Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.392
Filtrar
1.
Bioresour Bioprocess ; 11(1): 80, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115754

RESUMEN

Microbial enhanced oil recovery (MEOR) is a cost effective and efficient method for recovering residual oil. However, the presence of wax (paraffin) in residual oil can substantially reduce the efficiency of MEOR. Therefore, microbial dewaxing is a critical process in MEOR. In this study, a bacterial dewaxing agent of three spore-forming bacteria was developed. Among these bacteria, Bacillus subtilis GZ6 produced the biosurfactant surfactin. Replacing the promoter of the surfactin synthase gene cluster (srfA), increased the titer of surfactin in this strain from 0.33 g/L to 2.32 g/L. The genetically modified strain produced oil spreading rings with diameters increasing from 3.5 ± 0.1 to 4.1 ± 0.2 cm. The LadA F10L/N133R mutant was created by engineering an alkane monooxygenase (LadA) using site-directed mutagenesis in the Escherichia coli host. Compared to the wild-type enzyme, the resulting mutant exhibited an 11.7-fold increase in catalytic efficiency toward the substrate octadecane. When the mutant (pIMPpladA2mu) was expressed in Geobacillus stearothermophilus GZ178 cells, it exhibited a 2.0-fold increase in octadecane-degrading activity. Cultures of the two modified strains (B. subtilis GZ6 (pg3srfA) and G. stearothermophilus GZ178 (pIMPpladA2mu)) were mixed with the culture of Geobacillus thermodenitrificans GZ156 at a ratio of 5:80:15. The resulting composition increased the rate of wax removal by 35% compared to the composition composed of three native strains. This study successfully developed a multi-strain bacterial agent with enhanced oil wax removal capabilities by genetically engineering two bacterial strains.

2.
Cells ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39120289

RESUMEN

This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.


Asunto(s)
Inflamación , Quinurenina , Humanos , Quinurenina/metabolismo , Inflamación/tratamiento farmacológico , Animales , Terapia Molecular Dirigida , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores
3.
Sci Rep ; 14(1): 18217, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107441

RESUMEN

Flavin-dependent monooxygenases (FMOs) are a valuable group of biocatalysts that can regioselectively introduce a hydroxy group for the targeted modification of biologically active compounds. Here, we present the fdeE, the FMO from Herbaspirillum seropedicae SmR1 that is a part of the naringenin degradation pathway and is active towards a wide range of flavonoids-flavanones, flavones, isoflavones, and flavonols. Bioinformatics and biochemical analysis revealed a high similarity between the analyzed enzyme and other F8H FMOs what might indicate convergent evolutionary mechanism of flavonoid degradation pathway emergence by microorganism. A simple approach with the manipulation of the reaction environment allowed the stable formation of hydroxylation products, which showed very high reactivity in both in vivo and in vitro assays. This approach resulted in an 8-hydroxyquercetin-gossypetin titer of 0.16 g/L and additionally it is a first report of production of this compound.


Asunto(s)
Flavonoles , Isoflavonas , Isoflavonas/metabolismo , Isoflavonas/química , Isoflavonas/biosíntesis , Flavonoles/metabolismo , Flavonoides/metabolismo , Flavonoides/química , Flavonoides/biosíntesis , Hidroxilación , Especificidad por Sustrato
4.
Oncol Lett ; 28(4): 469, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39119237

RESUMEN

Highly metastatic and heterogeneous breast cancer affects the health of women worldwide. Abnormal expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein ß (YWHAB), also known as 14-3-3ß, is associated with the tumorigenesis and progression of bladder cancer, lung cancer and hepatocellular carcinoma; however, to the best of our knowledge, the role of YWHAB in breast cancer remains unknown. In the present study, a dual luciferase assay demonstrated that the transcription factor iroquois homeobox 5 may regulate YWHAB expression by affecting the promoter sequence upstream of its transcription start site. Subsequently, it was demonstrated that overexpression of YWHAB did not affect proliferation, but did reduce the migration and invasion of MDA-MB-231 cells. Furthermore, knockdown of YWHAB promoted the migration and invasion of MCF7 cells. Transcriptomics analysis demonstrated that when YWHAB was overexpressed, 61 genes were differentially expressed, of which 43 genes were upregulated and 18 genes were downregulated. These differentially expressed genes (DEGs) were enriched in cancer-related pathways, such as 'TNF signaling pathway' [Kyoto Encyclopedia of Genes and Genomes (KEGG): map04688]. The pathway with the largest number of DEGs was 'Rheumatoid arthritis' (KEGG: map05323). Notably, YWHAB downregulated vimentin, which is a mesenchymal marker, thus suggesting that it may weaken the mesenchymal properties of cells. These findings indicate that YWHAB may be a potential therapeutic target in breast cancer and further work should be performed to assess its actions as a potential tumor suppressor.

5.
Bioorg Chem ; 151: 107718, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39142195

RESUMEN

S-omeprazole and R-rabeprazole are important proton pump inhibitors (PPIs) used for treating peptic disorders. They can be biosynthesized from the corresponding sulfide catalyzed by Baeyer-Villiger monooxygenases (BVMOs). During the development of BVMOs for target sulfoxide preparation, stereoselectivity and overoxidation degree are important factors considered most. In the present study, LnPAMO-Mu15 designed previously and TtPAMO from Thermothelomyces thermophilus showed high (S)- and (R)-configuration stereoselectivity respectively towards thioethers. TtPAMO was found to be capable of oxidating omeprazole sulfide (OPS) and rabeprazole sulfide (RPS) into R-omeprazole and R-rabeprazole respectively. However, the overoxidation issue existed and limited the application of TtPAMO in the biosynthesis of sulfoxides. The structural mechanisms for adverse stereoselectivity between LnPAMO-Mu15 and TtPAMO towards OPS and the overoxidation of OPS by TtPAMO were revealed, based on which, TtPAMO was rationally designed focused on the flexibility of loops near catalytic sites. The variant TtPAMO-S482Y was screened out with lowest overoxidation degree towards OPS and RPS due to the decreased flexibility of catalytic center than TtPAMO. The success in this study not only proved the rationality of the overoxidation mechanism proposed in this study but also provided hints for the development of BVMOs towards thioether substrate for corresponding sulfoxide preparation.

6.
Microb Cell Fact ; 23(1): 227, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135032

RESUMEN

BACKGROUND: The large-scale biocatalytic application of oxidoreductases requires systems for a cost-effective and efficient regeneration of redox cofactors. These represent the major bottleneck for industrial bioproduction and an important cost factor. In this work, co-expression of the genes of invertase and a Baeyer-Villiger monooxygenase from Burkholderia xenovorans to E. coli W ΔcscR and E. coli BL21 (DE3) enabled efficient biotransformation of cyclohexanone to the polymer precursor, ε-caprolactone using sucrose as electron source for regeneration of redox cofactors, at rates comparable to glucose. E. coli W ΔcscR has a native csc regulon enabling sucrose utilization and is deregulated via deletion of the repressor gene (cscR), thus enabling sucrose uptake even at concentrations below 6 mM (2 g L-1). On the other hand, E. coli BL21 (DE3), which is widely used as an expression host does not contain a csc regulon. RESULTS: Herein, we show a proof of concept where the co-expression of invertase for both E. coli hosts was sufficient for efficient sucrose utilization to sustain cofactor regeneration in the Baeyer-Villiger oxidation of cyclohexanone. Using E. coli W ΔcscR, a specific activity of 37 U gDCW-1 was obtained, demonstrating the suitability of the strain for recombinant gene co-expression and subsequent whole-cell biotransformation. In addition, the same co-expression cassette was transferred and investigated with E. coli BL21 (DE3), which showed a specific activity of 17 U gDCW- 1. Finally, biotransformation using photosynthetically-derived sucrose from Synechocystis S02 with E. coli W ΔcscR expressing BVMO showed complete conversion of cyclohexanone after 3 h, especially with the strain expressing the invertase gene in the periplasm. CONCLUSIONS: Results show that sucrose can be an alternative electron source to drive whole-cell biotransformations in recombinant E. coli strains opening novel strategies for sustainable chemical production.


Asunto(s)
Escherichia coli , Sacarosa , beta-Fructofuranosidasa , Escherichia coli/genética , Escherichia coli/metabolismo , beta-Fructofuranosidasa/metabolismo , beta-Fructofuranosidasa/genética , Sacarosa/metabolismo , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/genética , Ciclohexanonas/metabolismo , Oxidación-Reducción , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Electrones , Biotransformación , Caproatos , Lactonas
7.
Arch Toxicol ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136732

RESUMEN

Despite extensive research on the metabolism of polychlorinated biphenyls (PCBs), knowledge gaps persist regarding their isoform-specific biotransformation pathways. This study aimed to elucidate the role of different cytochrome P450 enzymes in PCB metabolism, focusing on WHO-congeners 2,4,4'-trichlorobiphenyl (PCB28), 2,2',5,5'-tetrachlorobiphenyl (PCB52), and 2,2',4,5,5'-pentachlorobiphenyl (PCB101). Utilizing engineered HEK293 cell lines, we investigated the in vitro metabolism of these PCBs by CYP1A2, CYP2C8, CYP2C9, CYP3A4, CYP2A6, and CYP2E1, revealing robust production of hydroxylated metabolites. Our results show that CYP2A6 plays a major role in the metabolism of these congeners responsible for predominant formation of para-position hydroxylated metabolites, with concentrations reaching up to 1.61 µg/L (5,89 nM) for PCB28, 316.98 µg/L (1,03 µM) for PCB52, and 151.1 µg/L (441 nM) for PCB101 from a 20 µM parent PCB concentration. Moreover, concentration-dependent cytotoxic and cytostatic effects induced by reactive intermediates of the PCB hydroxylation pathway were observed in HEK293CYP2A6 cells, for all three congeners tested. CYP2A6 was specifically capable of activating PCBs 28 and 101 to genotoxic metabolites which produced genetic defects which were propagated to subsequent generations, potentially contributing to carcinogenesis. In a clinical study examining CYP2A6 enzyme activity in formerly exposed individuals with elevated internal PCB levels, a participant with increased enzyme activity showed a direct association between the phenotypic activity of CYP2A6 and the metabolism of PCB28, confirming the role of CYP2A6 in the in vivo metabolism of PCB28 also in humans. These results altogether reinforce the concept that CYP2A6 plays a pivotal role in PCB congener metabolism and suggest its significance in human health, particularly in the metabolism of lower chlorinated, volatile PCB congeners.

8.
Biodegradation ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001975

RESUMEN

Plastic pollution poses a significant environmental challenge. In this study, the strain Enterobacter cloacae O5-E, a bacterium displaying polyethylene-degrading capabilities was isolated. Over a span of 30 days, analytical techniques including x-ray diffractometry, scanning electron microscopy, optical profilometry, hardness testing and mass spectrometric analysis were employed to examine alterations in the polymer. Results revealed an 11.48% reduction in crystallinity, a 50% decrease in hardness, and a substantial 25-fold increase in surface roughness resulting from the pits and cracks introduced in the polymer by the isolate. Additionally, the presence of degradational by-products revealed via gas chromatography ascertains the steady progression of degradation. Further, recognizing the pivotal role of alkane monooxygenase in plastic degradation, the study expanded to detect this enzyme in the isolate molecularly. Molecular docking studies were conducted to assess the enzyme's affinity with various polymers, demonstrating notable binding capability with most polymers, especially with polyurethane (- 5.47 kcal/mol). These findings highlight the biodegradation potential of Enterobacter cloacae O5-E and the crucial involvement of alkane monooxygenase in the initial steps of the degradation process, offering a promising avenue to address the global plastic pollution crisis.

9.
Bioresour Bioprocess ; 11(1): 64, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954282

RESUMEN

Regioselective and enantioselective hydroxylation of propargylic C-H bonds are useful reactions but often lack appropriate catalysts. Here a green and efficient asymmetric hydroxylation of primary and secondary C-H bonds at propargylic positions has been established. A series of optically active propargylic alcohols were prepared with high regio- and enantioselectivity (up to 99% ee) under mild reaction conditions by using P450tol, while the C≡C bonds in the molecule remained unreacted. This protocol provides a green and practical method for constructing enantiomerically chiral propargylic alcohols. In addition, we also demonstrated that the biohydroxylation strategy was able to scaled up to 2.25 mmol scale with the production of chiral propargyl alcohol 2a at a yield of 196 mg with 96% ee, which's an important synthetic intermediate of antifungal drug Ravuconazole.

10.
Water Res ; 262: 122090, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39032340

RESUMEN

Ammonia monooxygenase (AMO)-mediated cometabolism of organic pollutants has been widely observed in biological nitrogen removal process. However, its molecular mechanism remains unclear, hindering its practical application. Furthermore, conventional nitrification systems encounter significant challenges such as air pollution and the loss of ammonia-oxidizing bacteria, when dealing with wastewater containing volatile organic pollutants. This study developed a nitrifying membrane-aerated biofilm reactor (MABR) to enhance the biodegradation of volatile 4-chlorophenol (4-CP). Results showed that 4-CP was primarily removed via Nitrosomonas nitrosa-mediated cometabolism in the presence of NH4+-N, supported by the increased nicotinamide adenine dinucleotide (NADH) and adenosine triphosphate (ATP) content, AMO activity and the related genes abundance. Hydroquinone, detected for the first time and produced via oxidative dechlorination, as well as 4-chlorocatechol was primary transformation products of 4-CP. Nitrosomonas nitrosa AMO structural model was constructed for the first time using homology modeling. Molecular dynamics simulation suggested that the ortho-carbon in the benzene ring of 4-CP was more prone to metabolismcompared to the ipso-carbon. Density functional theory calculation revealed that 4-CP was metabolized by AMO via H-abstraction-OH-rebound reaction, with a significantly higher rebound barrier at the ipso-carbon (16.37 kcal·mol-1) as compared to the ortho-carbon (6.7 kcal·mol-1). This study fills the knowledge gap on the molecular mechanism of AMO-mediated cometabolism of organic pollutants, providing practical and theoretical foundations for improving volatile organic pollutants removal through nitrifying MABR.

11.
Int J Biol Macromol ; 276(Pt 2): 133929, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39025178

RESUMEN

Among the enzymes derived from fungus that act on polysaccharides, lytic polysaccharide monooxygenase (LPMOs) has emerged as a new member with complex reaction mechanisms and high efficiency in dealing with recalcitrant crystalline polysaccharides. This study reported the characteristics, structure, and biochemical properties of a novel LPMO from Talaromyces sedimenticola (namely MaLPMO9K) obtained from the Mariana Trench. MaLPMO9K was a multi-domain protein combined with main body and a carbohydrate-binding module. It was heterologously expressed in E. coli for analyzing peroxidase activity in reactions with the substrate 2,6-DMP, where H2O2 serves as a co-substrate. Optimal peroxidase activity for MaLPMO9K was observed at pH 8 and 25 °C, achieving the best Vmax value of 265.2 U·g-1. In addition, MaLPMO9K also demonstrated the ability to treat cellulose derivatives, and cellobiose substrates without the presence of reducing agents.

12.
J Glob Antimicrob Resist ; 38: 227-230, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004340

RESUMEN

OBJECTIVES: To investigate the tet(X) gene, a determinant of tigecycline resistance, in the emerging pathogen Elizabethkingia meningoseptica and its association with an integrative and conjugative element (ICE). METHODS: All E. meningoseptica genomes from the National Center for Biotechnology Information (n = 87) were retrieved and annotated for resistome searches using the CARD database. A phylogenic analysis was performed based on the E. meningoseptica core genome. The ICE was identified through comparative genomics with other ICEs occurring in Elizabethkingia spp. RESULTS: Phylogenetic analysis revealed E. meningoseptica genomes from six countries distributed across different lineages, some of which persisted for years. The common resistome of these genomes included blaBlaB, blaCME, blaGOB, ranA/B, aadS, and catB (genes associated with resistance to ß-lactams, aminoglycosides, and chloramphenicol). Some genomes also presented additional resistance genes (dfrA, ereD, blaVEB, aadS, and tet(X)). Interestingly, tet(X) and aadS were located in an ICE of 49 769 bp (ICEEmSQ101), which was fully obtained from the E. meningoseptica SQ101 genome. We also showed evidence that the other 27 genomes harboured this ICE. The distribution of ICEEmSQ101, carrying tet(X), was restricted to a single Chinese lineage. CONCLUSIONS: The tet(X) gene is not prevalent in the species E. meningoseptica, as previously stated for the genus Elizabethkingia, since it is present only in a single Chinese lineage. We identified that several E. meningoseptica genomes harboured an ICE that mobilized the Elizabethkingia tet(X) gene and exhibited characteristics similar to the ICEs of other Flavobacteria, which would favour their transmission in this bacterial family.

13.
Front Microbiol ; 15: 1425790, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070265

RESUMEN

Aflatoxins (AFs) are highly carcinogenic metabolites produced by Aspergillus species that can contaminate critical food staples, leading to significant health and economic risks. The cytochrome P450 monooxygenase AflG catalyzes an early step in AF biosynthesis, resulting in the conversion of averantin (AVN) to 5'-hydroxy-averantin. However, the molecular mechanism underlying the AflG-AVN interaction remains unclear. Here, we sought to understand the structural features of AflG in complex with AVN to enable the identification of inhibitors targeting the AflG binding pocket. To achieve this goal, we employed a comprehensive approach combining computational and experimental methods. Structural modeling and microsecond-scale molecular dynamics (MD) simulations yielded new insights into AflG architecture and unveiled unique ligand binding conformations of the AflG-AVN complex. High-throughput virtual screening of more than 1.3 million compounds pinpointed specific subsets with favorable predicted docking scores. The resulting compounds were ranked based on binding free energy calculations and evaluated with MD simulations and in vitro experiments with Aspergillus flavus. Our results revealed two compounds significantly inhibited AF biosynthesis. Comprehensive structural analysis elucidated the binding sites of competitive inhibitors and demonstrated their regulation of AflG dynamics. This structure-guided pipeline successfully enabled the identification of novel AflG inhibitors and provided novel molecular insights that will guide future efforts to develop effective therapeutics that prevent AF contamination.

14.
ISME Commun ; 4(1): ycae092, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39071849

RESUMEN

Recently, an activity-based labelling protocol for the in vivo detection of ammonia- and alkane-oxidizing bacteria became available. This functional tagging technique enabled targeted studies of these environmentally widespread functional groups, but it failed to capture ammonia-oxidizing archaea (AOA). Since their first discovery, AOA have emerged as key players within the biogeochemical nitrogen cycle, but our knowledge regarding their distribution and abundance in natural and engineered ecosystems is mainly derived from PCR-based and metagenomic studies. Furthermore, the archaeal ammonia monooxygenase is distinctly different from its bacterial counterparts and remains poorly understood. Here, we report on the development of an activity-based labelling protocol for the fluorescent detection of all ammonia- and alkane-oxidizing prokaryotes, including AOA. In this protocol, 1,5-hexadiyne is used as inhibitor of ammonia and alkane oxidation and as bifunctional enzyme probe for the fluorescent labelling of cells via the Cu(I)-catalyzed alkyne-azide cycloaddition reaction. Besides efficient activity-based labelling of ammonia- and alkane-oxidizing microorganisms, this method can also be employed in combination with deconvolution microscopy for determining the subcellular localization of their ammonia- and alkane-oxidizing enzyme systems. Labelling of these enzymes in diverse ammonia- and alkane-oxidizing microorganisms allowed their visualization on the cytoplasmic membranes, the intracytoplasmic membrane stacks of ammonia- and methane-oxidizing bacteria, and, fascinatingly, on vesicle-like structures in one AOA species. The development of this novel activity-based labelling method for ammonia- and alkane-oxidizers will be a valuable addition to the expanding molecular toolbox available for research of nitrifying and alkane-oxidizing microorganisms.

15.
Turk J Chem ; 48(3): 470-483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050937

RESUMEN

The cofactor of a class A monooxygenase is reduced at an external location of the enzyme and is subsequently pulled back into the active site after the reduction. This observation brings the question; is there any defense mechanism of the active site of a monooxygenase against the formation of the harmful hydrogen peroxide from the reactive C(4a)-(hydro)peroxide intermediate? In this study, the barrier energies of one to three water molecule-mediated uncoupling reaction mechanisms in water exposed reaction conditions were determined. These were found to be facile barriers. Secondly, uncoupling was modeled in the active site of kynurenine 3-monooxygenase complex which was represented with 258 atoms utilizing cluster approach. Comparison of the barrier energy of the cluster model to the models that represent the water exposed conditions revealed that the enzyme does not have an inhibitory reaction site architecture as the compared barrier energies are roughly the same. The main defense mechanism of KMO against the formation of the hydrogen peroxide is deduced to be the insulation, and without this insulation, the monooxygenation would not take place as the barrier height of the hydrogen peroxide formation within the active site is almost half of that of the monooxygenation.

16.
Front Bioeng Biotechnol ; 12: 1419723, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055343

RESUMEN

Enzymatic saccharification is used to convert polysaccharides in lignocellulosic biomass to sugars which are then converted to ethanol or other bio-based fermentation products. The efficacy of commercial cellulase preparations can potentially increase if lytic polysaccharide monooxygenase (LPMO) is included. However, as LPMO requires both a reductant and an oxidant, such as molecular oxygen, a reevaluation of process configurations and conditions is warranted. Saccharification and fermentation of pretreated softwood was investigated in demonstration-scale experiments with 10 m3 bioreactors using an LPMO-containing cellulase preparation, a xylose-utilizing yeast, and either simultaneous saccharification and fermentation (SSF) or hybrid hydrolysis and fermentation (HHF) with a 24-hour or 48-hour initial phase and with 0.15 vvm aeration before addition of the yeast. The conditions used for HHF, especially with 48 h initial phase, resulted in better glucan conversion, but in poorer ethanol productivity and in poorer initial ethanol yield on consumed sugars than the SSF. In the SSF, hexose sugars such as glucose and mannose were consumed faster than xylose, but, in the end of the fermentation >90% of the xylose had been consumed. Chemical analysis of inhibitory pretreatment by-products indicated that the concentrations of heteroaromatic aldehydes (such as furfural), aromatic aldehydes, and an aromatic ketone decreased as a consequence of the aeration. This was attributed mainly to evaporation caused by the gas flow. The results indicate that further research is needed to fully exploit the advantages of LPMO without compromising fermentation conditions.

17.
Plant J ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072959

RESUMEN

Triterpenoids (C30-isoprenoids) represent a major group of natural products with various physiological functions in plants. Triterpenoids and their derivatives have medicinal uses owing to diverse bioactivities. Arjuna (Terminalia arjuna) tree bark accumulates highly oxygenated ß-amyrin-derived oleanane triterpenoids (e.g., arjunic acid, arjungenin, and arjunolic acid) with cardioprotective roles. However, biosynthetic routes and enzymes remain poorly understood. We mined the arjuna transcriptome and conducted cytochrome P450 monooxygenase (P450) assays using Saccharomyces cerevisiae and Nicotiana benthamiana to identify six P450s and two P450 reductases for oxidative modifications of oleanane triterpenoids. P450 assays using oleananes revealed a greater substrate promiscuity of C-2α and C-23 hydroxylases/oxidases than C-28 oxidases. CYP716A233 and CYP716A432 catalyzed ß-amyrin/erythrodiol C-28 oxidation to produce oleanolic acid. C-2α hydroxylases (CYP716C88 and CYP716C89) converted oleanolic acid and hederagenin to maslinic acid and arjunolic acid. CYP716C89 also hydroxylated erythrodiol and oleanolic aldehyde. However, CYP714E107a and CYP714E107b catalyzed oleanolic acid/maslinic acid/arjunic acid, C-23 hydroxylation to form hederagenin, arjunolic acid and arjungenin, and hederagenin C-23 oxidation to produce gypsogenic acid, but at a lower rate than oleanolic acid C-23 hydroxylation. Overall, P450 substrate selectivity suggested that C-28 oxidation is the first P450-catalyzed oxidative modification in the arjuna triterpenoid pathway. However, the pathway might branch thereafter through C-2α/C-23 hydroxylation of oleanolic acid. Taken together, these results provided new insights into substrate range of P450s and unraveled biosynthetic routes of triterpenoids in arjuna. Moreover, complete elucidation and reconstruction of arjunolic acid pathway in S. cerevisiae and N. benthamiana suggested the utility of arjuna P450s in heterologous production of cardioprotective compounds.

18.
Arch Microbiol ; 206(8): 363, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073473

RESUMEN

Soil and groundwater were investigated for the genes encoding soluble and particulate methane monooxygenase/ammonia monooxygenase (sMMO, pMMO/AMO), toluene 4-monooxygenase (T4MO), propane monooxygenase (PMO) and phenol hydroxylase (PH). The objectives were (1) to determine which subunits were present, (2) to examine the diversity of the phylotypes associated with the biomarkers and (3) to identify which metagenome associated genomes (MAGs) contained these subunits. All T4MO and PH subunits were annotated in the groundwater metagenomes, while few were annotated in the soil metagenomes. The majority of the soil metagenomes included only four sMMO subunits. Only two groundwater metagenomes contained five sMMO subunits. Gene counts for the pMMO subunits varied between samples. The majority of the soil metagenomes were annotated for all four PMO subunits, while three out of eight groundwater metagenomes contained all four PMO subunits. A comparison of the blast alignments for the sMMO alpha chain (mmoX) indicated the phylotypes differed between the soil and groundwater metagenomes. For the pMMO/AMO alpha subunit (pmoA/amoA), Nitrosospira was important for the soil metagenomes, while Methylosinus and Methylocystis were dominant for the groundwater metagenomes. The majority of pmoA alignments from both metagenomes were from uncultured bacteria. High quality MAGs were obtained from the groundwater data. Four MAGs (Methylocella and Cypionkella) contained sMMO subunits. Another three MAGs, within the order Pseudomonadales, contained all three pMMO subunits. All PH subunits were detected in seven MAGs (Azonexus, Rhodoferax, Aquabacterium). In those seven, all contained catechol 2,3-dioxagenase, and Aquabacterium also contained catechol 1,2-dioxygenase. T4MO subunits were detected in eight MAGs (Azonexus, Rhodoferax, Siculibacillus) and all, except one, contained all six subunits. Four MAGs (Rhodoferax and Azonexus) contained all subunits for PH and T4MO, as well as catechol 2,3-dixoygenase. The detection of T4MO and PH in groundwater metagenomes and MAGs has important implications for the potential oxidation of groundwater contaminants.


Asunto(s)
Agua Subterránea , Metagenoma , Oxigenasas , Filogenia , Microbiología del Suelo , Agua Subterránea/microbiología , Agua Subterránea/química , Oxigenasas/genética , Oxigenasas/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/enzimología , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Citocromo P-450 CYP4A/genética , Citocromo P-450 CYP4A/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Oxigenasas de Función Mixta
19.
Front Cell Infect Microbiol ; 14: 1413787, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836053

RESUMEN

Background: Trimethylamine-N-oxide (TMAO) is produced by hepatic flavin-containing monooxygenase 3 (FMO3) from trimethylamine (TMA). High TMAO level is a biomarker of cardiovascular diseases and metabolic disorders, and it also affects periodontitis through interactions with the gastrointestinal microbiome. While recent findings indicate that periodontitis may alter systemic TMAO levels, the specific mechanisms linking these changes and particular oral pathogens require further clarification. Methods: In this study, we established a C57BL/6J male mouse model by orally administering Porphyromonas gingivalis (P. gingivalis, Pg), Fusobacterium nucleatum (F. nucleatum, Fn), Streptococcus mutans (S. mutans, Sm) and PBS was used as a control. We conducted LC-MS/MS analysis to quantify the concentrations of TMAO and its precursors in the plasma and cecal contents of mice. The diversity and composition of the gut microbiome were analyzed using 16S rRNA sequencing. TMAO-related lipid metabolism and enzymes in the intestines and liver were assessed by qPCR and ELISA methods. We further explored the effect of Pg on FMO3 expression and lipid molecules in HepG2 cells by stimulating the cells with Pg-LPS in vitro. Results: The three oral pathogenic bacteria were orally administered to the mice for 5 weeks. The Pg group showed a marked increase in plasma TMAO, betaine, and creatinine levels, whereas no significant differences were observed in the gut TMAO level among the four groups. Further analysis showed similar diversity and composition in the gut microbiomes of both the Pg and Fn groups, which were different from the Sm and control groups. The profiles of TMA-TMAO pathway-related genera and gut enzymes were not significantly different among all groups. The Pg group showed significantly higher liver FMO3 levels and elevated lipid factors (IL-6, TG, TC, and NEFA) in contrast to the other groups. In vitro experiments confirmed that stimulation of HepG2 cells with Pg-LPS upregulated the expression of FMO3 and increased the lipid factors TC, TG, and IL-6. Conclusion: This study conclusively demonstrates that Pg, compared to Fn and Sm, plays a critical role in elevating plasma TMAO levels and significantly influences the TMA-TMAO pathway, primarily by modulating the expression of hepatic FMO3 and directly impacting hepatic lipid metabolism.


Asunto(s)
Microbioma Gastrointestinal , Metilaminas , Ratones Endogámicos C57BL , Oxigenasas , Porphyromonas gingivalis , Animales , Masculino , Metilaminas/metabolismo , Metilaminas/sangre , Humanos , Ratones , Oxigenasas/metabolismo , Porphyromonas gingivalis/metabolismo , Fusobacterium nucleatum/metabolismo , Redes y Vías Metabólicas , Células Hep G2 , Metabolismo de los Lípidos , Modelos Animales de Enfermedad , Periodontitis/microbiología , Periodontitis/metabolismo , Hígado/metabolismo , ARN Ribosómico 16S/genética , Espectrometría de Masas en Tándem , Boca/microbiología
20.
Front Endocrinol (Lausanne) ; 15: 1384953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38836233

RESUMEN

Background: Nicotinamide adenine dinucleotide (NAD+) is a critical coenzyme involved in kidney disease, yet its regulation in diabetic kidney disease (DKD) remains inadequately understood. Objective: Therefore, we investigated the changes of NAD+ levels in DKD and the underlying mechanism. Methods: Alternations of NAD+ levels and its biosynthesis enzymes were detected in kidneys from streptozotocin-induced diabetic mouse model by real-time PCR and immunoblot. The distribution of NAD+ de novo synthetic enzymes was explored via immunohistochemical study. NAD+ de novo synthetic metabolite was measured by LC-MS. Human data from NephroSeq were analyzed to verify our findings. Results: The study showed that NAD+ levels were decreased in diabetic kidneys. Both mRNA and protein levels of kynurenine 3-monooxygenase (KMO) in NAD+ de novo synthesis pathway were decreased, while NAD+ synthetic enzymes in salvage pathway and NAD+ consuming enzymes remained unchanged. Further analysis of human data suggested KMO, primarily expressed in the proximal tubules shown by our immunohistochemical staining, was consistently downregulated in human diabetic kidneys. Conclusion: Our study demonstrated KMO of NAD+ de novo synthesis pathway was decreased in diabetic kidney and might be responsible for NAD+ reduction in diabetic kidneys, offering valuable insights into complex regulatory mechanisms of NAD+ in DKD.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , NAD , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , NAD/metabolismo , Humanos , Ratones , Diabetes Mellitus Experimental/metabolismo , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Riñón/metabolismo , Riñón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA