Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Intervalo de año de publicación
1.
Metab Eng ; 82: 29-40, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38224832

RESUMEN

Yarrowia lipolytica is widely used in biotechnology to produce recombinant proteins, food ingredients and diverse natural products. However, unstable expression of plasmids, difficult and time-consuming integration of single and low-copy-number plasmids hampers the construction of efficient production pathways and application to industrial production. Here, by exploiting sequence diversity in the long terminal repeats (LTRs) of retrotransposons and ribosomal DNA (rDNA) sequences, a set of vectors and methods that can recycle multiple and high-copy-number plasmids was developed that can achieve stable integration of long-pathway genes in Y. lipolytica. By combining these sequences, amino acids and antibiotic tags with the Cre-LoxP system, a series of multi-copy site integration recyclable vectors were constructed and assessed using the green fluorescent protein (HrGFP) reporter system. Furthermore, by combining the consensus sequence with the vector backbone of a rapidly degrading selective marker and a weak promoter, multiple integrated high-copy-number vectors were obtained and high levels of stable HrGFP expression were achieved. To validate the universality of the tools, simple integration of essential biosynthesis modules was explored, and 7.3 g/L of L-ergothioneine and 8.3 g/L of (2S)-naringenin were achieved in a 5 L fermenter, the highest titres reported to date for Y. lipolytica. These novel multi-copy genome integration strategies provide convenient and effective tools for further metabolic engineering of Y. lipolytica.


Asunto(s)
Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Plásmidos/genética , Ingeniería Metabólica , Biotecnología , Proteínas Recombinantes/genética
2.
Synth Syst Biotechnol ; 8(2): 331-338, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37215159

RESUMEN

Taxadiene is an important precursor for the biosynthesis of highly effective anticancer drug paclitaxel, but its microbial biosynthesis yield is very low. In this study, we employed Yarrowia lipolytica as a microbial host to produce taxadiene. First, a "push-pull" strategy was adopted to increase taxadiene production by 234%. Then taxadiene synthase was fused with five solubilizing tags respectively, leading a maximum increase of 62.3% in taxadiene production when fused with SUMO. Subsequently, a multi-copy iterative integration method was used to further increase taxadiene titer, achieving the maximum titer of 23.7 mg/L in shake flask culture after three rounds of integration. Finally, the taxadiene titer was increased to 101.4 mg/L by optimization of the fed-batch fermentation conditions. This is the first report of taxadiene biosynthesis accomplished in Y. lipolytica, serving as a good example for the sustainable production of taxadiene and other terpenoids in this oleaginous yeast.

3.
Bioresour Technol ; 365: 128178, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36279979

RESUMEN

Resveratrol is a polyphenol with numerous applications in food, pharma, and cosmetics. Lack of precursors and low titer are the main problems hindering industrial scale resveratrol production. Based on previous prescreening, expressing the combination of FjTAL, Pc4CL1 and VvSTS achieved the best resveratrol titer. This was further improved to 235.1 mg/L through engineering the shikimic acid pathway, applying a modular enzyme assembly of Pc4CL1 and VvSTS, enhancing p-coumaric acid supply and diverting glycolytic flux toward erythrose-4-phosphate. The titer was increased to 819.1 mg/L following two rounds of multicopy integration of resveratrol biosynthesis and malonyl-CoA supply, respectively. The titer reached 22.5 g/L with a yield on glucose of 65.5 mg/g using an optimum fed-batch strategy in a 5 L bioreactor with morphology control. This research is the highest report on the de novo production of resveratrol in Yarrowia lipolytica and the findings lay a solid foundation for other producing polyphenols.


Asunto(s)
Yarrowia , Yarrowia/metabolismo , Resveratrol/metabolismo , Ingeniería Metabólica , Malonil Coenzima A/metabolismo
4.
Bioresour Technol ; 363: 127884, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067892

RESUMEN

Soy leghemoglobin is a key food additive that imparts meaty flavor and color to meat analogs. Here, a Pichia pastoris strain capable of high-yield secretory production of functional leghemoglobin was developed through gene dosage optimization and heme pathway consolidation. First, multi-copy integration of LegH expression cassette was achieved via both post-transformational vector amplification and CRISPR/Cas9 mediated genome editing methods. A combination of inducible expression and constitutive expression resulted in the highest production of leghemoglobin. Then, heme biosynthetic pathway was engineered to address challenges in heme depletion and leghemoglobin secretion. Finally, the disruption of ku70 was complemented in engineered P. pastoris strain to enable high-density fermentation in a 10-L bioreactor. These engineering strategies increased the secretion of leghemoglobin by more than 83-fold, whose maximal leghemoglobin titer and heme binding ratio reached as high as 3.5 g/L and 93 %, respectively. This represents the highest secretory production of heme-containing proteins ever reported.


Asunto(s)
Leghemoglobina , Pichia , Aditivos Alimentarios/metabolismo , Globinas/metabolismo , Hemo/metabolismo , Leghemoglobina/genética , Leghemoglobina/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomycetales
5.
Synth Syst Biotechnol ; 7(3): 1002-1011, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35782483

RESUMEN

Genomic integration of genes and pathway-sized DNA cassettes is often an indispensable way to construct robust and productive microbial cell factories. For some uncommon microbial hosts, such as Mycolicibacterium and Mycobacterium species, however, it is a challenge. Here, we present a multiplexed integrase-assisted site-specific recombination (miSSR) method to precisely and iteratively integrate genes/pathways with controllable copies in the chromosomes of Mycolicibacteria for the purpose of developing cell factories. First, a single-step multi-copy integration method was established in M. neoaurum by a combination application of mycobacteriophage L5 integrase and two-step allelic exchange strategy, the efficiencies of which were ∼100% for no more than three-copy integration events and decreased sharply to ∼20% for five-copy integration events. Second, the R4, Bxb1 and ΦC31 bacteriophage Att/Int systems were selected to extend the available integration toolbox for multiplexed gene integration events. Third, a reconstructed mycolicibacterial Xer recombinases (Xer-cise) system was employed to recycle the selection marker of gene recombination to facilitate the iterative gene manipulation. As a proof of concept, the biosynthetic pathway of ergothioneine (EGT) in Mycolicibacterium neoaurum ATCC 25795 was achieved by remodeling its metabolic pathway with a miSSR system. With six copies of the biosynthetic gene clusters (BGCs) of EGT and pentose phosphate isomerase (PRT), the titer of EGT in the resulting strain in a 30 mL shake flask within 5 days was enhanced to 66 mg/L, which was 3.77 times of that in the wild strain. The improvements indicated that the miSSR system was an effective, flexible, and convenient tool to engineer the genomes of Mycolicibacteria as well as other strains in the Mycobacteriaceae due to their proximate evolutionary relationships.

6.
J Gen Appl Microbiol ; 68(1): 10-16, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35418536

RESUMEN

Ascofuranone and its precursor, ilicicolin A, are secondary metabolites with various pharmacological activities that are produced by Acremonium egyptiacum. In particular, ascofuranone strongly inhibits trypanosome alternative oxidase and represents a potential drug candidate against African trypanosomiasis. However, difficulties associated with industrial production of ascofuranone by A. egyptiacum, specifically the co-production of ascochlorin, which inhibits mammalian respiratory chain complex III at low concentrations, has precluded its widespread application. Therefore, in this study, ascofuranone biosynthetic genes (ascA-E and H-J) were heterologously expressed in Aspergillus sojae, which produced very low-levels of endogenous secondary metabolites under conventional culture conditions. As a result, although we obtained transformants producing both ilicicolin A and ascofuranone, they were produced only when an adequate concentration of chloride ions was added to the medium. In addition, we succeeded in increasing the production of ilicicolin A, by enhancing the expression of the rate-determining enzyme AscD, using a multi-copy integration system. The heterologous expression approach described here afforded the production of both ascofuranone and ilicicolin A, allowing for their development as therapeutics.


Asunto(s)
Sesquiterpenos , Animales , Aspergillus , Mamíferos , Sesquiterpenos/farmacología
7.
Front Microbiol ; 13: 851706, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300487

RESUMEN

Caffeic acid, a plant-sourced phenolic compound, has a variety of biological activities, such as antioxidant and antimicrobial properties. The caffeic acid biosynthetic pathway was initially constructed in S. cerevisiae, using codon-optimized TAL (coTAL, encoding tyrosine ammonia lyase) from Rhodobacter capsulatus, coC3H (encoding p-coumaric acid 3-hydroxylase) and coCPR1 (encoding cytochrome P450 reductase 1) from Arabidopsis thaliana in 2 µ multi-copy plasmids to produce caffeic acid from glucose. Then, integrated expression of coTAL via delta integration with the POT1 gene (encoding triose phosphate isomerase) as selection marker and episomal expression of coC3H, coCPR1 using the episomal plasmid pLC-c3 were combined, and caffeic acid production was proved to be improved. Next, the delta and rDNA multi-copy integration methods were applied to integrate the genes coC3H and coCPR1 into the chromosome of high p-coumaric acid yielding strain QT3-20. The strain D9 constructed via delta integration outperformed the other strains, leading to 50-fold increased caffeic acid production in optimized rich media compared with the initial construct. The intercomparison between three alternative multi-copy strategies for de novo synthesis of caffeic acid in S. cerevisiae suggested that delta-integration was effective in improving caffeic acid productivity, providing a promising strategy for the production of valuable bio-based chemicals in recombinant S. cerevisiae.

8.
J Biotechnol ; 339: 42-52, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34333044

RESUMEN

New Yarrowia lipolytica strains for the co-expression of steroidogenic mammalian proteins were obtained in this study. For this purpose, a two-step approach for constructing recombinant strains that permits the simple introduction of several expression cassettes encoding heterologous proteins into the yeast genome was successfully applied. This study tested two series of integrative multi-copy expression vectors containing cDNAs for the mature forms of P450scc system components (cytochrome P450scc (CYP11A1), adrenodoxin reductase, adrenodoxin, or fused adrenodoxin-P450scc) or for P45017α (CYP17A1) under the control of the isocitrate lyase promoter pICL1, which were constructed using the basic plasmids p64PT or p67PT (rDNA or the long terminal repeat (LTR) zeta of Ylt1 as integration targeting sequences and ura3d4 as a multi-copy selection marker). This study demonstrated the integration of up to three expression vectors containing different heterologous cDNA via their simultaneous transformation into haploid recipient strains. Additionally, further combinations of the different expression cassettes in one strain were obtained by subsequent diploidisation using selected haploid multi-copy transformants. Thus, recombinant strains containing three to five different expression cassettes were obtained, as demonstrated by Southern blotting. Expression of P450scc system proteins was identified by western blotting. The presented method for recombinant strain construction is a useful tool for the heterologous expression of multi-component enzyme systems in Y. lipolytica.


Asunto(s)
Yarrowia , Adrenodoxina , Animales , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , ADN Complementario , Plásmidos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
9.
Bioresour Technol ; 341: 125782, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34419880

RESUMEN

The carotenoid, α-carotene, is very beneficial for human health and wellness, but microbial production of this compound is notoriously difficult, due to the asymmetric rings on either end of its terpenoid backbone. Here, we report for the first time the efficient production of α-carotene in the industrial bacterium Corynebaterium glutamicum by using a combined pathway engineering approach including evaluation of the performance of different cyclases and analysis of key metabolic intermediates to determine flux bottlenecks in the carotenoid biosynthesis pathway. A multi-copy chromosomal integration method was pivotal in achieving stable expression of the cyclases. In fed-batch fermentation, 1,054 mg/L of α-carotene was produced by the best strain, which is the highest reported titer achieved in microbial fermentation. The success of increased α-carotene production suggests that the multi-copy chromosomal integration method can be a useful metabolic engineering tool for overexpression of key enzymes in C. glutamicum and other bacterium as well.


Asunto(s)
Corynebacterium glutamicum , Carotenoides/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Fermentación , Humanos , Ingeniería Metabólica
10.
Sheng Wu Gong Cheng Xue Bao ; 37(3): 950-965, 2021 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-33783160

RESUMEN

Saccharomyces cerevisiae is one of the most important hosts in metabolic engineering. Advanced gene editing technology has been widely used in the design and construction of S. cerevisiae cell factories. With the rapid development of gene editing technology, early gene editing technologies based on recombinase and homologous recombination have been gradually replaced by new editing systems. In this review, the principle and application of gene editing technology in S. cerevisiae are summarized. Here, we first briefly describe the classical gene editing techniques of S. cerevisiae. Then elaborate the genome editing system of MegNs, ZFNs and TALENs based on endonuclease. The latest research progress is especially introduced and discussed, including the CRISPR/Cas system, multi-copy integration of heterologous metabolic pathways, and genome-scale gene editing. Finally, we envisage the application prospects and development directions of Saccharomyces cerevisiae gene editing technology.


Asunto(s)
Edición Génica , Saccharomyces cerevisiae , Sistemas CRISPR-Cas/genética , Endonucleasas/genética , Saccharomyces cerevisiae/genética , Tecnología
11.
J Gen Appl Microbiol ; 67(2): 77-80, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-33298630

RESUMEN

Filamentous fungi, including Aspergillus sojae, are essential for the industrial production of enzymes. Although multi-copy introduction of a gene encoding the protein of interest is useful for increasing protein production, this method has not been established in the case of filamentous fungi. In this study, we aimed to establish an efficient system for multi-copy chromosomal integration and high-level expression of a heterologous gene in A. sojae using an attenuated selectable marker. Consequently, by truncating the promoter region of selectable markers, we efficiently introduced multiple copies of a heterologous gene and enhanced the rate of high-level protein-production in the strains. Since the multi-copy strains obtained in this study maintained high productivity even in a non-selective medium, this system could be applicable for industrial protein production.


Asunto(s)
Aspergillus/genética , Aspergillus/metabolismo , Marcadores Genéticos/genética , Proteínas Fúngicas/genética , Microbiología Industrial , Plásmidos/genética , Regiones Promotoras Genéticas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Transformación Genética
12.
Chinese Journal of Biotechnology ; (12): 950-965, 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-878606

RESUMEN

Saccharomyces cerevisiae is one of the most important hosts in metabolic engineering. Advanced gene editing technology has been widely used in the design and construction of S. cerevisiae cell factories. With the rapid development of gene editing technology, early gene editing technologies based on recombinase and homologous recombination have been gradually replaced by new editing systems. In this review, the principle and application of gene editing technology in S. cerevisiae are summarized. Here, we first briefly describe the classical gene editing techniques of S. cerevisiae. Then elaborate the genome editing system of MegNs, ZFNs and TALENs based on endonuclease. The latest research progress is especially introduced and discussed, including the CRISPR/Cas system, multi-copy integration of heterologous metabolic pathways, and genome-scale gene editing. Finally, we envisage the application prospects and development directions of Saccharomyces cerevisiae gene editing technology.


Asunto(s)
Sistemas CRISPR-Cas/genética , Endonucleasas/genética , Edición Génica , Saccharomyces cerevisiae/genética , Tecnología
13.
Protein Expr Purif ; 167: 105527, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31678666

RESUMEN

Precaution of classical swine fever (CSF) is an important mission for the worldwide swine industry. Glycoprotein E2 is the leading antigen candidate for subunit vaccine of classical swine fever virus (CSFV). In this study, two Spy-tagged E2 genes were synthesized in vitro and subcloned into pMCO-AOX vector for intracellular expression in Pichia pastoris after methanol induction. Western blot analysis and semi-quantitative analysis showed that the yield of recombinant E2 protein was improved 17.87 folds by using co-translocational signal peptide cSIG. After the construction of the tandem multiple copy expression vectors, further increase of E2 production was observed by repetitive transforming expression vectors into P. pastoris genome. Finally, the yeast transformants harboring 8 or 16 copies of cSIG-E2-Spy increased the E2 expression level by 27.01-fold or 30.72-fold, respectively. These results demonstrate that utilizing co-translocational signal peptide together with multi-copy integration strategy can increase the production of recombinant E2 protein efficiently.


Asunto(s)
Clonación Molecular/métodos , Proteínas del Envoltorio Viral , Animales , Virus de la Fiebre Porcina Clásica/metabolismo , Ratones , Señales de Clasificación de Proteína/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Saccharomycetales/genética , Porcinos , Proteínas del Envoltorio Viral/biosíntesis , Proteínas del Envoltorio Viral/genética
14.
World J Microbiol Biotechnol ; 35(2): 37, 2019 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-30715602

RESUMEN

With the reduction in oil reserves and steady increases in the price of oil, alternative carbon sources like methanol are promising, but an efficient conversion process to fuels and other chemicals is still desired. In this study, we demonstrated for the first time the production of lactic acid from methanol using a lactate dehydrogenase copy number amplifying strategy in Pichia pastoris. We engineered methylotrophic yeast (Pichia pastoris) producing D-lactic acid by D-lactate dehydrogenase gene (d-LDH) integration into the non-transcribed spacer of the ribosomal DNA (rDNA) locus and post-transformational amplification. The resultant engineered strains GS115/S8/Z3 and GS115/S16/Z3 produced 3.48 and 3.26 g/L of D-lactic acid from methanol, respectively, in a 96-h test tube fermentation. To our knowledge, this is the first report about D-lactic acid production from methanol by an engineered P. pastoris strain. The technique of gene integration into the rDNA locus and post-transformational gene amplification could be useful for metabolic engineering in P. pastoris, and the chemical production from methanol by engineered P. pastoris represents a promising industrial technology.


Asunto(s)
Ácido Láctico/biosíntesis , Ingeniería Metabólica , Metanol/metabolismo , Pichia/genética , Pichia/metabolismo , Fermentación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , L-Lactato Deshidrogenasa/genética , L-Lactato Deshidrogenasa/metabolismo
15.
Metab Eng ; 52: 153-167, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30529239

RESUMEN

Chromosomal integration of genes and pathways is of particular importance for large-scale and long-term fermentation in industrial biotechnology. However, stable, multi-copy integration of long DNA segments (e.g., large gene clusters) remains challenging. Here, we describe a plug-and-play toolkit that allows for high-efficiency, single-step, multi-locus integration of natural product (NP) biosynthetic gene clusters (BGCs) in actinomycetes, based on the innovative concept of "multiple integrases-multiple attB sites". This toolkit consists of 27 synthetic modular plasmids, which contain single- or multi-integration modules (from two to four) derived from five orthogonal site-specific recombination (SSR) systems. The multi-integration modules can be readily ligated into plasmids containing large BGCs by Gibson assembly, which can be simultaneously inserted into multiple native attB sites in a single step. We demonstrated the applicability of this toolkit by performing stabilized amplification of acetyl-CoA carboxylase genes to facilitate actinorhodin biosynthesis in Streptomyces coelicolor. Furthermore, using this toolkit, we achieved a 185.6% increase in 5-oxomilbemycin titers (from 2.23 to 6.37 g/L) in Streptomyces hygroscopicus via the multi-locus integration of the entire 5-oxomilbemycin BGC (72 kb) (up to four copies). Compared with previously reported methods, the advanced multiplex site-specific genome engineering (aMSGE) method does not require the introduction of any modifications into host genomes before the amplification of target genes or BGCs, which will drastically simplify and accelerate efforts to improve NP production. Considering that SSR systems are widely distributed in a variety of industrial microbes, this novel technique also promises to be a valuable tool for the enhanced biosynthesis of other high-value bioproducts.


Asunto(s)
Actinobacteria/genética , Actinobacteria/metabolismo , Ingeniería Metabólica/métodos , Recombinasas/genética , Vectores Genéticos , Redes y Vías Metabólicas/genética , Familia de Multigenes/genética , Plásmidos/genética , Recombinación Genética , Streptomyces/genética , Streptomyces/metabolismo
16.
Biotechnol Biofuels ; 11: 277, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30337956

RESUMEN

BACKGROUND: The thermotolerant methylotrophic yeast Ogataea polymorpha has been regarded as an important organism for basic research and biotechnological applications. It is generally recognized as an efficient and safe cell factory in fermentative productions of chemicals, biofuels and other bio-products. However, it is difficult to genetically engineer for the deficiency of an efficient and versatile genome editing technology. RESULTS: In this study, we developed a CRISPR-Cas9-assisted multiplex genome editing (CMGE) approach including multiplex genes knock-outs, multi-locus (ML) and multi-copy (MC) integration methods in yeasts. Based on CMGE, various genome modifications, including gene deletion, integration, and precise point mutation, were performed in O. polymorpha. Using the CMGE-ML integration method, three genes TAL from Herpetosiphon aurantiacus, 4CL from Arabidopsis thaliana and STS from Vitis vinifera of resveratrol biosynthetic pathway were simultaneously integrated at three different loci, firstly achieving the biosynthesis of resveratrol in O. polymorpha. Using the CMGE-MC method, ∼ 10 copies of the fusion expression cassette P ScTEF1 -TAL-P ScTPI1 -4CL-P ScTEF2 -STS were integrated into the genome. Resveratrol production was increased ~ 20 fold compared to the one copy integrant and reached 97.23 ± 4.84 mg/L. Moreover, the biosynthesis of human serum albumin and cadaverine were achieved in O. polymorpha using CMGE-MC to integrate genes HSA and cadA, respectively. In addition, the CMGE-MC method was successfully developed in Saccharomyces cerevisiae. CONCLUSIONS: An efficient and versatile multiplex genome editing method was developed in yeasts. The method would provide an efficient toolkit for genetic engineering and synthetic biology researches of O. polymorpha and other yeast species.

17.
Sci China Life Sci ; 60(9): 948-957, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28785950

RESUMEN

Bacterial prodigiosins are red-colored secondary metabolites with multiple activities, such as anticancer, antimalarial and immunosuppressive, which hold great potential for medical applications. In this study, dramatically enhanced prodigiosins (RED) production in Streptomyces coelicolor was achieved by combinatorial metabolic engineering, including inactivation of the repressor gene ohkA, deletion of the actinorhodin (ACT) and calcium-dependent antibiotic (CDA) biosynthetic gene clusters (BGCs) and multi-copy chromosomal integration of the RED BGC. The results showed that ohkA deletion led to a 1-fold increase of RED production over the wild-type strain M145. Then, the ACT and CDA BGCs were deleted successively based on the ΔohkA mutant (SBJ101). To achieve multi-copy RED BGC integration, artificial ΦC31 attB site(s) were inserted simultaneously at the position where the ACT and CDA BGCs were deleted. The resulting strains SBJ102 (with a single deletion of the ACT BGC and insertion of one artificial attB site) and SBJ103 (with the deletion of both BGCs and insertion of two artificial attB sites) produced 1.9- and 6-fold higher RED titers than M145, respectively. Finally, the entire RED BGC was introduced into mutants from SBJ101 to SBJ103, generating three mutants (from SBJ104 to SBJ106) with chromosomal integration of one to three copies of the RED BGC. The highest RED yield was from SBJ106, which produced a maximum level of 96.8 mg g-1 cell dry weight, showing a 12-fold increase relative to M145. Collectively, the metabolic engineering strategies employed in this study are very efficient for the construction of high prodigiosin-producing strains.


Asunto(s)
Microbiología Industrial/métodos , Ingeniería Metabólica , Familia de Multigenes/genética , Prodigiosina/biosíntesis , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Sitios de Ligazón Microbiológica/genética , Vías Biosintéticas/genética , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/genética , Mejoramiento Genético , Genoma Bacteriano/genética , Redes y Vías Metabólicas/genética
18.
Bioengineered ; 8(5): 441-445, 2017 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-28399696

RESUMEN

Komagataella phaffii (formerly Pichia pastoris) is a well-known fungal system for heterologous protein production in the context of modern biotechnology. To obtain higher protein titers in this system many researchers have sought to optimize gene expression by increasing the levels of transcription of the heterologous gene. This has been typically achieved by manipulating promoter sequences or by generating clones bearing multiple copies of the desired gene. The aim of this work is to describe how these different molecular strategies have been applied in K. phaffii presenting their advantages and drawbacks.


Asunto(s)
Ascomicetos/genética , Ascomicetos/metabolismo , Mejoramiento Genético/métodos , Regiones Promotoras Genéticas/genética , Ingeniería de Proteínas/métodos , Proteínas Recombinantes/biosíntesis , Factores de Transcripción/biosíntesis , Clonación Molecular/métodos , Dosificación de Gen/genética , Regulación Fúngica de la Expresión Génica/genética , Proteínas Recombinantes/genética , Factores de Transcripción/genética
19.
Metab Eng ; 33: 19-27, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26546089

RESUMEN

Despite recent advances in genome editing capabilities for the model organism Saccharomyces cerevisiae, the chromosomal integration of large biochemical pathways for stable industrial production remains challenging. In this work, we developed a simple platform for high-efficiency, single-step, markerless, multi-copy chromosomal integration of full biochemical pathways in Saccharomyces cerevisiae. In this Di-CRISPR (delta integration CRISPR-Cas) platform based on the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated systems (Cas), we specifically designed guide RNA sequences to target multiple delta sites in the yeast genome. The generation of double stranded breaks at the delta sites allowed simultaneous integration of multiple copies of linearized donor DNA containing large biochemical pathways. With our newly developed Di-CRISPR platform, we were able to attain highly efficient and markerless integration of large biochemical pathways and achieve an unprecedented 18-copy genomic integration of a 24 kb combined xylose utilization and (R,R)-2,3-butanediol (BDO) production pathway in a single step, thus generating a strain that was able to produce BDO directly from xylose. The simplicity and high efficiency of the Di-CRISPR platform could provide a superior alternative to high copy plasmids and would render this platform an invaluable tool for genome editing and metabolic engineering in S. cerevisiae.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cromosomas Fúngicos/genética , Dosificación de Gen/genética , Ingeniería Genética/métodos , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Regulación Fúngica de la Expresión Génica/genética , Marcadores Genéticos , Proteínas de Saccharomyces cerevisiae/genética
20.
Appl Microbiol Biotechnol ; 99(23): 10097-106, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26254786

RESUMEN

Calcitonin participates in controlling homeostasis of calcium and phosphorus and plays an important role in bone metabolism. The aim of this study was to endow an industrial strain of Saccharomyces cerevisiae with the ability to express chimeric human/salmon calcitonin (hsCT) without the use of antibiotics. To do so, a homologous recombination plasmid pUC18-rDNA2-ura3-P pgk -5hsCT-rDNA1 was constructed, which contains two segments of ribosomal DNA of 1.1 kb (rDNA1) and 1.4 kb (rDNA2), to integrate the heterologous gene into host rDNA. A DNA fragment containing five copies of a chimeric human/salmon calcitonin gene (5hsCT) under the control of the promoter for phosphoglycerate kinase (P pgk ) was constructed to express 5hsCT in S. cerevisiae using ura3 as a selectable auxotrophic marker gene. After digestion by restriction endonuclease HpaI, a linear fragment, rDNA2-ura3-P pgk -5hsCT-rDNA1, was obtained and transformed into the △ura3 mutant of S. cerevisiae by the lithium acetate method. The ura3-P pgk -5hsCT sequence was introduced into the genome at rDNA sites by homologous recombination, and the recombinant strain YS-5hsCT was obtained. Southern blot analysis revealed that the 5hsCT had been integrated successfully into the genome of S. cerevisiae. The results of Western blot and ELISA confirmed that the 5hsCT protein had been expressed in the recombinant strain YS-5hsCT. The expression level reached 2.04 % of total proteins. S. cerevisiae YS-5hsCT decreased serum calcium in mice by oral administration and even 0.01 g lyophilized S. cerevisiae YS-5hsCT/kg decreased serum calcium by 0.498 mM. This work has produced a commercial yeast strain potentially useful for the treatment of osteoporosis.


Asunto(s)
Calcitonina/biosíntesis , Calcitonina/genética , ADN Ribosómico/genética , Expresión Génica , Recombinación Homóloga , Saccharomyces cerevisiae/genética , Administración Oral , Animales , Southern Blotting , Western Blotting , Calcio/análisis , Cromosomas Fúngicos , Vectores Genéticos , Humanos , Ratones , Plásmidos , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Salmón , Suero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA