Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(12): e32442, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38975131

RESUMEN

The most suitable multi-model ensemble set of general circulation models is used to reduce the uncertainty associated with GCM selection and improve the accuracy of the model simulations. This study evaluated the performance of 20 global climate models participating in the Coupled Model Intercomparison Project Phase 6 (CMIP6) in reproducing precipitation patterns over the Abaya-Chamo Sub-basin, Ethiopia. For the validation and selection of the models' capabilities, datasets from the Climate Hazards Infrared Precipitation with Stations (CHIRPS) were used after comparing them with ground observational datasets. The objective was to identify the most suitable multi-model ensemble (MME) of a subset of CMIP6 GCMs to capture the rainfall for the 1981-2014 period over the region. Climate Data Operators (CDOs) were used in climate data processing and extraction, and the Mann-Kendall test and Theil-Sen slope estimator methods were utilized to analyze the trends of the CMIP6 simulations. Four statistical metrics (Nash-Sutcliffe coefficient, percent bias, normalized root mean square error, and Kling-Gupta efficiency) were used to further assess the performance of the models. A multi-criteria decision analysis approach, namely, the technique for order preferences by similarity to an ideal solution (TOPSIS) method, was used to obtain the overall ranks of CMIP6 models and to select the best-performing CMIP6 model in the region. The results indicated that CHIRPS and most of the CMIP6 simulations generally reproduced bimodal precipitation patterns over the region. The CESM2-WACCM, NorESM2-MM, NorESM2-LM, and NorESM2-LM models performed better than the other models in reproducing seasonal patterns for the winter, spring, summer, and autumn seasons, respectively. On the other hand, FGOALS-f3-L revealed the trends of the reference datasets for all seasons. In terms of the NSE, PB, NRMSE, and KGE metrics, EC-Earth3-C, EC-Earth3, EC-Earth3-C, and EC-Earth-C, respectively, were considered good at representing the observed features of precipitation over the region. EC-Earth3-C,EC-Earth3, EC-Earth3-Veg-LR, ACCESS-CM2, MPI-ESM1-2-HR, and CNRM-CM6-1-HR exhibited the best performances in the Abaya-Chamo Sub-basin.

2.
Heliyon ; 10(7): e28433, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38571592

RESUMEN

Global warming induces spatially heterogeneous changes in precipitation patterns, highlighting the need to assess these changes at regional scales. This assessment is particularly critical for Afghanistan, where agriculture serves as the primary livelihood for the population. New global climate model (GCM) simulations have recently been released for the recently established shared socioeconomic pathways (SSPs). This requires evaluating projected precipitation changes under these new scenarios and subsequent policy updates. This research employed six GCMs from the CMIP6 to project spatial and temporal precipitation changes across Afghanistan under all SSPs, including SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The employed GCMs were bias-corrected using the Global Precipitation Climatological Center's (GPCC) monthly gridded precipitation data with a 1.0° spatial resolution. Subsequently, the climate change factor was calculated to assess precipitation changes for both the near future (2020-2059) and the distant future (2060-2099). The bias-corrected projections' multi-model ensemble (MME) revealed increased precipitation across most of Afghanistan for SSPs with higher emissions scenarios. The bias-corrected simulations showed a substantial increase in summer precipitation of around 50%, projected under SSP1-1.9 in the southwestern region, while a decline of over 50% is projected in the northwestern region until 2100. The annual precipitation in the northwest region was projected to increase up to 15% for SSP1-2.6. SSP2-4.5 showed a projected annual precipitation increase of around 20% in the southwestern and certain eastern regions in the far future. Furthermore, a substantial rise of approximately 50% in summer precipitation under SSP3-7.0 is expected in the central and western regions in the far future. However, it is crucial to note that the projected changes exhibit considerable uncertainty among different GCMs.

3.
Diagnostics (Basel) ; 14(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38473015

RESUMEN

Ovarian cancer is one of the leading causes of death worldwide among the female population. Early diagnosis is crucial for patient treatment. In this work, our main objective is to accurately detect and classify ovarian cancer. To achieve this, two datasets are considered: CT scan images of patients with cancer and those without, and biomarker (clinical parameters) data from all patients. We propose an ensemble deep neural network model and an ensemble machine learning model for the automatic binary classification of ovarian CT scan images and biomarker data. The proposed model incorporates four convolutional neural network models: VGG16, ResNet 152, Inception V3, and DenseNet 101, with transformers applied for feature extraction. These extracted features are fed into our proposed ensemble multi-layer perceptron model for classification. Preprocessing and CNN tuning techniques such as hyperparameter optimization, data augmentation, and fine-tuning are utilized during model training. Our ensemble model outperforms single classifiers and machine learning algorithms, achieving a mean accuracy of 98.96%, a precision of 97.44%, and an F1-score of 98.7%. We compared these results with those obtained using features extracted by the UNet model, followed by classification with our ensemble model. The transformer demonstrated superior performance in feature extraction over the UNet, with a mean Dice score and mean Jaccard score of 0.98 and 0.97, respectively, and standard deviations of 0.04 and 0.06 for benign tumors and 0.99 and 0.98 with standard deviations of 0.01 for malignant tumors. For the biomarker data, the combination of five machine learning models-KNN, logistic regression, SVM, decision tree, and random forest-resulted in an improved accuracy of 92.8% compared to single classifiers.

4.
Heliyon ; 9(10): e20379, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37810830

RESUMEN

Regional climate models (RCMs) that produce good outputs in one region or for specific variables may underperform for others. Thereby, assessing the performance of various model simulations and their corresponding mean ensemble is critical in identifying the most suitable models. In this regard, a study was conducted to evaluate the performance of ten RCMs against observations from multiple ground-based stations in the East African Transboundary Omo Gibe River Basin, Ethiopia, during the baseline period of 1986-2005. The study evaluated the models' ability to replicate various aspects of climatic variables and their corresponding statistical indicators. The results confirmed that RCMs have varying abilities to reproduce climatic conditions across the basin. The ensembles and RACMO22T (EC-EARTH) were better at replicating the average annual precipitation distribution. Meanwhile, the CCLM4-8-17 (MPI) together with the ensembles better captured the measured precipitation annually, despite the discrepancies in the actual magnitudes. All RCMs were able to simulate the seasonal precipitation patterns effectively, with RACMO22T (EC-EARTH), CCLM4-8-17 (CNRM), RCA4 (CNRM), CCLM4-8-17 (MPI), and REMO2009 (MPI) models captured superior, excluding the maximum value. Interannual and seasonal rainfall pattern variations were more significant than variations in air temperature. Additionally, a better correlation was observed between actual and simulated precipitation at multiple separate monitoring places. The RCA4 (MPI) and CCLM4-8-17 (MPI) demonstrated reasonable minimum and maximum temperatures. The RCA4 (MIROC5) model was more effective in reproducing extreme precipitation events. However, all RCMs and their ensembles tended to overestimate the return periods of these events. In general, the research highlights the importance of selecting reliable RCMs that better replicate observed climatic settings and employing the ensemble mean of top-performing models following systematic bias adjustment for a specific application.

5.
Environ Sci Pollut Res Int ; 30(37): 87314-87329, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37422556

RESUMEN

Since investigating the long-term trends of the renewable energy potential may help in planning sustainable energy systems, this study intends to forecast the renewable energy potential of the East Thrace, Turkey region, in the future based on CMIP6 Global Circulation Models data using the ensemble mean output of the best-performed tree-based machine learning method. To evaluate the accuracy of global circulation models, Kling-Gupta efficiency, modified index of agreement, and normalized root-mean-square error are applied. The best four global circulation models are detected as a result of the comprehensive rating metric, which combines all accuracy performance results into a single metric. Three different machine learning methods, random forest, gradient boosting regression tree, and extreme gradient boosting, are trained using the historical data of the top-four global circulation models and the ERA5 dataset to calculate the multi-model ensembles of each climate variable, and then, the future trends of those variables are forecasted based on the output of ensemble means of best-performed machine learning methods with the lowest out-of-bag root-mean-square error. It is foreseen that there will not be a significant change in the wind power density. The annual average solar energy output potential is found to be between 237.8 and 240.7 kWh/m2/year depending on the shared socioeconomic pathway scenario. Under the forecasted precipitation scenarios, 356-362 l/m2/year of irrigation water could be harvested from agrivoltaic systems. Thereby, it would be possible to grow crops, generate electricity, and harvest rainwater on the same area. Furthermore, tree-based machine learning methods provide much lower error compared to simple mean methods.


Asunto(s)
Clima , Luz Solar , Turquía , Aprendizaje Automático , Energía Renovable
6.
Heliyon ; 9(5): e16274, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37234666

RESUMEN

Understanding spatiotemporal variability in precipitation and temperature and their future projections is critical for assessing environmental hazards and planning long-term mitigation and adaptation. In this study, 18 Global Climate Models (GCMs) from the most recent Coupled Model Intercomparison Project phase 6 (CMIP6) were employed to project the mean annual, seasonal, and monthly precipitation, maximum air temperature (Tmax), and minimum air temperature (Tmin) in Bangladesh. The GCM projections were bias-corrected using the Simple Quantile Mapping (SQM) technique. Using the Multi-Model Ensemble (MME) mean of the bias-corrected dataset, the expected changes for the four Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were evaluated for the near (2015-2044), mid (2045-2074), and far (2075-2100) futures in comparison to the historical period (1985-2014). In the far future, the anticipated average annual precipitation increased by 9.48%, 13.63%, 21.07%, and 30.90%, while the average Tmax (Tmin) rose by 1.09 (1.17), 1.60 (1.91), 2.12 (2.80), and 2.99 (3.69) °C for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. According to predictions for the SSP5-8.5 scenario in the distant future, there is expected to be a substantial rise in precipitation (41.98%) during the post-monsoon season. In contrast, winter precipitation was predicted to decrease most (11.12%) in the mid-future for SSP3-7.0, while to increase most (15.62%) in the far-future for SSP1-2.6. Tmax (Tmin) was predicted to rise most in the winter and least in the monsoon for all periods and scenarios. Tmin increased more rapidly than Tmax in all seasons for all SSPs. The projected changes could lead to more frequent and severe flooding, landslides, and negative impacts on human health, agriculture, and ecosystems. The study highlights the need for localized and context-specific adaptation strategies as different regions of Bangladesh will be affected differently by these changes.

7.
Glob Chang Biol ; 29(14): 4152-4160, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37097011

RESUMEN

Projections of coral reefs under climate change have important policy implications, but most analyses have focused on the intensification of climate-related physical stress rather than explicitly modelling how coral populations respond to stressors. Here, we analyse the future of the Great Barrier Reef (GBR) under multiple, spatially realistic drivers which allows less impacted sites to facilitate recovery. Under a Representative Concentration Pathway (RCP) 2.6 CMIP5 climate ensemble, where warming is capped at ~2°C, GBR mean coral cover declined mid-century but approached present-day levels towards 2100. This is considerably more optimistic than most analyses. However, under RCP4.5, mean coral cover declined by >80% by late-century, and reached near zero under RCP ≥6.0. While these models do not allow for adaptation, they significantly extend past studies by revealing demographic resilience of coral populations to low levels of additional warming, though more pessimistic outcomes might be expected under CMIP6. Substantive coral populations under RCP2.6 would facilitate long-term genetic adaptation, adding value to ambitious greenhouse emissions mitigation.


Asunto(s)
Antozoos , Animales , Arrecifes de Coral , Cambio Climático , Aclimatación , Demografía
8.
Sci Total Environ ; 877: 162979, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36948316

RESUMEN

Development of solar energy is one of the key solutions towards carbon neutrality in China. The output of solar energy is dependent on weather conditions and shows distinct spatiotemporal characteristics. Previous studies have explored the photovoltaic (PV) power potential in China but with single models and low-resolution radiation data. Here, we estimated the PV power potential in China for 2016-2019 using an ensemble of 11 PV models based on hourly solar radiation at the resolution of 5 km retrieved by the Himawari-8 geostationary satellite. On the national scale, the ensemble method revealed an annual average PV power potential of 242.79 kWh m-2 with the maximum in the west (especially the Tibetan Plateau) and the minimum in the southeast (especially the Sichuan Basin). The multi-model approach shows inter-model spreads of 6 %-7 % distributed uniformly in China, suggesting a robust spatial pattern predicted by these models. The seasonal variation in general shows the largest PV power generation in summer months except for Tibetan Plateau, where the peak value appears in spring because the high cloud coverage dampens the regional solar radiation in summer. On the national scale, the deseasonalized PV power potential shows a high correlation with cloud coverage (R2 = 0.71, p < 0.01) but a low correlation with aerosol optical depth (R2 = 0.08, p < 0.05). Sensitivity experiments show that national PV power potential increases by 0.55 % per 1 W m-2 increase of radiation and 0.79 % per 1 m s-1 increase of wind speed, but decreases by 0.46 % per 1 °C increase of air temperature. These sensitivities provide a solid foundation for the future projection of PV power potential in China under climate change.

9.
Clim Dyn ; 60(5-6): 1815-1829, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36936712

RESUMEN

This study provides extended seasonal predictions for the Upper Colorado River Basin (UCRB) precipitation in boreal spring using an artificial neural network (ANN) model and a stepwise linear regression model, respectively. Sea surface temperature (SST) predictors are developed taking advantage of the correlation between the precipitation and SST over three ocean basins. The extratropical North Pacific has a higher correlation with the UCRB spring precipitation than the tropical Pacific and North Atlantic. For the ANN model, the Pearson correlation coefficient between the observed and predicted precipitation exceeds 0.45 (p-value < 0.01) for a lead time of 12 months. The mean absolute percentage error (MAPE) is below 20% and the Heidke skill score (HSS) is above 50%. Such long-lead prediction skill is probably due to the UCRB soil moisture bridging the SST and precipitation. The stepwise linear regression model shows similar prediction skills to those of ANN. Both models show prediction skills superior to those of an autoregression model (correlation < 0.10) that represents the baseline prediction skill and those of three of the North American Multi-Model Ensemble (NMME) forecast models. The three NMME models exhibit different skills in predicting the precipitation, with the best skills of the correlation ~ 0.40, MAPE < 25%, and HSS > 40% for lead times less than 8 months. This study highlights the advantage of oceanic climate signals in extended seasonal predictions for the UCRB spring precipitation and supports the improvement of the UCRB streamflow prediction and related water resource decisions. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-022-06422-x.

10.
Sci Total Environ ; 869: 161707, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690117

RESUMEN

Drought-flood abrupt alternation (DFAA) as a compound natural disaster can cause severe socioeconomic loss and environmental destruction. Under climate change, the Huang-Huai-Hai River Basin has experienced evident increases in temperature and variability of precipitation. However, the study of the evolution characteristics of DFAA in the Huang-Huai-Hai River Basin is limited and the risk of exposure to DFAA events under future climatic conditions should be comprehensively assessed. In this study, the DFAA events including drought to flood (DTF) and flood to drought (FTD) events in the Yellow River Basin (YRB), Huai River Basin (HuRB), and Hai River Basin (HaRB) are identified by the long-cycle drought-flood abrupt alternation index (LDFAI) and the temporal variation and spatial distribution of the number and intensity of DFAA events from 1961 to 2020 are examined. The 24 climate model simulations of Coupled Model Intercomparison Project Phase 6 (CMIP6) are used to evaluate the variation of DFAA events based on the bias-corrected method. The results show that both DTF and FTD events occurred >10 times in most areas of the Huang-Huai-Hai River Basin from 1961 to 2020, and severe DFAA events occurred more frequently in the HaRB. The occurrence of DTF events decreased and FTD events continuously increased in the YRB, while they showed opposite trends in the HuRB and HaRB. In the future, the Huang-Huai-Hai River Basin is projected to experience more DTF events under the SSP1-2.6 and SSP2-4.5 scenarios, while more FTD events under the SSP3-7.0 and SSP5-8.5 scenarios. Most areas in the Huang-Huai-Hai River Basin are projected to be at medium or high risk of the frequency and intensity of DFAA events under different future scenarios, especially in the central part of the YRB. These findings can provide scientific reference to the formulation of management policies and mitigation strategies.

11.
Environ Sci Pollut Res Int ; 30(13): 38898-38920, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36586027

RESUMEN

Considering the sensitivity and importance of water resources in the Himalayan uplands, this study intended to assess the hydrological responses to climate change in the Jhelum basin. Representative concentration pathway (RCP)-based projections from six dynamically downscaled global circulation models (GCMs) were bias-corrected for developing the climatic projections over the twenty-first century. The uncertainty associated with GCM outputs was addressed by using multi-model ensemble projections developed through Bayesian model averaging (BMA) technique. The assessment reveals that compared to the baseline (1980-2010) values, the annual mean maximum temperature in the basin will rise by 0.41-2.31 °C and 0.63-4.82 °C, and the mean minimum temperature will increase by 1.39-2.37 °C and 2.14-4.34 °C under RCP4.5 and RCP8.5, respectively. While precipitation is expected to decrease by 7.2-4.57% and 4.75-2.47% under RCP4.5 and RCP8.5, correspondingly. BMA ensemble projections were coupled with the Soil and Water Assessment Tool (SWAT) to simulate the future hydrological scenarios of the drainage basin. With the changing climate, the discharge of rivers in the Jhelum basin is expected to witness reductions by about 23-37% for RCP4.5 and 19-46% for RCP8.5. Moreover, the water yield of the basin may also exhibit decreases of 17-25% for RCP4.5 and 18-42% for RCP8.5. The projected scenarios are likely to cause water stress, affect the availability of water for diverse uses, and trigger transboundary water-sharing-related conflicts. The impact of climate change on discharge demands early attention for the formulation of mitigation and adaptive measures at the regional level and beyond.


Asunto(s)
Hidrología , Ríos , Teorema de Bayes , Cambio Climático , Recursos Hídricos
12.
Clim Dyn ; 59(7-8): 2345-2361, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36101674

RESUMEN

Global Climate Models are the main tools for climate projections. Since many models exist, it is common to use Multi-Model Ensembles to reduce biases and assess uncertainties in climate projections. Several approaches have been proposed to combine individual models and extract a robust signal from an ensemble. Among them, the Multi-Model Mean (MMM) is the most commonly used. Based on the assumption that the models are centered around the truth, it consists in averaging the ensemble, with the possibility of using equal weights for all models or to adjust weights to favor some models. In this paper, we propose a new alternative to reconstruct multi-decadal means of climate variables from a Multi-Model Ensemble, where the local performance of the models is taken into account. This is in contrast with MMM where a model has the same weight for all locations. Our approach is based on a computer vision method called graph cuts and consists in selecting for each grid point the most appropriate model, while at the same time considering the overall spatial consistency of the resulting field. The performance of the graph cuts approach is assessed based on two experiments: one where the ERA5 reanalyses are considered as the reference, and another involving a perfect model experiment where each model is in turn considered as the reference. We show that the graph cuts approach generally results in lower biases than other model combination approaches such as MMM, while at the same time preserving a similar level of spatial continuity. Supplementary Information: The online version contains supplementary material available at 10.1007/s00382-022-06213-4.

13.
J Exp Bot ; 73(16): 5715-5729, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35728801

RESUMEN

Crop multi-model ensembles (MME) have proven to be effective in increasing the accuracy of simulations in modelling experiments. However, the ability of MME to capture crop responses to changes in sowing dates and densities has not yet been investigated. These management interventions are some of the main levers for adapting cropping systems to climate change. Here, we explore the performance of a MME of 29 wheat crop models to predict the effect of changing sowing dates and rates on yield and yield components, on two sites located in a high-yielding environment in New Zealand. The experiment was conducted for 6 years and provided 50 combinations of sowing date, sowing density and growing season. We show that the MME simulates seasonal growth of wheat well under standard sowing conditions, but fails under early sowing and high sowing rates. The comparison between observed and simulated in-season fraction of intercepted photosynthetically active radiation (FIPAR) for early sown wheat shows that the MME does not capture the decrease of crop above ground biomass during winter months due to senescence. Models need to better account for tiller competition for light, nutrients, and water during vegetative growth, and early tiller senescence and tiller mortality, which are exacerbated by early sowing, high sowing densities, and warmer winter temperatures.


Asunto(s)
Cambio Climático , Triticum , Biomasa , Estaciones del Año , Temperatura
14.
Int J Biometeorol ; 66(7): 1365-1378, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35462607

RESUMEN

Heat stress in combination with drought has become the biggest concern and threat for maize yield production, especially in arid and hot regions. Accordingly, different optimal solutions should be considered in order to maintain maize production and reduce the risk of heat stress under the changing climate. In the current study, the risk of heat stress across Iranian maize agro-ecosystems was analyzed in terms of both intensity and frequency. The study areas comprised 16 provinces and 24 locations classified into five climate categories: arid and hot, arid and temperate, semi-arid and hot, semi-arid and temperate, and semi-arid and cold. The impact of heat stress on maize under a future climate was based on a 5-multi-model ensemble under two optimistic and pessimistic emission scenarios (RCP4.5 and RCP8.5, respectively) for 2040-2070 using the APSIM crop model. Simulation results illustrated that in the period of 2040-2070, intensity and the frequency of heat stress events increased by 2.37 °C and 79.7%, respectively, during maize flowering time compared to the baseline. The risk of heat stress would be almost 100% in hot regions in the future climate under current management practices, mostly because of the increasing high-risk window for heat stress which will result in a yield reduction of 0.83 t ha-1. However, under optimal management practices,farmers will economically obtain acceptable yields (6.6 t ha-1). The results also indicated that the high-risk windows in the future will be lengthening from 12 to 33 days in different climate types. Rising temperatures in cold regions as a result of global warming would provide better climate situations for maize growth, so that under optimistic emission scenarios and optimal management practices, farmers will be able to boost grain yield up to 9.2 t ha-1. Overall, it is concluded that farmers in hot and temperate regions need to be persuaded to choose optimal sowing dates and new maize cultivars which are well adapted to each climate to reduce heat stress risk and to shift maize production to cold regions.


Asunto(s)
Cambio Climático , Zea mays , Agricultura/métodos , Ecosistema , Respuesta al Choque Térmico , Irán
15.
Front Earth Sci ; 10: 1-19, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35300381

RESUMEN

We present the ensemble method of prescreening-based subset selection to improve ensemble predictions of Earth system models (ESMs). In the prescreening step, the independent ensemble members are categorized based on their ability to reproduce physically-interpretable features of interest that are regional and problem-specific. The ensemble size is then updated by selecting the subsets that improve the performance of the ensemble prediction using decision relevant metrics. We apply the method to improve the prediction of red tide along the West Florida Shelf in the Gulf of Mexico, which affects coastal water quality and has substantial environmental and socioeconomic impacts on the State of Florida. Red tide is a common name for harmful algal blooms that occur worldwide, which result from large concentrations of aquatic microorganisms, such as dinoflagellate Karenia brevis, a toxic single celled protist. We present ensemble method for improving red tide prediction using the high resolution ESMs of the Coupled Model Intercomparison Project Phase 6 (CMIP6) and reanalysis data. The study results highlight the importance of prescreening-based subset selection with decision relevant metrics in identifying non-representative models, understanding their impact on ensemble prediction, and improving the ensemble prediction. These findings are pertinent to other regional environmental management applications and climate services. Additionally, our analysis follows the FAIR Guiding Principles for scientific data management and stewardship such that data and analysis tools are findable, accessible, interoperable, and reusable. As such, the interactive Colab notebooks developed for data analysis are annotated in the paper. This allows for efficient and transparent testing of the results' sensitivity to different modeling assumptions. Moreover, this research serves as a starting point to build upon for red tide management, using the publicly available CMIP, Coordinated Regional Downscaling Experiment (CORDEX), and reanalysis data.

16.
Front Neurosci ; 16: 1094795, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36817095

RESUMEN

In transferable black-box attacks, adversarial samples remain adversarial across multiple models and are more likely to attack unknown models. From this view, acquiring and exploiting multiple models is the key to improving transferability. For exploiting multiple models, existing approaches concentrate on differences among models but ignore the underlying complex dependencies. This exacerbates the issue of unbalanced and inadequate attacks on multiple models. To this problem, this paper proposes a novel approach, called Relational Graph Ensemble Attack (RGEA), to exploit the dependencies among multiple models. Specifically, we redefine the multi-model ensemble attack as a multi-objective optimization and create a sub-optimization problem to compute the optimal attack direction, but there are serious time-consuming problems. For this time-consuming problem, we define the vector representation of the model, extract the dependency matrix, and then equivalently simplify the sub-optimization problem by utilizing the dependency matrix. Finaly, we theoretically extend to investigate the connection between RGEA and the traditional multiple gradient descent algorithm (MGDA). Notably, combining RGEA further enhances the transferability of existing gradient-based attacks. The experiments using ten normal training models and ten defensive models on the labeled face in the wild (LFW) dataset demonstrate that RGEA improves the success rate of white-box attacks and further boosts the transferability of black-box attacks.

17.
Sci Total Environ ; 806(Pt 2): 150580, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34592301

RESUMEN

The mid- and long-term evolution of wind energy resources in North America is investigated by means of a multi-model ensemble selected from 18 global climate models. The most recent scenarios of greenhouse gases emissions and land use, the Shared Socioeconomic Pathways (SSPs), are considered - more specifically, the SSP5-8.5 (intensive emissions) and SSP2-4.5 (moderate emissions). In both scenarios, onshore wind power density in the US and Canada is predicted to drop. Under SSP5-8.5, the reduction is of the order of 15% overall, reaching as much as 40% in certain northern regions - Quebec and Nunavut in Canada and Alaska in the US. Conversely, significant increases in wind power density are predicted in Hudson Bay (up to 25%), Texas and northern Mexico (up to 15%), southern Mexico and Central America (up to 30%). As for the intra-annual variability, it is poised to rise drastically, with monthly average wind power densities increasing up to 120% in certain months and decreasing up to 60% in others. These changes in both the mean value and the intra-annual variability of wind power density are of consequence for the Levelised Cost of Energy from wind, the planning of future investments and, more generally, the contribution of wind to the energy mix.


Asunto(s)
Cambio Climático , Viento , Predicción , Texas
18.
Sci Total Environ ; 807(Pt 3): 150991, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34656577

RESUMEN

The concept of water footprint (WF) has been used to manage freshwater resources for the past two decades and is considered as indicator of the sustainability of agricultural systems. Accordingly, the current study aimed to quantify WF and its components in the future climate for rainfed and irrigated wheat agro-ecosystems in 17 provinces of Iran located in arid or semi-arid environments. The provinces were divided into five climate classes. The simulations were conducted under current (1980-2010) and future climate (2040-2070) using the Agricultural Production Systems sIMulator (APSIM) crop model, following the Agricultural Model Intercomparison and Improvement Project (AgMIP) protocol. Baseline simulations indicated that the total WF, averaged across all climate classes, was 1148 m3 t-1 for irrigated and 1155 m3 t-1 for rainfed wheat. WF was projected to decline in the future compared to baseline in both irrigated and rainfed systems mostly because of increases in yield of +9% in rainfed systems and 3.5% in irrigated systems, and decreases in water consumption by -5.4% and -10.1%, respectively. However, the share of gray water footprint (WFgray) was projected to increase in the near future for both rainfed (+5.4%) and irrigated (+6.9%) systems. These findings suggest that cleaner and more sustainable production (i.e. obtaining grain yield under optimal water and nitrogen consumption) could be achieved in irrigated and rainfed wheat ago-ecosystems if optimal N fertilizer management is adopted. Additionally, rainfed cultivation can be further expanded in some areas which is expected to result in a substantial reduction in blue water (i.e. less irrigation), especially in sub-humid and semi-arid cool areas.


Asunto(s)
Triticum , Agua , Cambio Climático , Ecosistema , Nitrógeno
19.
Stud Hist Philos Sci ; 88: 120-127, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34166920

RESUMEN

Non-epistemic values pervade climate modelling, as is now well documented and widely discussed in the philosophy of climate science. Recently, Parker and Winsberg have drawn attention to what can be termed "epistemic inequality": this is the risk that climate models might more accurately represent the future climates of the geographical regions prioritised by the values of the modellers. In this paper, we promote value management as a way of overcoming epistemic inequality. We argue that value management can be seriously considered as soon as the value-free ideal and inductive risk arguments commonly used to frame the discussions of value influence in climate science are replaced by alternative social accounts of objectivity. We consider objectivity in Longino's sense as well as strong objectivity in Harding's sense to be relevant options here, because they offer concrete proposals that can guide scientific practice in evaluating and designing so-called multi-model ensembles and, in fine, improve their capacity to quantify and express uncertainty in climate projections.


Asunto(s)
Diversidad Cultural , Filosofía , Clima , Cambio Climático , Filosofía/historia , Incertidumbre
20.
Stud Hist Philos Sci ; 83: 44-52, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32958280

RESUMEN

Projections of future climate change cannot rely on a single model. It has become common to rely on multiple simulations generated by Multi-Model Ensembles (MMEs), especially to quantify the uncertainty about what would constitute an adequate model structure. But, as Parker points out (2018), one of the remaining philosophically interesting questions is: "How can ensemble studies be designed so that they probe uncertainty in desired ways?" This paper offers two interpretations of what General Circulation Models (GCMs) are and how MMEs made of GCMs should be designed. In the first interpretation, models are combinations of modules and parameterisations; an MME is obtained by "plugging and playing" with interchangeable modules and parameterisations. In the second interpretation, models are aggregations of expert judgements that result from a history of epistemic decisions made by scientists about the choice of representations; an MME is a sampling of expert judgements from modelling teams. We argue that, while the two interpretations involve distinct domains from philosophy of science and social epistemology, they both could be used in a complementary manner in order to explore ways of designing better MMEs.


Asunto(s)
Cambio Climático , Juicio , Predicción , Incertidumbre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...