixed exposure analyses, significant decreases in forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC), maximal mid-expiratory flow (MMF), and forced expiratory flow at 75% of the pulmonary volume (FEF75) were associated with the increased PM2.5-bound heavy metal mixture. The BKMR models suggested negative associations of PM2.5-bound lead and antimony with lung function. In addition, PM2.5-bound copper was positively associated with FEV1/FVC, MMF, and FEF75. The Explainable Machine Learning models suggested that FEV1/FVC, MMF, and FEF75 decreased with the elevated PM2.5-bound lead, manganese, and vanadium, and increased with the elevated PM2.5-bound copper. CONCLUSIONS: The negative relationships were detected between PM2.5-bound heavy metal mixture and FEV1/FVC, MMF, as well as FEF75. Among the PM2.5-bound heavy metal mixture, PM2.5-bound lead, antimony, manganese, and vanadium were negatively associated with FEV1/FVC, MMF, and FEF75, while PM2.5-bound copper was positively associated with FEV1/FVC, MMF, and FEF75.

14.
Sci Total Environ ; 950: 175303, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39127197

RESUMEN

Marine and freshwater mammalian predators and fish samples, retrieved from environmental specimen banks (ESBs), natural history museum (NHMs) and other scientific collections, were analysed by LIFE APEX partners for a wide range of legacy and emerging contaminants (2545 in total). Network analysis was used to visualize the chemical occurrence data and reveal the predominant chemical mixtures for the freshwater and marine environments. For this purpose, a web tool was created to explore these chemical mixtures in predator-prey pairs. Predominant chemicals, defined as the most prevalent substances detected in prey-predator pairs were identified through this innovative approach. The analysis established the most frequently co-occurring substances in chemical mixtures from AP&P in the marine and freshwater environments. Freshwater and marine environments shared 23 chemicals among their top 25 predominant chemicals. Legacy chemical, including perfluorooctanesulfonic acid (PFOS), brominated diphenyl ethers (BDEs), polychlorinated biphenyls (PCBs), hexachlorobenzene and mercury were dominant chemicals in both environments. Furthermore, N-acetylaminoantipyrine was a predominant pharmaceutical in both environments. The LIFE APEX chemical mixture application (https://norman-data.eu/LIFE_APEX_Mixtures) was proven to be useful to establish most prevalent compounds in terms of number of detected counts in prey-predator pairs. Nonetheless, further research is needed to establish food chain associations of the predominant chemicals.

15.
Chemosphere ; 364: 143083, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39154761

RESUMEN

Chiral drugs play an important role in modern medicine, but obtaining pure enantiomers from racemic mixtures can pose challenges. When a drug is chiral, only one enantiomer (eutomer) typically exhibits the desired pharmacological activity, while the other (distomer) may be biologically inactive or even toxic. Racemic drug formulations introduce additional health risks, as the body must still process the inactive or detrimental enantiomer. Some distomers have also been linked to teratogenic effects and unwanted side effects. Therefore, developing efficient and scalable methods for separating chiral drugs into their pure enantiomers is critically important for improving patient safety and outcomes. Metal-organic frameworks (MOFs) show promise as novel materials for chiral separation due to their highly tunable structures and interactions. This review summarizes recent advancements in using MOFs for chromatographic and spectroscopic resolution of drug enantiomers. Both the opportunities and limitations of MOF-based separation techniques are discussed. A thorough understanding of these methods could aid the continued development of pure enantiomer formulations and help reduce health risks posed by racemic drug mixtures.

16.
Chem Senses ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133054

RESUMEN

In insects, olfactory receptor neurons (ORNs) are localized in sensilla. Within a sensillum, different ORN types are typically co-localized and exhibit non-synaptic reciprocal inhibition through ephaptic coupling. This inhibition is hypothesized to aid odour source discrimination in environments where odor molecules (odorants) are dispersed by wind, resulting in turbulent plumes. Under these conditions, odorants from a single source arrive at the ORNs synchronously, while those from separate sources arrive asynchronously. Ephaptic inhibition is expected to be weaker for asynchronous arriving odorants from separate sources, thereby enhancing their discrimination. Previous studies have focused on ephaptic inhibition of sustained ORN responses to constant odour stimuli. This begs the question of whether ephaptic inhibition also affects transient ORN responses and if this inhibition is modulated by the temporal arrival patterns of different odorants. To address this, we recorded co-localized ORNs in the fruit fly Drosophila melanogaster and exposed them to dynamic odorant mixtures. We found reciprocal inhibition, strongly suggesting the presence of ephaptic coupling. This reciprocal inhibition does indeed modulate transient ORN responses and is sensitive to the relative timing of odor stimuli. Notably, the strength of inhibition decreases as the synchrony and correlation between arriving odorants decrease. These results support the hypothesis that ephaptic inhibition aids odour source discrimination.

17.
R Soc Open Sci ; 11(6): 231831, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39100163

RESUMEN

This work aims at studying why azodicarbonamide (ADCA), a formally apolar compound with good hydrogen bond (HB) acceptors, is soluble only in polar aprotic solvents like dimethyl sulfoxide (DMSO) but not in water. Solubility measurements, as well as quantum mechanical and classical molecular dynamics simulations, were employed to tackle the problem. We found that in the liquid phase a polar conformer of ADCA (µ = 8.7 D), unreported to date, is favoured under the enthalpic drive provided by a highly polar solvent. At the same time, the very high hydrogen bond propensity of water with itself prevents this solvent from providing an effective hydrogen bond-mediated solvation. Solvents bearing good HB acceptors, while lacking strong HB donors, contribute to further stabilizing solute-solvent adducts through weak and fluxional HBs that involve the amide groups of ADCA. Implications for the solubility of ADCA down to µM concentrations were evaluated, also with the aid of classical simulations of solution nanodroplets.

18.
Bioresour Technol ; 408: 131224, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39111400

RESUMEN

Lactic acid has been applied as a precursor for hydrogen (H2) production from substrates rich in lactic acid bacteria (LAB), focusing on microbial interactions between producing and consuming LAB tested with model substrates. Therefore, this study evaluated the effect of single and combined lactic acid-consuming bacteria on mesophilic H2 production in batch tests from lactic acid from fermented food waste (FW). Megasphaera elsdenii, Clostridium beijerinckii, and Clostridium butyricum were inoculated at different ratios (v/v). Additionally, thermal pretreated sludge (TPS) was added to the strain mixtures. The highest production was obtained with M. elsdenii, C. beijerinckii, and C. butyricum (17:66:17 ratio), obtaining 1629.0 mL/Lreactor. The optimal mixture (68:32:0 of M. elsdenii and C. beijerinckii) enriched with TPS reached 1739.3 ± 98.6 mL H2/Lreactor, consuming 98 % of lactic acid added. M. elsdenii and Clostridium strains enhance H2 production from lactic acid as they persist in a microbial community initially dominated by LAB.


Asunto(s)
Alimento Perdido y Desperdiciado , Hidrógeno , Ácido Láctico , Reactores Biológicos , Clostridium/metabolismo , Fermentación , Hidrógeno/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biosíntesis , Aguas del Alcantarillado/microbiología
19.
J Environ Manage ; 368: 122108, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39146655

RESUMEN

The current use of chemicals puts pressure on human and ecological health. Based on the Aarhus Convention, citizens have the right to have access to information on substances in their local environment. Providing this information is a major challenge, especially considering complex mixtures, as the current substance-by-substance risk assessment may not adequately address the risk of co-exposure to multiple substances. Here, we provide an overview of the currently available indicators in the Netherlands to explore current scientific possibilities to indicate the impacts of complex chemical mixtures in the environment on human health and ecology at the local scale. This is limited to impact estimates on freshwater species for 701 substances, impact estimates of four metals on soil organisms, and impacts on human health for particulate matter (PM10) and nitrogen dioxide (NO2) in air. The main limiting factors in developing and expanding these indicators to cover more compartments and substances are the availability of emission and concentration data of substances and dose-response relationships at the population (human health) or community (ecology) level. As ways forward, we propose; 1) developing cumulative assessment groups (CAGs) for substances on the European Pollutant Transfer and Release Register and Water Framework Directive substance lists, to enable the development of mixture indicators based on mixture risk assessment and concentration addition principles; 2) to gain insight into local mixtures by also applying these CAGs to emission data, which is available for soil and air for more substances than concentrations data; 3) the application of analytical non-target screening methods as well as effect-based methods for whole-mixture assessment.

20.
Front Immunol ; 15: 1298971, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38953021

RESUMEN

Introduction: More than 350,000 chemicals make up the chemical universe that surrounds us every day. The impact of this vast array of compounds on our health is still poorly understood. Manufacturers are required to carry out toxicological studies, for example on the reproductive or nervous systems, before putting a new substance on the market. However, toxicological safety does not exclude effects resulting from chronic exposure to low doses or effects on other potentially affected organ systems. This is the case for the microbiome-immune interaction, which is not yet included in any safety studies. Methods: A high-throughput in vitro model was used to elucidate the potential effects of environmental chemicals and chemical mixtures on microbiome-immune interactions. Therefore, a simplified human intestinal microbiota (SIHUMIx) consisting of eight bacterial species was cultured in vitro in a bioreactor that partially mimics intestinal conditions. The bacteria were continuously exposed to mixtures of representative and widely distributed environmental chemicals, i.e. bisphenols (BPX) and/or per- and polyfluoroalkyl substances (PFAS) at concentrations of 22 µM and 4 µM, respectively. Furthermore, changes in the immunostimulatory potential of exposed microbes were investigated using a co-culture system with human peripheral blood mononuclear cells (PBMCs). Results: The exposure to BPX, PFAS or their mixture did not influence the community structure and the riboflavin production of SIHUMIx in vitro. However, it altered the potential of the consortium to stimulate human immune cells: in particular, activation of CD8+ MAIT cells was affected by the exposure to BPX- and PFAS mixtures-treated bacteria. Discussion: The present study provides a model to investigate how environmental chemicals can indirectly affect immune cells via exposed microbes. It contributes to the much-needed knowledge on the effects of EDCs on an organ system that has been little explored in this context, especially from the perspective of cumulative exposure.


Asunto(s)
Microbioma Gastrointestinal , Fenoles , Humanos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Fenoles/toxicidad , Compuestos de Bencidrilo/toxicidad , Fluorocarburos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Técnicas de Cocultivo , Contaminantes Ambientales/toxicidad , Bacterias/efectos de los fármacos , Bacterias/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA